
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

151

This work was supported by the Korea Research Foundation Grant

funded by the Korean Government (MOEHRD)"(KRF-2006-

105759001).
†
corresponding author

Test Case Generation Technique for Interoperability Test of

Component Based Software from State Transition Model

Wan-Seob Byoun , Cheol-Jung Yoo
†
 , Hye-min Noh and Ok-Bae Chang

Chonbuk National University, Jeonju, Jeonbuk, South KOREA

Summary
With the rapid growth of CBD technology, two or more

components from different vendors are integrated and interact

with each other to perform a certain function in the component-

based software. The main interest of component users who

develop applications using components developed already, is to

confirm that the component is collaborating with other

components according to the requirements. Interoperability test is

to check how those components collaborate each other in

component user context not in the component development

context. Therefore, the research on the interoperability is

crucially important. In this paper, a new technique is proposed

for generating a test case which is necessary for checking the

interoperability of the components in the component-based

software.

Key words:
Testing, CBD, Test Case Generation, Interoperability Test

1. Introductions

The main advantage of Component Based

Development(CBD) is that it is possible to reuse the high-

quality components provided by professional component

vendors. The methodology of CBD is steadily growing in

the area of software development. Many different methods

are being proposed by the CBD users[1].

 The main interest of component users who develop

applications using components developed already, is to

confirm that the component is collaborating with other

components according to the requirements and that the

component is unified into new framework after completing

the application software. In the component-based software,

it is necessary to check how those components are

integrated into one complete software and collaborate each

other in real environment not in the development

environment. Therefore, research on the inter-operability

of each component in a CBD software is crucially

important[2].

 However, research on the method of creating a

systematic and optimized test process and test suit

checking the inter-operability of the components in the

CBD software is still in the primitive stage[3]. In common

CBD software, it is often impossible to detect the internal

errors arising from the incomplete test case. Also the cost

of the CBD software can be wasted by employing

duplicate test case inadvertently[3].

 In this paper, a new technique is proposed for generating

a test case which is necessary for checking the inter-

operability of the components in the component-based

software. The technique is using the state transition model

previously proposed by Noh et al.[5]

 The structure of this paper is as following. Following the

introduction (Chapter 1), descriptions about the previous

test methods of CBD software are presented in chapter 2.

In chapter 3, a method of creating of test case is proposed

based on the specification of the Extended Finite State

Machines (EFSM) model. Then an example of application

of the method to a real CBD software is given in chapter 4,

followed by the results of analyses of the proposed method

in chapter 5, and finally, in chapter 6, the conclusion and

future research.

2. Test of Component Based Software

Software engineers are aware of the difference in

validation process of the component-based software and

that of the software developed in a traditional manner[4,5].

The test of the CBD software include both the providers

and the users of the components, the former develop the

components and the latter realize the application software

using the components[6].

 The usual test performed by the providers is concentrated

on checking accurately the performance of the internal

logic, data, and program structure of the components.

Therefore, the test by the providers is usually done in the

method of white-box test[1]. On the other hand, the test

executed by the users of the components is to evaluate the

adequateness of each component in the framework of the

application software. The user's test normally done in the

method of black-box test, which regards the component as

a black-box[1].

 Following are brief lists of important factors that hinder

the test of the CBD software[7][8][9].

• Test of components in the new environment

 Components are developed in the development

environment of the providers, but they are reused by the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

152

users in a completely different environment. The user's

environment is sometimes beyond the expectation of the

providers so that validation of the inter-operability

between the components is regarded as crucially important

in testing the CBD software.

• Difficulty in access to internal information of each

component

 Another problem is the low visibility of each component

which is subjected to the test. The internal information

except the interface of each component is strictly limited.

Systematic method of testing the inter-operability of

components should take into account such problem of low

visibility of each component.

3. Generation of Test Case for

Interoperability Test of Components

3.1 Test model

Test models are used as input for producing a test case.

Hao defined the state transition specification of

EFSM[10]][11][12]. We specify EFSM in the XML DTD

format as follows.

<!-- === Start Entity Declaration === -->

<!-- === End Entity Declaration === -->

<!-- === Start Element Declaration === -->

<!ELEMENT EFSM (transition)+>

<!ELEMENT transition (from , trans_info , to)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT trans_info (input+ , output+ ,

 predicate+ , action+ ,color)>

<!ELEMENT input (#PCDATA)>

<!ELEMENT output (#PCDATA)>

<!ELEMENT action (#PCDATA)>

<!ELEMENT predicate (#PCDATA)>

<!ELEMENT to (#PCDATA)>

<!-- === End Element Declaration === -->

<!-- === Start Attribute Declaration === -->

<!ATTLIST EFSM e_id ID #REQUIRED>

<!ATTLIST transition id ID #REQUIRED>

<!-- === End Attribute Declaration === -->

We define the elements constituting the EFSM as

follows[3].

• State : ‘State’ in state identification table

• Input : external input inducing the behavior identified in

use case specificaton

• Output : Response of the system as the result of behavior

• Predicates : Logical expression of the component

attributes obeyed after the transition

• Action : behavior to produce the transition

• Color : indicator that the state transition brings the inter-

operability or not.

3.2 The concept and process for generating the test

case

The purpose of producing the test case proposed in this

paper is to create a complete and optimized test case to

check the inter-operability between the components. Fig. 1

represents the steps of creating a test case for checking the

inter-operability between the components, using the

EFSM presented in chapter 3.

Fig. 1 Steps for generating a test case

3.3 Test cases generation technique

3.3.1 Drawing of a state transition diagram using the

EFSM

The EFSM proposed by Noh et al. include information of

the state and state transition of the component based

software identified in the process of behavior modeling. In

addition, it contains the information of the inter-operability

of the components. The states are sorted as 'Idle' and

'Normal' states, and the transitions are differentiated as

'White' edge inter-line and 'Black' edge inter-line, in order

to exclude unnecessary tests that are not related with the

inter-operability. The definition of 'Idle' state and 'Normal'

state is as following.

[Definition 1] 'Idle' state is a dormant state without any

behavior, waiting for events to occur. 'Normal' state is a

state that the system is performing an behavior because of

changes in conditions or occurrence of events to the system.

 'White' edge inter-line and 'Black' edge inter-line are

defined as following.

[Definition 2] 'White' edge inter-line represents the state

transition that is not related with the inter-operability

between the two components. 'Black' edge inter-line, to the

contrary, represents the state transition that is related with

the inter-operability.

Drawing

state transition

 diagram

Extracting

 test

sequence

Extracting

test case

Writing

test

specification

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

153

 The rules for making the state transition diagram are as

following.

[Rule 1] Transitions between the states are described in

the standard notation according to the contents in the

'From-state' items and 'To-state' items of the EFSM

specification. The attribute values of components

corresponding each state are analyzed and depicted as

'Idle' state and the 'Normal' state depending on the values.

The 'White' edge inter-lines and the 'Black' edge inter-lines

are differentiated depending on the values of the 'Color'

index.

Fig. 2 shows an example of the EFSM specification, and

Fig. 3 shows the state transition diagram of the EFSM

specification using the rule 1 above.

<transition id = "T1">

 <from>S1</from>

 <trans_info>

 <input>String name; String password</input>

 <output></output>

 <predicates>filledLoginInfo_C1=true</predicates>

 <actions>

 <act1>input 'name' field and 'password' field</act1>

 </actions>

 <color>White</color>

 </trans_info>

 <to>S2</to>

</transition>

<transition id = "T2">

 <from>S1</from>

 <trans_info>

 <input></input>

 <output>Display Error Message;

 Load Registration Form</output>

 <predicates>A_authSuccess=false;

filledLoginInfo_C1=false;

 clickedSubmit_C1=true;

reqCustInfoToC2_C1=true;

 checkIdPsw_C1=true;

dispRegForm_C1=true;

 dispErrMsg_C1=true</predicates>

 <actions>

 <act1>Click 'Submit'Button</act1>

 </actions>

 <color>Black</color>

 </trans_info>

 <to>S5</to>

</transition>

<transition id = "T3">

 <from>S2</from>

 <trans_info>

 <input>String name; String password</input>

 <output>Create Shopping Cart; Display

'Web Store'Page</output>

 <predicates>A_authSuccess=true;

filledLoginInfo_C1=true;

clickedSubmit_C1=true;

reqCustInfoToC2_C1=true;

checkIdPsw_C1=true;

sendCustInfoToC1_C2=true;

 createCart_C3</predicates>

<actions>

 <act1>Click 'Submit' Button</act1>

 </actions>

 <color>Black</color>

 </trans_info>

 <to>S3</to>

</transition>

Fig. 2 An example of the EFSM specification

Fig. 3 An example of a state transition diagram

3.3.2 Extracting a test sequence using the state

transition diagram

Most important step in extracting a test sequence is to find

the acyclic path from the state transition diagram. The rule

of finding acyclic path from the state transition diagram

which contains cycles is as following. Fig. 4 shows the

process of finding strongly connected components (SCC).

[Rule 2] Generate all possible acyclic paths without

repeating apex, and search all the strongly-connected

components (SCC) that have maximal bi-directional paths

between all the pairs of apexes.

[Rule 3] Generate sets of final paths by combining the SCC

into the acyclic paths generated by the[rule 2].

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

154

Fig. 4 Reachability Graph and its Corresponding DAG

Algorithm for generating a test sequence

 Hao et al. proposed an algorithm for generating a test

sequence which contains only the factors of inter-

operability from the state transition diagram[10]. In this

paper, advancing the Hao's algorithm, we propose a new

algorithm to generate a test sequence for testing the inter-

operability, using the information contained in the EFSM

and the graphic properties in the state transition diagram as

described above. Fig. 5 depicts the algorithm for extracting

a test sequence using the [Rule 2] ~ [Rule 3], excluding the

portion from the diagram that is not related with the inter-

operability. The super edge inter-line described in the

algorithm is defined as following.

[Definition 6] The super edge inter-line is the edge line

directly connecting the root node to the first node with a

black edge inter-line.

 The basis for excluding the states and the edges that are

not related with the inter-operability is whether or not the

transition between the states of the components contains

the inter-operation, and whether or not it affects the

previous transition or the following transition related with

the inter-operability. The rule described in the algorithm

for excluding the states and the edges irrelevant with the

inter-operability is as following.

[Rule 4] Replace all the white edges that connect the root

node and the first node with a starting black edge by the

super edges. Exclude all the ending white edges

connecting to the idle nodes. Exclude all the ending white

edges connecting to the terminal nodes.

 White edges are representing the state transition without

the inter-operability in the state transition diagram. They

should be excluded from the analyses, but they should be

included as one transition since the transition from the root

node to the node with first inter-operability must be taken

into account. This process is described in the 1st ~ 4th

rows of the algorithm. Idle nodes are representing the

states that the system is waiting for events with no action

applied to. White transitions to the idle states are irrelevant

with the inter-operability between components, so that the

edges corresponding the white transitions are excluded

from the diagram. This is described in the 5th row of the

algorithm. After applying the above process, there occur

terminal nodes. White transitions to the terminal nodes are

eliminated from the diagram since they are irrelevant with

the inter-operability. This is presented as the 6th row of the

algorithm. The 7th row of the algorithm describes the

process to create all the acyclic paths by applying the [Rule

2] ~[Rule 3] to the state transition diagram produced by

applying the [Rule 4]. All the acyclic paths thus created

become the the test sequence.

Test sequence generation algorithm

from the state transition diagram,

1 from the node v with starting black edges

2 to all the white edges from the root node to node v,

3 add super edge from the root node to node v.

4 eliminate all the starting white edges from the root node to

node v, except the super edges.

5 eliminate all the ending white edges to idle nodes.

6 eliminate all the ending white edges to the terminal nodes

7 create all the acyclic paths using the algorithm to search the

acyclic paths

Fig. 5 Algorithm creating a test sequence

 Fig. 6 shows the process for generating a test sequence

by applying the algorithm described above to the diagram

shown in Fig. 4.

Fig. 6 Generation of test sequence using the algorithm described in Fig.

5.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

155

3.3.3 Test case specification

The test case specification usually contains the information

in Table 1. [13]

Table 1: Test case information

Test case

specification

identifier

Specify the unique identifier assigned to

this test case specification

Test items

Identify and briefly describe the items

and features to be exercised by this test

case

Input

specification

Specify each input required to execute the

test case

Output

specification

Specify all of the outputs and features

required of the test items

Environment

needs

Specify all of the hardware and software

constraint of the test items

Special

procedural

requirements

Describe any special constraints on the

test procedure that execute this test case

Intercase

dependencies

List the identifier of test cases that must

be executed prior to this test case

4. Example of Application

4.1 Extracting the test sequence

Fig. 7 depicts the state transition diagram based on the

EFSM.

Fig. 7 state transition diagram

 Fig. 8 represents the results of executing the algorithm

from the 1st to the 5th row to generate a test sequence.

Fig. 8 eliminating the ending white edges to the idle nodes.

 Fig. 9 is depicting the results of performing the 6th row

of the algorithm generating a test sequence.

Fig. 9 eliminating all the ending white edges connecting to the terminal

nodes.

 The results of test sequence produced by executing the

7th to 9th row in the test sequence generation algorithm are

as following;

S1 → S2 → S3

S1 → S5

S4 → S6

S4 → S13

S7 → S8 → S9

S7 → S10

S7 → S15

S11 → S12

S11 → S14

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

156

4.2 Generating a state transition table for test cases

Table 2 is partial list of state transition table for generating

test cases based on the test sequence produced as above.

Table 2 : example of state transition table

No
From

State
Precondition Input Postcondition

To

State

T01 S1
dispLoginPage

Idel_C1=true

String

name

String

passwor

d

filledLoginInfo_C

1=true
S2

T02 S2
filledLoginInf

o_C1=true

String

name

String

passwor

d

A_authSuccess=tr

ue

filledLoginInfo_C

1=true

clickedSubmit_C1

=true

reqCustInfoToC2_

C1=true

checkIdPsw_C1=t

rue

sendCustInfoToC1

_C2=true

createCart_C3

S3

… … … … … …

 The test cases are produced based on the state transition

table of Table 2 and the specification of EFSM. Table 3

shows the test case specification generated by the 'T01'

state transition.

Table 3 : specification of a test case

Test Case

Identifier
T01

State

Transition
S1 → S2

Use case ID. U001. User Authentication

Interoperability none Test

Item

Behavior

input customer’s id and

password in id and password

field

Input
String name

String password

Output Nothing

Procedural

requirements
Customer must located in log-in page

Intercase

dependencie

s

Nothing

5. Results and Discussions

In this paper, we define the quality of the test case from the

completeness and optimization of the test case. The

completeness of the test case is the measure of ability of

detecting errors, and the optimization is representing how

much the irrelevant test cases are excluded from the test

case.

 First of all, an example of application software is

analyzed and the constituting components and the methods

related to the inter-operability are identified. The

completeness of the test case proposed in this paper is

measured by the number of components and methods

identified. The number of transition in the state transition

diagram are compared before and after applying the test

sequence generation algorithm. This indicates how the

irrelevant test cases are excluded in checking the inter-

operability of the components. The results are given in

Table 4.

Table 4 : Completeness and optimization a 1

Number of methods

Number of method

contained in the test

case Completeness

37 35

Number of

transitions before

applying the

algorithm

Number of transitions

after applying the

algorithm Optimization

22 11

 Table 4 shows that the test case generated by using the

method proposed in this paper scores high both in the

completeness and optimization. Therefore, the method of

generating a test case proposed in the paper seems to be a

useful tool in the evaluation of CBD software.

6. Conclusions and Future Works

In this paper, a new method of creating a test case for

checking the inter-operability of the components in CBD

software. The Extended Finite State Machines (EFSM)

model which contains the information of the inter-

operability is used in generating for the test case. The test

case thus created is proved to be effective in testing the

inter-operability of the components.

 The significance of the method of creating the test case

proposed in this paper is as following:

 First, the low visibility problem of a component of

incomplete information can be overcome. This is done by

performing a black-box type test of the CBD software, by

comparing the resultant outputs and the expected outputs

corresponding to various inputs.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

157

 Second, it is often possible to generate a duplicated and

incomplete test case if ordinary test models are used in

testing the inter-operability. To overcome such a problem,

in this paper, we proposed a new method of generating a

test case that test only the inter-operability between the

components.

 Third, an algorithm is presented to produce a test

sequence that can eliminate the duplicated test cases by

using the test models with the information related with the

inter-operability. In this paper, EFSM is used as the input

to generate a test case for checking the inter-operability.

Test models play crucial roles in extracting high-quality

test cases. Therefore, creating a test model that are formal

and complete is important in generating a successful test

case[14][15]. Further studies are necessary to define and

develop test models that are suitable for the purpose of

each test.

References
[1] Hans-Gerhard Gross, Component-Based Software Testing

with UML, Springer, 2004

[2] J. Clark, C. Clarke, S. DePanfilis, G. Granatella, P.

Predonzani, A. Sillitti, G. Succi, and T. Vernazza.

"Selecting Components in Large COTS Repositories".

Journal of Systems and Software, 2005.

[3] Hye-Min Noh, Ji-Hyun Lee, Cheol-Jung Yoo, and Ok-Bae

Chang. "Behavior Modeling Technique Based on EFSM for

Interoperability Testing", ICCSA 2005, LNCS 3482. pp.

878-885, 2005.

[4] E.J. Weyuker. Testing Component-Based Software: A

Cautionary Tale". IEEE Software, 1998.

[5] E.J. Weyuker. The Trouble with Testing Components,. In

Component-Based Software Engineering,

Heineman/Councill (Eds). Addison-Wesley, 2001.

[6] Crnkovic, I. "Component-Based Software Engineering for

Embedded Systems", ICSE 2005 Proceedings, pp. 712-713,

2005.

[7] J. Gao. "Challenges and Problems in Testing Software

Components". In Workshop on Component-Based Software

Engineering(ICSE 2000), Limerick, June 2000.

[8] J. Z. Gao. H.-S.J. Tsao, and Y. Wu. Testing and Quality

Assurance for Component-Based Software Engineering,

Artech House, 2003.

[9] G.T. Heinman and W.T. Councill (Eds), Component-Based

Software Engineering. Adisson-Wesley, Boston, 2001.

[10] R. Hao, D Lee, R. K. Sinha, N. Griffeth, "Integrated System

Interoperability Testing with Applications to VoIP",

IEEE/ACM Transactions on Networking, Vol. 12, Issue 5,

pp. 23-836, 2004

[11] N. Griffeth, R. Hao, D. Lee, R. K. Sinha, "Interoperability

Testing of VoIP Systems", Global Telecommunications

Conference, Vol. 3, pp. 1565-1570, 2000.

[12] R. Hao. "Protocol Conformance and Interoperability Testing

Based on Formal Methods". PhD Thesis, Tsinghua

University, P.P.China, 1997.

[13] IEEE. IEEE Standard for Software Test Documentation,

IEE Std 829. 2000.

[14] D. Lee, M. Yannakakis, "Principles and Methods of Testing

Finite State Machines-A Survey", Proceedings of the IEEE,

Vol. 84, Issue 8, pp. 1090-1123, 1996

[15] MIAO Hauikou and LIU Ling, "A Test Class Framework

for Generating Test Cases from Z Specifications", 6th IEEE

International Conference on Complex Computer

Systems(ICECCS'00), Tokyo, Japan. pp. 164-171, 2000.

WWWWanananan----SSSSeob eob eob eob ByoByoByoByouuuunnnn received B.S. degree
in Mathematics Education in 1990, and

M.S. degree in Computer Science in 1996

from Chonbuk National University, Jeonju,

South Korea. During 1997-2001, he was a

full-time PhD student of the Software

Engineering Laboratory, Chonbuk

National University. Since then, he has

been studying the interoperability test of

component-based software. He is now a commissioner special of

computer education in Chonbuk Educational District of Korea.

Cheol-Jung Yoo received the B.S.

degree in Computer and Statistics from

Chonbuk National University, Jeonju,

Korea, in 1982, M.S. degree in Computer

and Statistics from Chonnam National

University, Kwangju, Korea, in 1985, and

Ph.D. degree in Computer and Statistics

from Chonbuk National University, Jeonju,

Korea, in 1994. He is currently an

associate Professor, Department of

Computer Science, Chonbuk National University, Jeonju, Korea.

His research interests are software development process, software

quality, component software, software metrics, software agent,

GNSS, GIS, education engineering, and cognitive science etc.

HyeHyeHyeHye----Min NohMin NohMin NohMin Noh received the B.S.,

M.S and Ph. D. degrees in Computer

Science from Chonbuk National

University, Jeonju, Korea in 2000, 2002

and 2006. His research interests are

component based software development,

formal method, embedded software

architecture, software testing, software

measurement and software development

process etc.

Ok-Bae Chang received the B.S. and

M.S. degrees from Korea University,

Seoul, Korea in 1973 and Ph. D. degree

from UC Santa Barbara, in 1988. He is

currently an Professor, Division of

Electronic and Information, Chonbuk

National University, Jeonju, Korea. His

research interests are numerical Analysis,

software development process, software

quality, software metrics, education

engineering and discrete mathematics etc.

