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Summary 
In this paper we propose a new method for generating digital 
signature based on SHA-512 hash algorithm. This method uses a 
secret key and enjoys the benefits of the private key 
cryptography. Using two SHA-512 modules in parallel for 
generating two 512-bit temporary signatures, we permute 
signatures by the given secret key and generate 1024-bit 
signature. We have synthesized and verified the efficiency of our 
algorithm on a Xilinx VIRTEX4 FPGA by applying multiple 
scenarios. 
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1. Introduction 

Data integrity assurance and data origin-authentication are 
essential security services in financial transactions, 
electronic commerce, electronic mail, software distribution, 
data storage and so on. The broadest definition of 
authentication within computing systems includes identity 
verification, message origin-authentication and message 
content authentication [5]. 
To achieve the required processing capabilities, using 
hardware components seems necessary. These hardware 
cores are usually implemented either in dedicated ASIC 
cores or in reconfigurable devices [1]. In this report, we 
use Xilinx reconfigurable devices for implementing our 
design.  
By using private key increased security, attackers cannot 
generate messages offline since they don’t know the secret 
key [3]. Thus, the method is much more secure than SHA-
512 facing birthday attacks. 
In this approach, we use two SHA-512 modules for 
generating two 512 bit signatures. Then, using the secret 
key we permute them and generate a 1024-bit signature.  
The paper is organized as follows; Section 2 presents 
implementation of a SHA-512 module with FPGA. 
Section 3 describes the proposed design and its 
implementation details. In Section 4 we analyze the 
performance of our method and finally in section 5, we 
study the security of the proposed method and compare it 
with the SHA-512 approach. 
 

2. SHA-512 implementation 

In 1993 the Secure Hash Standard (SHA) was first 
published by the NIST. 
In 1995 this algorithm was reviewed in order to eliminate 
some of the initial weakness, and in 2001 new Hashing 
algorithms were proposed. This new family of hashing 
algorithms known as SHA-2, use larger digest messages, 
making them more resistant to possible attacks and 
allowing them to be used with larger blocks of data, up to 
2128 bits, e.g. in the case of SHA-512 [6]. 
For implementing SHA-512, we break it to some smaller 
modules to ease the implementation task in Verilog 
description language. 
These modules are: 
 

o SHA-512 Data path 
• Message Scheduler 
• Ki memory 
• Round 

o SHA-512 controller 
 
The data path section provides the flow of data and the 
controller involves a state machine that controls the data 
flow in SHA-512 data path. Description of each part is as 
follows: 
Message Scheduler: This unit generates 80 message-
dependent words Wt. The first 16 words are simply the 
first 16 words of the input message block. The remaining 
words are computed using simple feedback function, 
based on rotations, shifts and XOR operations.  
Message Scheduler receives a 1024-bit message block in 
64-bit chunks through Xin. According to Fig.1 this module 
has a 16×64-bit shift register and one multiplexer. During 
the first 16 pulses of the system clock, whole message 
block enters into the shift register and then the multiplexer 
selects Win to provide feedback for the shift register. 
Message Scheduler generates Wi for the hash algorithm in 
each clock pulse and Wout, the output signal of the module, 
is the Wi at Roundi. 
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Fig.1. Message Scheduler Block Diagram 

 
Ki Memory: According to NIST Standard, SHA-512 uses 
the sequence of eighty constant 64-bit words, K0, K1,…, 
K79. These words represent the first sixty-four bits of the 
fractional parts of the cube roots of the first eighty prime 
numbers [6]. To store the constant values, we used an 
80×64-bit Xilinx specific Block ROM. 
 
Round: For each message block, the standard hash 
algorithm runs a specific round for 80 times and then 
generates a 512-bit output which is an initial value of the 
algorithm for the next message block. After processing of 
the all 1024-bit message blocks, the last 512-bit output is 
the signature of message [3] (Fig.2, Fig.3). 
 

 
Fig.2. Message digest generation using SHA-512 

 
There are two ways to implement rounds architecture: full 
loop unrolling and iterative looping [4,5].  
The full loop unrolled architecture has an 80-step 
combinational logic which requires huge amount of area 
beside the complexity of generating Wi. By implementing 
one of the steps of the SHA-512 algorithm, the looping 
architecture with 80 iterations would seem to provide the 
most area-efficient solution. The block diagram of an 
iterative core is shown in Fig.4. 
At the first round, Register1 is the initial value (IV) vector 
which is a 512-bit constant number. 

 
Fig.3. SHA-512 processing of a single 1024-bit block 

 

 
Fig.4. Iterative core block diagram 
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After the first round, Register1 holds the Hi of the 
previous round (Hi-1).   
The round is repeated 80 times and this is done by the 
Mux2 multiplexer which returns the output feedback of 
each round to the Round block. The output achieved by 
each round is stored in ABCDEFGH register to prepare 
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feedback value for the next round. After 80 rounds, digest 
of one 1024-bit message block becomes ready at Hi. 

 
Controller: This module generates all necessary 
controlling signals such as multiplexers’ selectors, 
registers’ latch enables, ROM addresses (for Ki) and etc. 
We simulated our implementation using ModelSIM XEIII 
6.1e. In order to validate the simulation results, we 
compared them with signatures calculated by Crypto++ C 
library for a given message block. 

3. Proposed method 

To implement our method we use two SHA-512 modules 
in parallel. A message is passed to SHA-512 modules in 
64-bit chunks, alternatively. For a given message, there 
will be two 512-bit temporary signatures. There is a 
permutation unit that permutes two temporary signatures 
with the given secret key which is stored in a 1024×10-bit 
Block ROM. Each word of ROM indicates the position of 
corresponding bit in output signature. After permutation of 
the 1024-bit temporary signatures, the final signature 
becomes ready (Fig. 5).  
As Fig.6. shows, the structure of a round consists of 
multiple add operations (eq. 1 and eq. 2)  in series that 
forms the critical path of this structure. 
 
Et+1 = Dt + Σ1(Et) + Ch(Et, Ft, Gt) + Ht + Kt + Wt      (1) 

                
 
At+1=Σ0(At)+Maj(Bt,Ct,Dt)+Σ1(Et)+Ch(Et,Ft,Gt)      (2) 
   + Ht + Kt + Wt            
 

 
 

Fig.5. Combined SHA-512 
 

In our implementation we use Carry Save Adder (CSA) 
[7] instead of Carry Propagate Adder (CPA) blocks for 
calculating At+1 and Et+1 (Fig.7) which is known for its 
best-parallelizable architecture. This implementation 
strategy reduces the critical path delay significantly. 

 
 

 
Fig.6. Single round structure 

 
In order to reduce the design area further, we used the 
shift register mode of CLB 1  slices available in Xilinx 
Virtex4 FPGA devices in Message Scheduler 
implementation instead of generic shift registers. 
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Fig.7. Calculating At+1 and Et+1 using CSA blocks 

 

4. Performance analysis 

All modules were synthesized and placed and routed on 
Xilinx Virtex4 xc4vsx35ff668-12 target device. 
In the case of SHA-512 the utilization of slices was 1921 
out of 15360 (12%) and number of consumed slice flip 
flops was 2240 out of 30720 (7%). The timing analysis 
shows 118.043 MHz as the maximum frequency of the 
design. 
Maximum data throughput can be simply computed by the 
following equation: 
 
                                                           
1 Configuration Logic Block 
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 Throughput=Smb × Fmax / R           (3) 
where: 

 Smb: message block size 
Fmax: Maximum clock frequency 
R:  Number of rounds 
 

Using the (eq. 3) maximum expected throughput is: 
1.51Gbps (1024b × 118.043MHz / 80). 
For the combined SHA-512 method, without using CSA, 
the utilization of slices is 3541 out of 15360 (23%) and 
number of slice flip flops is 4490 out of 30720 (14%) with 
the maximum clock frequency of 117.845 MHz and 
maximum throughput of 2.51Gbps.  
In this model, it takes 80 + 16 clock pulses for two 1024-
bit message blocks. Extra 16 clock pulses are needed for 
second SHA-512 message scheduler. This throughput is 
valid for one message because of the permutation delay 
(about 8.7us). Permutation can be overlapped by the 
processing of the next message if its length is at least 13 
message blocks. 
After using carry save adders in combined SHA-512 
method, because of the CSA adder overhead, the slice 
utilization increased to 3826 out of 15360 (24%) and 
number of used slice flip flops increased to 4528 out of 
30720 (14%).  However, the maximum clock frequency 
rose to 135.466 MHz which results in improved 
throughput of 2.89Gbps with 7.5us permutation delay for 
each message (2.89Gbps = 2×1024b×135.466MHz 
/(80+16) ) . 

5. Security analysis  

The security of hash functions is determined by the size of 
their outputs, referred to as hash values, n. The best known 
attack against these functions,  the  “birthday  attack”,  can  
find  a  pair  of messages  having  the  same  hash value 
with a work factor of approximately 2n/2 [3]. 
Therefore, for a SHA-512 module, complexity of the best 
attack is 2256. For our method each SHA-512 has the same 
attack complexity, but our permutation process increases 
the attack complexity in proportion to the size of the secret 
key.  
If we use a 1024-bit secret key, permutation complexity 

becomes  which yields the total complexity of   2!210 10! × 
2256 and it’s much more secure than the SHA-512 
algorithm. 

6. Conclusion 

In this paper, we propose a new idea to generate a 
signature for messages based on the well-known SHA-512 
algorithm. The implementation and simulation results 

show our method superiority over the basic algorithm in 
throughput and security features. Because of permutation 
delay, the new method is suitable for long messages 
(longer than 1.5kB). 
Also, the numerical results prove the suitability of the 
FPGAs as the implementation platform for cryptographic 
accelerators.  
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