
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007 165

Design and Implementation of a Fast, Combined SHA-512 on FPGA

Seyyed Ali Emam† and Sareh Sadat Emami ††,
emam@ce.shari.edu emami@ee.kntu.ac.ir

† Computer Engineering Department, Sharif University of Technology, Tehran, Iran
†† Electrical Engineering Department, Khajeh Nasiredin Tusi University of Technology, Tehran, Iran

Summary
In this paper we propose a new method for generating digital
signature based on SHA-512 hash algorithm. This method uses a
secret key and enjoys the benefits of the private key
cryptography. Using two SHA-512 modules in parallel for
generating two 512-bit temporary signatures, we permute
signatures by the given secret key and generate 1024-bit
signature. We have synthesized and verified the efficiency of our
algorithm on a Xilinx VIRTEX4 FPGA by applying multiple
scenarios.

Key words:
SHA-512, FPGA, Permutation, Digital Signature

1. Introduction

Data integrity assurance and data origin-authentication are
essential security services in financial transactions,
electronic commerce, electronic mail, software distribution,
data storage and so on. The broadest definition of
authentication within computing systems includes identity
verification, message origin-authentication and message
content authentication [5].
To achieve the required processing capabilities, using
hardware components seems necessary. These hardware
cores are usually implemented either in dedicated ASIC
cores or in reconfigurable devices [1]. In this report, we
use Xilinx reconfigurable devices for implementing our
design.
By using private key increased security, attackers cannot
generate messages offline since they don’t know the secret
key [3]. Thus, the method is much more secure than SHA-
512 facing birthday attacks.
In this approach, we use two SHA-512 modules for
generating two 512 bit signatures. Then, using the secret
key we permute them and generate a 1024-bit signature.
The paper is organized as follows; Section 2 presents
implementation of a SHA-512 module with FPGA.
Section 3 describes the proposed design and its
implementation details. In Section 4 we analyze the
performance of our method and finally in section 5, we
study the security of the proposed method and compare it
with the SHA-512 approach.

2. SHA-512 implementation

In 1993 the Secure Hash Standard (SHA) was first
published by the NIST.
In 1995 this algorithm was reviewed in order to eliminate
some of the initial weakness, and in 2001 new Hashing
algorithms were proposed. This new family of hashing
algorithms known as SHA-2, use larger digest messages,
making them more resistant to possible attacks and
allowing them to be used with larger blocks of data, up to
2128 bits, e.g. in the case of SHA-512 [6].
For implementing SHA-512, we break it to some smaller
modules to ease the implementation task in Verilog
description language.
These modules are:

o SHA-512 Data path
• Message Scheduler
• Ki memory
• Round

o SHA-512 controller

The data path section provides the flow of data and the
controller involves a state machine that controls the data
flow in SHA-512 data path. Description of each part is as
follows:
Message Scheduler: This unit generates 80 message-
dependent words Wt. The first 16 words are simply the
first 16 words of the input message block. The remaining
words are computed using simple feedback function,
based on rotations, shifts and XOR operations.
Message Scheduler receives a 1024-bit message block in
64-bit chunks through Xin. According to Fig.1 this module
has a 16×64-bit shift register and one multiplexer. During
the first 16 pulses of the system clock, whole message
block enters into the shift register and then the multiplexer
selects Win to provide feedback for the shift register.
Message Scheduler generates Wi for the hash algorithm in
each clock pulse and Wout, the output signal of the module,
is the Wi at Roundi.

 Manuscript received May 5, 2007
Manuscript revised May 20, 2007

166 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

Fig.1. Message Scheduler Block Diagram

Ki Memory: According to NIST Standard, SHA-512 uses
the sequence of eighty constant 64-bit words, K0, K1,…,
K79. These words represent the first sixty-four bits of the
fractional parts of the cube roots of the first eighty prime
numbers [6]. To store the constant values, we used an
80×64-bit Xilinx specific Block ROM.

Round: For each message block, the standard hash
algorithm runs a specific round for 80 times and then
generates a 512-bit output which is an initial value of the
algorithm for the next message block. After processing of
the all 1024-bit message blocks, the last 512-bit output is
the signature of message [3] (Fig.2, Fig.3).

Fig.2. Message digest generation using SHA-512

There are two ways to implement rounds architecture: full
loop unrolling and iterative looping [4,5].
The full loop unrolled architecture has an 80-step
combinational logic which requires huge amount of area
beside the complexity of generating Wi. By implementing
one of the steps of the SHA-512 algorithm, the looping
architecture with 80 iterations would seem to provide the
most area-efficient solution. The block diagram of an
iterative core is shown in Fig.4.
At the first round, Register1 is the initial value (IV) vector
which is a 512-bit constant number.

Fig.3. SHA-512 processing of a single 1024-bit block

Fig.4. Iterative core block diagram

Mux1

Register1

Mux2

Round

abcdefgh register

 +

IV

Wi

Ki

Hi

Hi-1

After the first round, Register1 holds the Hi of the
previous round (Hi-1).
The round is repeated 80 times and this is done by the
Mux2 multiplexer which returns the output feedback of
each round to the Round block. The output achieved by
each round is stored in ABCDEFGH register to prepare

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007 167

feedback value for the next round. After 80 rounds, digest
of one 1024-bit message block becomes ready at Hi.

Controller: This module generates all necessary
controlling signals such as multiplexers’ selectors,
registers’ latch enables, ROM addresses (for Ki) and etc.
We simulated our implementation using ModelSIM XEIII
6.1e. In order to validate the simulation results, we
compared them with signatures calculated by Crypto++ C
library for a given message block.

3. Proposed method

To implement our method we use two SHA-512 modules
in parallel. A message is passed to SHA-512 modules in
64-bit chunks, alternatively. For a given message, there
will be two 512-bit temporary signatures. There is a
permutation unit that permutes two temporary signatures
with the given secret key which is stored in a 1024×10-bit
Block ROM. Each word of ROM indicates the position of
corresponding bit in output signature. After permutation of
the 1024-bit temporary signatures, the final signature
becomes ready (Fig. 5).
As Fig.6. shows, the structure of a round consists of
multiple add operations (eq. 1 and eq. 2) in series that
forms the critical path of this structure.

Et+1 = Dt + Σ1(Et) + Ch(Et, Ft, Gt) + Ht + Kt + Wt (1)

At+1=Σ0(At)+Maj(Bt,Ct,Dt)+Σ1(Et)+Ch(Et,Ft,Gt) (2)
 + Ht + Kt + Wt

Fig.5. Combined SHA-512

In our implementation we use Carry Save Adder (CSA)
[7] instead of Carry Propagate Adder (CPA) blocks for
calculating At+1 and Et+1 (Fig.7) which is known for its
best-parallelizable architecture. This implementation
strategy reduces the critical path delay significantly.

Fig.6. Single round structure

In order to reduce the design area further, we used the
shift register mode of CLB 1 slices available in Xilinx
Virtex4 FPGA devices in Message Scheduler
implementation instead of generic shift registers.

CSA

CSA

CSA

CSA

CPA

CPA

CPA

CSA

At+1 Et+1

Kt Wt Σ1(Et)

Ch(Et, Ft, Gt)

Ht

Dt

Σ0(At)Maj(Bt,Ct,Dt)

Message

SHA-512

SHA-512

Permutation
Unit

Key

1024-bit Signature

64

512 512

64 64

1024

Fig.7. Calculating At+1 and Et+1 using CSA blocks

4. Performance analysis

All modules were synthesized and placed and routed on
Xilinx Virtex4 xc4vsx35ff668-12 target device.
In the case of SHA-512 the utilization of slices was 1921
out of 15360 (12%) and number of consumed slice flip
flops was 2240 out of 30720 (7%). The timing analysis
shows 118.043 MHz as the maximum frequency of the
design.
Maximum data throughput can be simply computed by the
following equation:

1 Configuration Logic Block

168 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

 Throughput=Smb × Fmax / R (3)
where:

 Smb: message block size
Fmax: Maximum clock frequency
R: Number of rounds

Using the (eq. 3) maximum expected throughput is:
1.51Gbps (1024b × 118.043MHz / 80).
For the combined SHA-512 method, without using CSA,
the utilization of slices is 3541 out of 15360 (23%) and
number of slice flip flops is 4490 out of 30720 (14%) with
the maximum clock frequency of 117.845 MHz and
maximum throughput of 2.51Gbps.
In this model, it takes 80 + 16 clock pulses for two 1024-
bit message blocks. Extra 16 clock pulses are needed for
second SHA-512 message scheduler. This throughput is
valid for one message because of the permutation delay
(about 8.7us). Permutation can be overlapped by the
processing of the next message if its length is at least 13
message blocks.
After using carry save adders in combined SHA-512
method, because of the CSA adder overhead, the slice
utilization increased to 3826 out of 15360 (24%) and
number of used slice flip flops increased to 4528 out of
30720 (14%). However, the maximum clock frequency
rose to 135.466 MHz which results in improved
throughput of 2.89Gbps with 7.5us permutation delay for
each message (2.89Gbps = 2×1024b×135.466MHz
/(80+16)) .

5. Security analysis

The security of hash functions is determined by the size of
their outputs, referred to as hash values, n. The best known
attack against these functions, the “birthday attack”, can
find a pair of messages having the same hash value
with a work factor of approximately 2n/2 [3].
Therefore, for a SHA-512 module, complexity of the best
attack is 2256. For our method each SHA-512 has the same
attack complexity, but our permutation process increases
the attack complexity in proportion to the size of the secret
key.
If we use a 1024-bit secret key, permutation complexity

becomes which yields the total complexity of 2!210 10! ×
2256 and it’s much more secure than the SHA-512
algorithm.

6. Conclusion

In this paper, we propose a new idea to generate a
signature for messages based on the well-known SHA-512
algorithm. The implementation and simulation results

show our method superiority over the basic algorithm in
throughput and security features. Because of permutation
delay, the new method is suitable for long messages
(longer than 1.5kB).
Also, the numerical results prove the suitability of the
FPGAs as the implementation platform for cryptographic
accelerators.

References
[1] R.Chaves, G.K.Kuzmanov, L.Sousa, S.Vassiliadis,

“Improving SHA-2 Hardware implementations”,
Workshop on Cryptographic Hardware and Embedded
Systems (CHES), October, 2006.

[2] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P.
Bellows, J. Flidr, T. Lehman, and B. Schott,
"Comparative analysis of the hardware implementations
of hash functions SHA-1 and SHA-512", in ISC (A. H.
Chan and V. D. Gligor, eds.), vol. 2433 of Lecture
Notes in Computer Science, pp. 75{89, Springer, 2002.

[3] William Stallings, “Cryptography and Network
Security Principles and Practices, Fourth Edition",
Prentice Hall, 2005.

[4] R.P. McEvoy, F.M. Crowe, C.C. Murphy, and W.P.
Marnane, "Optimisation of the SHA-2 family of hash
functions on FPGAs", IEEE Computer Society An-nual
Symposium on Emerging VLSI Technologies and
Architectures ISVLSI'06), 2006.

[5] Janaka Deepakumara, Howard M. Heys, and R.
Venkatesan. "FPGA Implementation of MD5 Hash
Algorithm". In Canadian Conference on Electrical and
Computer Engineering (CCECE), May 2001.

[6] NIST, "Announcing the Standard for Secure Hash
Standard, 180-2", tech. rep., National institute of
Standard, August 2002.

[7] Behrooz Parhami, “Computer Arithmetic, Algorithms and
Hardware Design”, Oxford University Press, 2000.

http://ce.et.tudelft.nl/person.php?id=9
http://ce.et.tudelft.nl/person.php?id=2
http://ce.et.tudelft.nl/publicationfiles/930_526_prorisc2004.pdf

