
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

193

Manuscript received May 5, 2007.
Manuscript revised May 20, 2007.

Reliability Analysis for Component-based Software System in
Open Distributed Environments

Haiyang Hu †

† College of Computer and Information Engineering,

Zhejiang Gongshang University, Hangzhou, China, 310018

Summary
Internet provides an open, dynamic, and uncertain
environment. Component-based software development in
this environment faces more challenges with built upon a
set of heterogeneous, autonomous software components
distributed in the open network. Making analysis on the
reliability of component-based software system in this
environment has important meanings. However, current
approaches to software reliability are not very applicable
to this open environment. This paper presents a new
approach to evaluate the reliability of the
component-based software system in this open
distributed environment by analyzing the reliabilities of
the components in different application domains, the
reliabilities of the connections to these components and
the architecture style of their composition. Sensitivity
analysis on the elements in the software system is also
presented and we make experiments on an example to
show the approach’s characteristics.
Key words
software components, component-based software system,
reliability analysis, sensitivity analysis

1. Introduction

The Internet provides a global open infrastructure
for exchanging and sharing of various resources for
the people all over the world. The rapid
development and wide application of the Internet
makes it become a new mainstream platform for
software to be used, developed, deployed and
executed. The Internet platform has such
characteristics different from traditional platforms
as: 1)Entities are heterogeneous, dynamic and
unpredictable; 2)Connections of nodes are
manifold: wire or wireless, fixed or mobile;3)User’s
requirements are more personalized and flexible
[1], [2], [3]. Thus, how to analyze the reliability of
component-based software system in this open
distributed environment have important meanings.
 At present, there are several models of
reliability analysis on component-based software
system, such as [6], [7], [8], [9], [12]. However,

these works seldom analyze the reliability of the
connections to the components apparently, and
often they assume that the component is just used
in single application domain so that the reliability
it shows is always the same. As a result, the above
models do not adapt to the analysis for
component-based software system in open
distributed environments quite well. This paper
presents a new approach to reliability analysis on
component-based software system in open
distributed environments, which evaluates the
different reliabilities individual component shows
in its different application domains, the reliability
of the connections to these components, and the
architecture style of their composition, to give
evidences for assessing the overall reliability of the
software system.

In the following sections of this paper, related
works are discussed in section 2. Reliability
analysis for the component-based software system
in open distributed environments is presented in
section 3, and sensitivity analysis on the elements
of the system is also given in this section. We make
experiments on an example to show its
characteristics in section 4. Finally, section 5
concludes this paper.

2. Related Works

Early approaches to reliability analysis for a
component-based software system often consider
the whole system as a black box, i.e., only its
interactions with the outside world are modeled
while without considering its internal structure.
The class of these approaches [3], [4] are suited to
capture the behavior of largely custom applications.
With the widespread use of object-oriented
technology and web-based development,
component-based software development has
become a hotspot in the area of software
engineering. As the software component can be

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

194

commercially available off the shelf or developed
contractually, the whole application can be
developed with different heterogeneous
components. Without taking the system
architecture into account, traditional approaches
are not appropriate to model these systems. At
present, there are several new models for
reliability analysis on the component-based
software system, as shown in [7], [8], [9], [12].

In [7], the authors use a component-dependency
graph (CDG) to represent the interactions among
components. CDG is a direct graph, which
identifiers the individual component reliability, the
interface reliability, the connection reliability
between components, the control transition, and
the transition probability. However, [7] doesn’t
consider the situation that several primary
components can be composed into a composite
component according to a certain architecture, and
it just regards the connection reliability and
component reliability as parameters with fixed
values while without making a further analysis on
them.

In [8], the authors use a path-based model to
analyze the system reliability. It considers three
architecture styles: single-input/single-out system,
single-input/ multiple- output system,
multiple-input /multiple-out system. The execution
frequency of individual component is obtained by
computing the transition probabilities among
components. This paper also makes sensitivity
analysis on the different parts in the system, based
on the reliabilities of individual components and
the probabilities of transitions.

In [9], the authors analyze the reliability of a
component through its interface. It evaluates the
component’s reliability based on its parameterized
contractual specifications and the state machines
on the interface between the provided component
and the required component.

In [12], the authors present an analytical model for
estimating architecture-based software reliability,
according to the reliability of each component, the
operational profile and the architecture of software. The
model can be utilized to estimate the reliability of a
heterogeneous architecture consisting of
batch-sequential/pipeline, call-and-return, parallel/pipe-
filter, and fault tolerant styles.

Without taking the component’s different
application domains into account, in these
related works, the reliability of each component
is just regarded as a fixed value. And also these
works seldom analyze the reliabilities of the

connections to these components and their
effects on the reliability of the whole
architecture.

3. Reliability analysis

A component-based software system concerning reliability
analysis can be described formally as follows:

Definition 1 A component-based software
system can be defined as such a tuple: < SC, SL,
CInit, Cf, SP >:

 SC represents the set of components in
the system, SC ={ C1, C2,…, Cn };

 SL represents the set of connections to
these components, multiple components
can be composed into a system of a certain
architecture style with these connections;
Here, SL ={ l1, l2,…, ln }.

 CInit is the component executed first by
the application;

 Cf is the component executed at last by
the application;

 SP represents a set of transition
probabilities: SP ={ 11→PT ,.., jiPT → …,

nnPT → }, here jiPT → represents the
probability that the application may
execute component j, after it has executed
component i.

For a component i, it can show different
reliabilities in its different application domains [9],
[16]. Such a component can be defined as follows:

Definition 2 A component can be defined as
such a tuple < F, P, D, M > :

 F is a set of functional interfaces the
component provides;

 P is the component’s behavioral protocol
of interactions with other components;

 D is a set of application domains that the
component has. D: FCC →× , which
describes the situation that components
interacts with each other through an
interface it provides. A component can
show different reliabilities in its different
application domains through its
interfaces.

 M: D → [0..1], which denotes the
reliability that a component shows in a
certain application domain.

The connection to the component is defined as
follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

195

Definition 3 jil → = < jiPC → , jiLT→ , j
jiRL→

→ >, here:
 jiPC → =(Ci, Cj) and it represents a pair of

components in interaction;
 jiLT→ is the type of this connection. It can

be a Client-Server(C-S) mode, or a
mobile -agent mode or others;

 j
jiRL→

→ ∈ [0..1], which represents the
reliability of the connection when the
application begins to use it to call
component j, after it has executed
component i.

3.1 Reliability analysis for components
Components interact with each other through their
interfaces, and also the application calls the
component through the interface it provides. A
component may provide several interfaces with
each including a set of operations. Calling the
component through one of its interfaces has formed
one of its application domains [9], [16].

We give a component’s behavioral transition
model on its interface as follows:

Definition 4 STM(d) = < Ad, aI, aF,
RAf , PAf , TAf > represents a behavioral transition

model in the application domain d of a component,
here:

 Ad represent a set of operations included
in the application domain d;

 aI is the operation executed first in the
domain d;

 aF is the operation executed finally in the
domain d;

 RAf : Ad → [0..1] represents the reliability
of executing an operation;

 PAf : dd AA × → [0..1] represents the
probability of a transition between
operations in execution;

 TAf : Ad → R+ represents the execution time
of an operation.

For any two operations ai and aj, if there is no
such behavior that application may begin to
execute aj after it has executed ai, then PAf (ai, aj) =
0; ki Aa ∈∀ , ∑

∈

=
kj Aa

jiPA aaf 1),(. Suppose that the

application begins to execute operation am after it
has executed ai, then the application goes into such
a state that it will begin to execute aj next. The
reliability of this execution path is RAf (am) RAf (aj),

and the probability for the application running
along with this execution path is

),(),(jmPAmiPA aafaaf ⋅ . So the average reliability of
transiting from the state of finishing executing ai to
the state of executing aj is

),()(),()(jmPAjRAmiPA
m

mRA aafafaafaf ⋅⋅⋅∑ .

Based on the above analysis, the transition
matrix of a component C concerning software
reliability in one of its application domains d can be
given as follows:

)(dM C = ijjiPAjRA aafaf)),()((⋅ , ||,1 dAji ≤≤ (1)
Let)()()(1 dMdMdM C

k
C

k
C ⋅= − , and assume that the

operation executed finally is an. Then, from Cheung
model [10], the average reliability of component C
in one of its application domains d is:

)))(1,(()()(||1 ndMIafdr CARAC d
−⋅= , (2)

Here || dAI is an identity matrix

For some “black-box” components, sometimes
it’s very difficult to obtain the reliability of the
component’s operation directly. We can assume that
the component’s failure rate cλ obeys poisson
distribution [14]. Then we can assess the
component’s approximate reliability in the
application domain d from its average executing
time in d. For an operation di Aa ∈ , if its execution
time is)(iTA af , then the reliability of executing this
operation is)()(iTAc af

iRA eaf λ−= . So formula (1) can be
rewritten as follows:

)(dM C = ij
af

jiPA
iTAceaaf)),(()(λ−⋅ (3)

The average execution time of component in
this application domain can be computed as
follows: Construct the matrix of state transition

ijjiPAt aafDM))),((()(= , let ∑
∞

=

=
0k

k
tt MQ , then

1)(−−= tt MIQ , so the average execution time of the
component in application domain d is:

td = ∑
∈ ||

)(),1(
dAi

iTAt afiQ .

For ji aa ,∀ , if PAf (ai, aj) = 1 or 0, then we can
get the application’s exact execution path. Suppose
the path is < a1, a2,…, an >, then the execution time
with this path is t = ∑

≤≤ ni
iTA af

1
)(. If the failure rate of

component C is Cλ , then the reliability of this
execution path is

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

196

∏
≤≤

=
ni

iRAp afr
1

)(, (4)

if)()(iTAc af
iRA eaf λ−= , then rp ∑=

−
i iTAc afe)(λ

3.2 Reliability analysis on the connections

For a software system built upon the components
distributed in open environments, we have to call
them based on certain connection mechanisms
such as Client /Server mechanism (i.e. RPC, RMI),
mobile-agent mechanism, or others. In this paper,
we just discuss the client-server, and mobile-agent
mechanisms. In the client-server mechanism, each
time the calling to the component will traverse
through the network. While in the mobile-agent
mechanism, the mobile agent can migrate to the
physical node where the component resides and
calls it locally. So in mobile-agent mechanism, the
remote calls to the component are translated into
local calls between the agent and the component,
and the mechanism can work well even when
network has been disrupted by some unknown
factors.

We discuss the reliabilities of the connections to
components in the two different mechanisms above.
Let B represent the bandwidth of the network,

Nλ represent the failure rate of network, Dr
represent the data that needs to be transported
over the network when the application calls the
component using the mobile-agent mechanism, Dag
represent the data of a mobile agent itself that
needs to be transported over the network when the
agent migrates to another node, N represent the
total times for calling the component, and Di
represent the data that needs to be transported
over the network for the ith time when the
application calls the component using the
client-server mechanism. Then the reliability of the
connection to calling the component using the
client-server mechanism is

∏
≤≤

⋅−=
Ni

BDiNeCSRL
1

/)(λ (5)

And the reliability of the connection to calling
call the component using the mobile-agent
mechanism to is

BDD ragNeAgRL /)()(+−= λ (6)

Let)(/)(AgRLCSRLq = =
∑
≤≤

−+
Ni

iagrN BDBDD

e 1
)//)((λ

. If
∑
≤≤

<+
Ni

iagr DDD
1

, then q < 1. And it shows that if the

total times for calling the component are large,
then the connection using mobile-agent mechanism

can be more reliable. If ∑
≤≤

>+
Ni

iagr DDD
1

, then q > 1.

And it shows that if Dag is large, then using
client-server mechanism will be more reliable.

3.3 Reliability analysis on architecture styles

The reliability of component-based software system
depends not only on the reliability of each component, the
reliabilities of the connections to these components, but
also the reliability of the architecture style.

Based on works [12], [16] and [15], our reliability
analysis on architecture styles are shown in following:

(1) Sequence style. Suppose that two
components 1C and 2C are composed into this style,
then it can be denoted as 1C ; 2C . In this style, 1C
will be executed first and 2C will be executed next.
Let

2CRL→ represent the reliability of the
connection to 2C , then the reliability of this style is

21;CCr =
221 CCC rRLr → . Here,

1Cr is the reliability that

1C shows in this application domain, and
2Cr is the

reliability that 2C shows in this application
domain.

(2) Loop style. In this style 1C will be executed
repeatedly for several times, and the style is
denoted as 1Cμ . Let μ represent an iteration
operator, and suppose that the total times for
executing 1C are n, then the reliability of this
style is

1Crμ = n
CrCSRL))((

1
(the connection to 1C

using the client-server mechanism), or
1Crμ = n

CrAgRL))((
1

 (the connection to 1C using the
mobile-agent mechanism).

(3) Concurrency style. This style is denoted as
21 || CC A . It represents that the

components 1C and 2C are performed independently
from each other with possibilities of
communication over the set A. Let

)(
21

ARL CC ↔ represent the reliability of the
connection between 1C and 2C . Then the reliability
of this style is

21|| CC A
r =

2211
)(CCCC rARLr ↔ .

(4) Fault-tolerant style. The style can be
denoted as 21 | CC . It means that 1C , 2C are performed
in parallel to provide the same service function. If
any one of them can complete successfully, then the
execution of the composition can be completed. Let

1CRL→ represent the reliability of the connection

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

197

to 1C , and
2CRL→ represent the reliability of the

connection to 2C , then the reliability of the
architecture style is

21|CCr =1－ (1－
11 CC rRL→)(1－

22 CC rRL→).

(5) Refinement style. This style can be denoted
as),,(21 CaCref . It means that the composition will
behave as 1C except that execution of the
operation a in 1C will be replaced by execution of
the component 2C . Let

21 CCRL ↔ be the reliability of
the connection between 1C and 2C . Then the
reliability of this style is −= ||),,((

21 NCaCref Ir (1,'
1CM))k ,

here ||NI is an identity matrix, and N = |)(|
1C dA .

|)(|
1C dA is the number of operations of 1C included

in this application domain d.
'

1CM = ijijm)'(and

 ||,
,

),(),(
'

221

Sji
aaifr)RL,a(af

aaifafaaf
m

jCCCjiPA

jjRAjiPA
ij ≤

⎪⎩

⎪
⎨
⎧

=⋅

≠⋅
=

↔

The above five basic style can also be further
composed into some more complex styles.

3.4 Reliability analysis on the software system

Based the above analysis, we can present the approach to
reliability analysis on the overall software system:

1) Construct the transition models of each
component through their interfaces interacting
with others in the application.

2) Establish the transition probabilities among the
components in the application.

3)Establish the reliabilities of the connections to each
component in the application.

4) For the components composed together with a
certain architecture style, analyze the reliability of the style
and regard the architecture as a composite component.

5) Construct the control transition matrix of the
software system, and count the reliability of the whole
system.

Suppose the transition matrix of the system is:
ijijS mM))((= (9)

and:

⎪⎩

⎪
⎨
⎧

⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅⋅
=

→
→
→→ jj

j
ji

j
jiji

ij
ij CexecutingafterexecutedbemayCrRLPT

CexecutingafterexecutedbenotwillC
m

,

,0

Here, jiPT → represents the probability that
application may execute jC after executing iC . For
any component iC , if fi CC ≠ , then

∑
∈

→ =
SCC

ji
j

PT 1 . j
jiRL→→ is the reliability of the connection

to jC in the situation that jC will be executed after

iC is executed. j
jir→ is the reliability jC shows in

this application domain when jC will be executed
after iC is executed.

Suppose the number of components in the
application system is n, 1C is the first component
executed and kC is the final component executed.
The reliability of the system is:

)(1,)(-1
||1

kMIrR SnCS −= (10)

If application uses a client-server mechanism to
call these components, client application will make
remote communication connections to the object
nodes where the components reside to call them
one by one. In this scenario, the control-transition
matrix of the system is: ijijS mM))((= ,
and

⎪⎩

⎪
⎨
⎧

⋅

⋅⋅⋅⋅⋅⋅⋅
=

→
→
→→ othersorrCSRLPT

CexecutingafterexecutedbenotwillC
m j

ji
j
jiji

ij
ij ,)(

,0
0 (11)

Here)(0 CSRL j

ji
→
→ is the reliability of the

connection to component jC from physical node 0
(suppose the client application is on the physical
node 0). Then the reliability of the
component-based software system is as follows:

)(1,)()(-1
||

10
10 1

kMIrCSRLR SnCS −= →
→ (12)

If application uses the mobile-agent mechanism
to call these components, client application will
send out a mobile agent to the remote object nodes
where the components reside to call them one after
one. In this scenario, the control-transition matrix
of the application system is:

ijijS mM))((= , and

⎪⎩

⎪
⎨
⎧

⋅

⋅⋅⋅⋅⋅⋅⋅
=

→
→
→→ othersorrAgRLPT

CexecutingafterexecutedbenotwillC
m j

ji
ji
jiji

ij
ij ,)(

,0
 (13)

Here)(AgRL ji
ji

→
→ represents the reliability of the

connection to the component jC using mobile-agent
mechanism. And the reliability of this system can
be computed as follows:

)(1,)()(-1
||

10
10 1

kMIrAgRLR SnCS −= →
→ (14)

3.5 Sensitivity analysis

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

198

The reliability of a component-based software
system will become higher through the
improvement of some elements in the system.
Finding out these elements and improving their
reliabilities will be benefit to the whole system.
Sensitivity analysis [8] presents an approach to
this problem by studying the effect of changes in
the reliability of the element on the expected
overall reliability of the system. In this section, we
make sensitivity analysis on the reliabilities of
components and connections to know which
element affects the reliability of the system most.

In evaluating the sensitivity of a component’s
reliability, current approaches [8, 17] often study
the effect of changes in the component’s reliability

ir on the system’s reliability SR . Obviously, the
component whose ir has more effects on SR is
more important. Nevertheless, this approach
assumes that a component has the same reliability
in all its application domains, which is

iCkj Ddd ∈∀ , ,)()(kiji drdr = . As we say above, in open
distributed environments, a component can show
different reliabilities in its different application
domains. So we need some new approach to this
problem. Here, we present a new approach to
sensitivity analysis on the reliability of a
component based on its failure rate iλ :

ii

iSiSiiS RRRSE
i λλ

λλλλλλλ
λ /

,...),..,(/|,...),..,(,..),..,(| 111

Δ
−Δ+

=

In this formula, the approximate reliability of
the component iC in one of its application domain
depends on the average execution time in this
domain and its failure rate iλ . So the component
whose iλ affects the changes in the

i
SEλ most is

the most important.

When evaluating the effect of a connection’s
reliability j

jiRL→→ between component iC and jC ,
we present the following formula:

 j

ji
j
ji

SS
RL RLRL

RRSE j
ji

→
→

→
→Δ

Δ=→
→ /

/

Also improving the reliability of the connection
j
jiRL→→ that affects the changes in the j

jiRL
SE →

→
 more

is greater to the improvement of the system’s
reliability.

4. Experiment analysis

In this section, we make experimental analysis on
the reliabilities of the connections to components,
and give an example to illustrate our approach to
reliability and sensitivity analysis discussed in
section 3.

We analyze the effects of different parameters
(B, Nλ , agD , N) on the reliability of the
connections to the components using two different
mechanisms and the results are shown in
figure.1-3. Table 1 lists the values of input
parameters:

Table1 Input parameters

Parameters Value
Failure rate of network

Nλ
(0.005, 0.2)

Bandwidth of network
B

(10k/s,1000k/s)

Average data of
transferring a mobile
agent agD

(1KB, 100KB)

Average data of
transferring a call D

(500B, 50KB)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

199

Fig.1 and 2 show the effect of B and agD on the
two different mechanisms. In the experiment, we
fix agD =10K, 50K, iD = D = 0.1K, Nλ =0.5. From the
figures, we can see that when the value of B is not
large, using the C/S mechanism will be more
reliable. The reason is that in the network with a
low bandwidth, the migration of mobile agent itself
will cost much time. With the increasing of
bandwidth, the time for migration of mobile agent
becomes low and the reliability of this mechanism
increases a lot. Figure.3 shows the test on
parameter N. In this test, we set agD = 5K, D =
0.1K, Nλ =0.5, and let N be 10, 20 and 30. From the
figure, we can see that the reliability of C/S
mechanism comes down when the value of N
increases. And this is for the reason that the
number of traversing through network has
increased too. While the reliability of mobile-agent
mechanism doesn’t become low, for the reason that
it migrates to the physical node and makes local
calls to the component. So the unreliable factors
when traversing through network have been
avoided in the mobile-agent mechanism. From the
tests, we can see that if B is not high and agD is
large, using the C/S mechanism will be more

reliable. On the other hand, if B is high and agD is
large, using the mobile-agent mechanism will be
more reliable.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

C-S

Agent(10k)

R
e
li
a
b
il
i
ty

of

c
on
n
ec
t
in
g

Bandwidth of network

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0 50 100 150 200 250 300 350 400 450 500 550

C-S

Agent(50k)

Bandwidth of network

R
el

ia
b
il

i
ty

of

co

n
ne

c
ti

n
g

Fig.1 The effect of Dag (1) Fig.2 The effect of Dag (2)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 100 110

C-S(10)
C-S(20)
C-S(30)
Agent

R
e
l
i
a
b
i
l
i
t
y

o
f

c
o
n
n
e
c
t
i
n
g

Bandwidth of network
Fig.3 The effect of N

Next, we use an example adapted from [12],

[17], and [18] to show the approach discussed in
section 3. The component-based system consists of
thirteen components, among which the components
C6, C61 and C62 are composed into a certain

Ci 1 2 3 4 5 6 7 8 9 10

ir 0.99 2
21→r :0.99

2
27→r :0.98

3
31→r :0.99

3
32→r :0.98

4
36→r :0.99

4
41→r :0.97

4
48→r :0.96

5
52→r :0.98

5
53→r :0.97

5
54→r :0.99

6
64→r :0.95 7

75→r :0.98
7

76→r :0.97

8
85→r :0.96

8
86→r :0.98

8
89→r :0.97

9
96→r :0.97

9
97→r :0.98

10
108→r :0.99

10
109→r :0.98

iλ 0.051 0.054 0.050 0.052 0.057 0.053 0.052 0.056

jiPT →
21→PT : 0.6

27→PT :0.5
31→PT :0.2

32→PT :0.7

36→PT :0.3

41→PT :0.2

48→T :0.95
52→PT : 0.3

53→PT :1.0

54→PT :0.4

64→PT :0.6 75→PT :0.4

76→PT :0.3
85→PT :0.6

86→PT :0.1

89→PT :0.1

96→PT :0.3

97→PT :0.5
108→PT :0.75

109→PT :0.9

j

ji
RL→

→
 2

21
→
→RL : 0.9

2
27

→
→RL :0.99

3
31

→
→RL :0.93

3
32

→
→RL :1
3

36
→
→RL :0.99

4
41

→
→RL :0.97

4
48

→
→RL :0.95

5
52

→
→RL : 0.98
5

53
→
→RL :0.99
5

54
→
→RL :0.96

6
64

→
→RL :0.98 7

75
→
→RL :0.99
7

76
→
→RL :0.92

8
85

→
→RL :0.97
8

86
→
→RL :0.97
8

89
→
→RL :0.94

9
96

→
→RL :0.97
9

97
→
→RL :0.96

10
108

→
→RL :0.92
10

109
→
→RL :0.98

Table 2 All the values of parameters needed

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

200

architecture style as)|(|| 62616 CCC A , which means
that C61, C62 are composed with a fault-tolerant
style, and at the same time, C6 and the assembly of
C61 and C62 are composed together by
communicating through the interface A. Suppose
the reliabilities of the components C61, C62, C6 in
their application domains is 0.84, 0.86, and 0.97
respectively. The reliabilities of the connections to
C6 and C61 , C62 are 1. From the analysis presented
in section 3.3, we can compute the reliability of the
assembly)|(|| 62616 CCC A to be 0.95. Next, we regard
the assembly as a composite

component C6' in the system. In this

component-based system, the reliabilities of the

components in different application domains, the
connections to these components, and the
probabilities of transitions among the components
are given in table 2.

-0.25

-0.2

-0.15

-0.1

-0.05

0

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

RL45

RL46

RL57

RL58

RL67

RL68

RL69

Changing the reliability of connection

C
h
a
n
g
e
m
e
n
t

o
f

t
h
e

r
e
l
i
a
b
i
l
i
t
y

We construct the transition matrix SM as follows:

Let ∑
∞

=

=
0k

k
SS MQ , so the reliability of the whole

application system is = 0.6704.

-0.25

-0.2

-0.15

-0.1

-0.05

0

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

RL12

RL13

RL14

RL23

RL25

RL35

 Changing the reliability of connectionCh
a
ng
em
en
t
 o
f
th
e
 r
el
ia
b
il
it
y

MS =

1
2 4

3

5 6'

7 9 8

1
0Fig.4 The component-based application system

Fig.7 Sensitivity analysis on the reliabilities of
the connections(1)

Fig.8 Sensitivity analysis on the reliabilities of
the connections(2)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

201

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

RL72

RL79

RL84

RL810

RL98

RL910

 Changing the reliability of connectionC
h
a
n
g
e
m
e
n
t

o
f

t
h
e

r
e
l
i
a
b
i
l
i
t
y

Fig.7-9 show our experimental sensitivity
analysis on the reliabilities of the connections and
components. As shown in fig.7-9, we can find that

5
53

→
→RL , 8

85
→
→RL and 10

108
→
→RL have more effects on the

reliability of the system than other connections. As
for the connection 5

53
→
→L , when its reliability 5

53
→
→RL

decreases 3%, the reliability of the system
decreases about 2.4%. Thus how to increase the
reliabilities of these connections is more important.
While for the connection 7

76
→
→L , when its reliability

7
76

→
→RL decreases 20%, the reliability of the overall

system decreases only 0.47%. We can also see that
the sensitivity of j

jiRL→→ is influenced by the
sensitivity of j

jir→ and the probability jiPT → : 1) As
for j

jiRL→→ , if the reliabilities of the components i, j
are more sensitive, then the reliability of this
connection will be more sensitive (such as 8

85
→
→RL);

2) If the jiPT → relative to this connection is high,
this connection will also be more sensitive. In fig.9,
we make sensitivity experiments on the
reliabilities of the components 2,3,4,5,6,7,8 and 9.
As for the components having different application
domains, we use the failure rate iλ of the
component to illustrate its sensitivity on the
reliability of the system. All the failure rates of the
components are given in table 2. From the figure,
we can see that the components 5 and 8 are more
sensitive to the reliability of the system, so
improving the reliabilities of these two components
are more important to the reliability of the system.

- 0. 3

- 0. 25

- 0. 2

- 0. 15

- 0. 1

- 0. 05

0

0 1 2 3 4 5 6 7 8 9 10

r 2
r 3
r 4
r 5
r 6
r 7
r 8
r 9

 Changi ng t he f a i l ur e r at es of c omponent s

Ch
an

ge
m

en
t

of
 t

he
 r

el
ia

bi
lit

y

5. Conclusion

In the open, dynamic and uncertain environment,
component-based software system may consist of
self- contained, autonomous entities situated in
distributed nodes of the Internet and coordinators
connecting these entities statically and
dynamically in various kinds of interaction styles
(passively and actively). Making reliability
analysis on this kind of component-based software
system has important meanings. This paper
presents a new approach to analyze the reliability
of the software system in open distributed
environments, based on the reliabilities of the
individual components in different application
domains, the connections to the components and
the architecture styles of their composition. It will
be applicable to developing a more reliable
software system built on the components in
Internet.

References
[1] FuQing Yang. Thinking on the development of

software engineering technology. Journal of
Software, 2005,16(1): 1~7(in Chinese with
English abstract).

[2] FuQing Yang, Hong Mei, Jian Lv, Zhi Jin. Some
discussion on the development of software
technology. Acta Electronica Sinica, 2002,
30(12A): 1901-1906(in Chinese with English
abstract).

[3] Jian Lu, XianPing Tao, XiaoXing Ma, Hao Hu,
Feng Xu, Chun Cao. On Agent-Based Software
Model for Internetware. Science in China(Series
F), 2005, 35(12):1~12.

[4] Goseva-Popstojanova K, Trivedi K.
Architecture-Based approach to reliability

Fig.9 Sensitivity analysis on the
reliabilities of the connections(3)

Fig.10 Sensitivity analysis on the reliabilities
of the components

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

202

assessment of software systems. Performance
Evaluation, 2001, 45(2-3):179~204.

[5] Ledoux J. Availability modeling of modular
software. IEEE Transactions on Reliability,
1999,48(2): 159~168.

[6] Gokhale SS, Lyu MR. A simulation approach to
structured –based software reliability analysis.
IEEE transactions on software engineering.
2005, 31(8): 643~656.

[7] Yacoub SM, Ammar HH. A methodology for
architecture-level reliability risk analysis.
IEEE Transactions on Software engineering.
2002,28(6):529~547.

[8] Lo JH, Huang CY, , Chen IY, Kuo SY, Lyu MR.
Reliability assessment and sensitivity analysis
of software reliability growth modeling based on
software module structure. Journal of systems
and software, 2005, 76:3~13.

[9] Reussner RH, Schmidt HW, Poernomo IH. Reliability
prediction for component-based software
architectures. Journal of systems and software,
2003(66): 241~252.

[10] Cheung RC. A user-oriented software reliability
model. IEEE Transactions on software Engineering.
1980,6(2):118-125.

[11] Hamlet D. Are we testing for true reliability?
IEEE Software, 1992,13(4)21-27.

[12] Yang WL, Wu Y, Chen MH. An architecture-based
software reliability model. Proceedings of Pacific
Rim International Symposium on Dependable
Computing. Hong Kong, China, 1999, IEEE.

[13] Cheung RC. A user-oriented software reliability
model. IEEE Transactions on Software Engineering,
6(2):118–125, March 1980. Special collection from
COMPSAC ’78. Probability and statistics with
reliability, queuing, and computer science applications.
John Wiley & Sons, INC, New York, 2002.

[14] Hamadi R, Benatallah. A Petri Net-based
model for Web services composition. 14th
Australasian Database conference, Adelaide,
Australia. 2003.

[15] Hamlet D, Mason D, Woit D. Theory of software
reliability based on components. 3th international
workshop on component-based software engineering.
Toronto. IEEE computer society. 2001. 361-370

[16] Lo JH, Huang CY, Kuo SY, Lyu MR. Sensitivity
analysis of software reliability for
component-based software applications.
Proceedings 27th Annual International
Computer Software and Applications
Conference (COMPSAC '2003), Dallas, Texas,
November 3-6 2003, pp. 500-505.

[17] Gokhale SS, Trivedi KS. Reliability prediction
and sensitivity analysis based on software

Architecture. 13th International symposium on
software reliability engineering. 2002.

[18] XiaoGuang Mao, YongJin Deng. A general model for
component-based software reliability. Journal of
software, 2004,15(1):27-32.(in Chinese with English
abstract).

HaiYang Hu received the B.E. and M.E. degrees, from
NanJing Univ. in 2000 and 2003, respectively. He received the
Dr. Eng. degree from NanJing Univ. in 2006. He has been
working as an assistant professor in the Dept. of Computer and
Information Engineering, ZheJiang Gongsang Univ., from 2006.
His research interest includes Object-oriented technology,
Network computing.

