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Cryptography Protection of Digital Signals using Some 
Recurrence Relations  

 

 

Summary 
Communications security is gaining importance as a result of the 
use of electronic communications in more and more business 
activities. Cryptography is the only practical means to provide 
security services and it is becoming a powerful tool in many 
applications for information security. Literature demonstrates a 
new kind of cryptography called golden cryptography [1].  This 
paper examines the application of recurrence relations in the 
continuous domain, and a cryptographic method based on 
recurrence relations is proposed and implemented. The 
performance of the proposed method is analyzed, which ensures 
improved cryptographic protection in digital signals and it is also 
fast and simple for realization. 
 Keywords: 

 Recurrence relations, Cryptography, Fibonacci numbers, 
Bernoulli’s numbers, Lucas numbers. 

1.  Introduction: 

The fundamental objective of cryptography is to enable 
two people, to communicate over an insecure channel in 
such a way that an opponent cannot understand what is 
being said. Encryption is the process of obscuring 
information to make it unreadable without special 
knowledge. This is usually done for secrecy, and typically 
for confidential communications. 
 
A cipher is an algorithm for performing encryption (and 
the reverse, decryption) — a series of well-defined steps 
that can be followed as a procedure. An alternative term is 
encipherment [4-7]. The original information is known as 
plaintext, and the encrypted form as cipher text. The cipher 
text message contains all the information of the plaintext 
message, but is not in a format readable by a human or 
computer without the proper mechanism to decrypt it; it 
should resemble random gibberish to those not intended to 
read it. 
 
Ciphers are usually parameterized by a piece of auxiliary 
information, called a key. The encrypting procedure is 
varied depending on the key which changes the detailed 
operation of the algorithm. Without the key, the cipher 
cannot be used to encrypt, or more importantly, to decrypt. 
 
 

2.  Recurrence relations: 
 
Recurrence relation is useful in certain counting problems 
like Fibonacci numbers. A recurrence relation relates the 
nth element of a sequence to its predecessors. Recurrence 
relations are related to recursive algorithms. A “ recursive 
relation” for the sequence a0,a1,a2,.... is an equation that 
relates an to certain of its preceding terms 
a0,a1,a2,.... ,an-1.Initial conditions for the sequence a0,a1,a2,....  
are explicitly given  values for  a finite number of the terms 
of the sequence.  
 
As an example the Ackermann’s function can be defined 
by the recurrence relations:    
A (m, n) = A(m-1,1),   m =1,2….. 
A(m-1,   A(m,n-1)),     m =1,2….. 

         n =1,2…..  
and initial conditions       
 A(0,n)=  n+1,                n =0,1…..   
 
In this section three recurrence relations Fibonacci, 
Bernoulli’s, Lucas numbers were presented and their 
application to cryptography is examined.  
 

2.1 Fibonacci numbers: 
Fibonacci numbers are given by the following recurrence 
relation 

1nn1n FFF −+ +=     (1) 
With the initial conditions F1=F2=1  (2) 
A square matrix (2X2)  as shown below was introduced in 
[1]  
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and the following property of nth power of Q was proved in 
[1-3] 
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Where n=0, ±1, ±2…….. 1nF − , nF , 1nF +  are  the Fibonacci 
numbers 
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The following identity holds good for the matrix Qn  
Qn = Qn-1+Qn-2     (5) 
Which is similar to the recurrence relation in Fibonacci 
numbers. 
Consider the multiplicative group M2  the set of all 2 X2 
matrices over the set of real numbers. Let 

},.........Q,Q,Q{Q 321* =                         
Clearly Q* forms a subgroup under matrix multiplication 
with  
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with 
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 Moreover for each plain text [A]2X2 which belongs to M2 
there exists a  cipher text C(i) such that            C(i) = A× Qn . 
 
 The extensions to the above matrix is as follows 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
011
010

Q2      (7) 

 
This matrix is formed from (6) as  
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The Q2 matrix is so formed such that its determinant is 
invariant without loss of generality to the ‘‘Cassini 
formula’’ [8] which is one of the most important theorems 
of the Fibonacci numbers theory. 

n2
n1n1n

n )1(FFFQ −=−×= +−  

The same logic can be extended to a 4×4 matrix 
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Similarly it can be extended to any order square matrix. 
A representation of the matrices Qn for n=0,±1, ±2…, 
based on the recurrence relation in (5) for a  3×3 matrix  is 
given in table 1. The Table 1 gives the direct as well as the 
inverse of the Qn matrix. For any variable value x 
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Table 1 : Explicit forms of Matrices Qn 

 
 
2.2  Bernoulli Numbers: 

 
The famous Bernoulli numbers are defined by [8][9] 
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The recursion formula involving Bernoulli is  
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Taking B0 = 1, B1 = 
2
1−  , which successively yields the 

values 

B2 = 6
1 , B4 = 30

1
− , B6 = 42

1 , B8 = 30
1

− , B10 = 66
5 , B12 
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=
2730
691

− ……… 

B2k+1 = 0,(k=1,2,….) 
 
Moreover, the Bernoulli numbers B2k alternate in sign, and 
are related to Riemann zeta function )k2(ζ as follows: 

)!k2(2
B)2()1()k2( k2

k2
1k πζ +−=  (12) 

The proposed matrix using Bernoulli’s recursion is 
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The extensions of the above matrix is as follows 
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For any variable x 
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The other explicit forms of Bn can be obtained recursively 
same as Qn 

 
2.3 Lucas numbers: 
 

The sequence of Lucas numbers Lk is defined by the 
second-order linear recurrence formula and initial terms 
[10] [11] [12] 

1kk1k LLL −+ +=      , L0=2, L1=1  (17) 
The proposed matrix using Lucas’s recursion 
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The extensions of the above matrix is as follows 
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For any variable x 
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The other explicit forms of Ln can be obtained recursively 
same as Qn 
 

3 Application to Cryptography : 
 

This section examines the application of recurrence 
relations to golden cryptography [1] with a new 
dimensionality in the matrix. 
Let the initial message be a digital signal which is a 
sequence of separate real numbers 

 
 a1, a2, a3, a4, a5, a6, a7, a8, a9,…… 

Let us choose nine readings and form a 3 X 3 matrix A 
which is considered as a plain text matrix.  
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There can be 9! permutations to form the matrix.  If  Pi be 
the choice of ith permutation. Choosing the direct matrix 
enciphering matrix and inverse as deciphering matrix. The 
variable x is chosen as cryptographic key.  In general the 
key K consists of the permutation Pi , the variable x  and the 
type of recursion used is R 
 
K= {P, x, R}          (24) 
 
Let C(x) be the cipher text matrix then the encryption 
algorithm is  
 
If  R=Fib then 
[C] ←[A][Q2

X]; 
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[A] ←[C][Q2
-X]; 

Endif 
 
If R=Luc then 
[C] ←[A][L2

X]; 
[A] ←[C][L2

-X]; 
Endif 
 
If R=Bern then 
[C] ←[A][B2

X]; 
[A] ←[C][B2

-X]; 
Endif 
 

4 Example: 
 

Let the plain text to be transmitted be  
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Choosing x=1 and the type of recursion as Fibonacci   

n
2Q  for n=2 is  
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The first step is to form C(x) from (25)  
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The second step is calculation of A from C(x) using (26) 
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5 Calculation of Encryption and Decryption 
time: 

 
 The encryption consists in calculation of the nine elements 
of the C(x) which include three multiplications and two 
additions. 
If Δtm is the time required for each multiplication 
     Δta is the time required for each addition  
 
Total encryption time is given as  

Te = 27Δtm + 18 Δta  (25) 
 
Similarly the total decryption time is given as  
Td = 27Δtm + 18 Δta  (26) 
 
From (31) and (32) the time taken for encryption and 
decryption is less and hence this method as an enhanced 
Golden Cryptography can prove to be a fast method for 
digital signals. 
 
6  Performance of the proposed method: 
  
     It is possible to increase the cryptographic protection 
using multiple encryption and decryption [1]. The first step 
of encryption is for a particular recurrence choose 
randomly the permutation P and variable x.  
Let the initial value of permutation be Pi and variable be x1 . 
Hence the first cryptographic key would be  
K1 = {Pi ,x1 ,R} 
The encryption matrix due to this value is  
C1=C(Pi ,x1 ,R) 
The second step of encryption is to use this matrix as the 
initial matrix. The second cryptic key would be 
K2 = {Pj,x2 ,R} 
The new matrix formed with this cryptic key is  
C2=C1(Pi ,x1 ,R ;Pj ,x2 ,R) 
The procedure can however be repeated for n random 
permutations and n values of the variable 
 we get the matrix C=C(K) 
That is K = {Pi,x1 ,R; Pj,x2 ,R………Pk,xn ,R.} 
                 (27) 
As a result of this multiple encryption 
For the decryption algorithm we shall apply the inverse 
cryptographic key K-1 which due to the closure property is 
equal to 
 
K-1 = { Pk,xn ,R;Prxn-1 ,R; ………….Pi,x1 ,R} 
    (28) 
7  Conclusions 
 
The above method refers to symmetrical cryptography. In 
the present paper three types of recurrences are discussed 
but in general can be extended to any recurrence relation. 
The transmission of the key can be done using any 
algorithm used in asymmetric cryptosystem. The level of 
security is more since it involves three parameters i.e., the 
permutation, the power of the matrix and type of 
recurrence used. Also the cryptographic protection of 
digital signals can be improved by using multiple 
encryption and decryption. Therefore a more reliable 
cryptosystem can be realized. Moreover by increasing the 
size of the matrix, more information can be sent securely at 
a time.   
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