
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

240

Manuscript received May 5, 2007

Manuscript revised May 20, 2007

Dynamic Management of IPSec Security Policies Distribution

Abderrahim Sekkaki and El Hamzaoui Mustapha

University Hassan II Aïn-chok, Faculty of Sciences

Department of Mathematics & Computer Science

P.O Box 5366, Maarif – Casablanca. Morocco

Summary

 Because of different constraints such as the customers unceasing

requirements, the large distribution of systems, the permanent

modifications of the management environments themselves, etc.,

the environments devoted to the management of the inter-domain

communications security must be generally dynamic and policy

based. In this work, we will present a management environment,

that is mainly based on a dynamic platform, to policy-based

manage the inter-domain communications security. Our proposed

platform uses IPSec protocol and is composed of a security IPSec

Server (IPSecServ) to decide and perform all management tasks,

a Monitoring Service (MS) to automate the IPSecServ

functioning, and a Policy Decision Point (PDP) with a set of

Policy Enforcement Points (PEPs) to decide and distribute IPSec

security policies. Moreover, our proposed approach integrates

also domains, roles, and policies specification language

PONDER to organise the environment components and facilitate

their management. A prototype is implemented by using CORBA

environment and some experimental results are also presented.

Key words :
Domain, IPSec, Policy-based management, Ponder, Role.

1. Introduction

The management of the inter-domain communications

security requires the use of dynamic and policy based

environment to overcome a set of problems like the big

numbr of enterprises to manage and the permanent

modifications that could occur inside the management

environments themselves.

The main objective of the policy based management is the

optimisation of administrator efforts and the

automatisation of management. To specify policies, Ponder

language [1] is actually an important tool to specify both

security and management policies for distributed systems.

Our approach will be based on a dynamic platform to

manage the IPSec security policies assuring the inter-

domain communications security. The basic elements of

this platform will be IPSec protocol [2], Ponder Language,

roles [3], and domains [4] to facilitate the management of

different elements of our security management

environment (persons, materials, software, etc.).

A domain is very similar to a directory or folder on a

personal computer, and it is used to partition large systems

according to some precise criteria. Domains make the

management of distributed systems very easy and flexible

and give the possibility to modify the domains’

components without altering management policies.

IPSec protocol offers the necessary mechanisms to

construct virtual private networks (VPNs) that permit to

create, however the used network, secured tunnels between

connected parties. The IPSec protocol security services are

provided, in transport or tunnel mode, through IPsec

extensions; Authentication Header (AH) [5] and

Encapsulating Security Payload (ESP) [6].

IPSec protocol employs Security Association (SA) [7] to

facilitate the management of the parameters used by its

extensions AH and ESP (algorithms, keys, etc). Each SA is

identified by three parameters that are the destination

address, the identifier of the used IPSec extension (ESP or

AH), and the Security Parameter Index (SPI). Since the

SAs are one-way connection we have to define two SAs (a

SA in each direction) in order to protect the two directions

of a traditional communication.

This work belongs to the set of research works realised

inside our group and devoted to the VLABs security

management [8], accounting management [9], inter-domain

communications [10], and resolution of the Diffie-Hellman

protocol vulnerability [11]. Moreover, it is considered as a

continuity of the work [12] that is devoted to the policy

based management of the IPSec Security policies

distribution.

This work will be presented as follow, in the second

section we will present briefly the policy based

management principle. The third section will display

Ponder language while our proposed approach will be the

subject of the fourth section. The fifth section will be

reserved to related works. Finally, the conclusion will be

featured in the last section.

2. Principle of policy-based management

The objective of the policy-based management is the

optimisation as well as possible of administrators efforts.

Thus, it first consists in determining the strategies and the

IJCSNS International Journal of Computer Science and Network Security, , VOL.7 No.5, May 2007

241

tactics reflecting the managers’ objective and also

representing them in policies’ form. Then, these policies

must be presented as a set of rules to be understood by the

management entities and stored in a Policy Repository

(PR). The distribution and the application of these policies

require to have these rules communicated to a PDP (Policy

Decision Point) and to PEPs (Policy Enforcement Point)

managed by this latter [13].

Fig.1. Policy-based management Platform

Concerning this management platform (fig.1), both a

Policy Management Tool (PMT) and a PR must be placed

on the higher level to allow administrator to configure the

application level policies and store them afterwards in the

PR (network policies level). The policies stored in the PEP

PIB (Policy Information Bases) are called equipment level

policies while those stored in the PDP PIB are called

network level policies.

A second terminology was employed in the works devoted

to management inside Imperial College [14]. This

terminology uses the notions of Subject and Target instead

of PDP and PEP. On one hand, Subjects indicate the

manager objects and on other hand, Targets indicate the

managed objects. The relations between Subject and

Target are well defined by management policies and

depend also on the nature of these latter. Thus, obligation

policies define what a Subject must perform or not on the

level of a Target, whereas authorisation policies specify

the access rights that could have a Subject on the level of

a Target.

Fig.2. Management Platform based on the notions of subject and target.

PDP/PEP and Subject/Target are not contradictory notions

but they are complementary. Thus, the PDP could play the

Subject role and in the same way the PEP could play the

Target role. The management platforms basing on the

Subject and Target notions (fig.2) use generally a

Monitoring Service to automate the management.

Moreover, the policies rules database is replaced by both a

domain service and a policy service. Concerning our work,

the policies specification will be based on the Ponder

language.

3. Policy Specification language

Ponder is an object-oriented, declarative language for

specifying security and management policies for

distributed system. Like any object-oriented languages,

Ponder provides reuse by supporting types definition,

which can be instantiated for each specific situation by

passing necessary parameters.

The Ponder basic characteristics are:

- Access control specification which is based on the

deployment of authorisation, delegation, information

filtering and refrain policies.

- Obligation policy specification to call upon managers to

intervene when a special event occurs in the system.

- Constraints specification to define the conditions under

which the policy is valid.

- Composite policies specification to simplify the policy

specification task for large distributed systems.

For Ponder, subjects, targets, and policies are all organised

in domains. The organisation in domains of the

components of our security management environment is

illustrated like this:

Figure 3. Organisation in domains of our management environment.

The dynamic management of the components of the

security management environment such as users, materials,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

242

software, etc.. requires, as it is schematised in fig.3, the use

of a root domain. This latter organises these components in

three main sub-domains; personal, System and MgmtInfo.

In what follows, we will restrict our discussion on

obligation policies and roles.

3.1. Obligation policies

Obligation policies specify what activities a subject

(members of one or several domains) must do to a set of

target objects (objects of one or several domains) and

define the duties of the policy subject. Obligation policy

are triggered by events and are normally interpreted by a

manager agent at the subject. Ponder defines two syntaxes

to specify obligation policies:

- Syntax for direct declaration of obligation policy

instance:

 inst oblig policyName “{“

 on event-specification ;

 Subject [<type>] domain-Scope-Expression ;

 [Target [<type>] domain-Scope-Expression ;]

 do obligation-action-list ;

 [catch exception-specification ;]

 [when constraint-Expression ;] ‘‘}’’

The key word on specifies the required event. Subject and

target are expressed in term of domains. The optional

catch-clause specifies an exception that is executed if the

actions fail to execute for some reason.

- Syntax for declaration and instantiation of authorization

policy type:

Type oblig policyType ‘‘(‘’ formalParameters ‘‘)’’

“{“ {obligationation–policy-parts } ‘‘}’’

inst oblig policyName= policyType ‘‘(‘’ actualParameters ‘‘)’’ ;

The obligation policy type is initially declared, then

instantiated.

3.2. Role

The notion of the role is used in several works on

management such as distributed systems management

[15][16], access control management [17][18] or virtual

organization management [19]. The role is strongly related

to the concept of position and it has several definitions

which converge toward the following idea: ‘‘the role

indicates, in the form of policies, the actions of

management (rights and duties) representing the behaviour

or the dynamic aspects of the position which is primarily a

static concept describing a statute in an organization’’

 - The syntax to specify a role is:

A role can contain a certain number of basic policies,

groups and meta-policies. The subject domain of the role

can be optionally specified after the sign ' @ ' and if it is

not specified a subject domain with the same name will be

created by default.

Ponder was used in many research works. Thus,

Lymberopoulos et al. showed, in [20], how PONDER

policies can be implemented and validated for

Differentiated Services (DiffSer) by using CIM (Common

Information Model) as the modeling framework for

network resources as this device independent. They also

used, in [21], Ponder language to realize a dynamic

adaptation of policies in response to changes could occur

within the managed environment. Finally, Damianou et al.

presented in [22] the implementation of an integrated

toolkit for the specification, deployment and management

of policies specified in the PONDER language.

In this work, we aim to automate as well as possible the

security management. Dynamic management is actually a

great need for large enterprises because the traditional

solutions resting on the managers physical displacement

became insufficient and very exceeded. Our proposed

solution will be based on some important concepts such as

policy based management integrating intelligent agents,

Ponder language, roles and domains.

4. Our approach

4.1. Principle of our proposed approach

Our approach is devoted to the management of the inter-

domain communication security. Precisely, it deals with

the dynamic management of the IPSec security policies

distribution.

Concerning the managed domains, each domain contains a

set of PEPs. A part of these latter manages the intra-

domain communications security whereas the other part

manages the inter-domain communications security. To

secure the inter-domain communications our attention will

be concentrated solely on the PEPs assuring the inter-

domain communications security (boundary PEPs):

inst role roleName “{“

{ basic–policy-definion }

{ group-definition }

{ meta-policy-definition } ‘‘}’’ [@ subject-domain]

IJCSNS International Journal of Computer Science and Network Security, , VOL.7 No.5, May 2007

243

Figure 4. PEPs of a managed dmain (LAN).

In the context of policy based management, domains allow

to organize the managed components and facilitate also

their management while platforms automate the

management itself. The possible interactions that could

take place between the components of our security

management environment are illustrated in figure 5 :

Figure 5. The proposed environment to manage the inter-domain

communications security.

Policy and domain services are essential for the PDP to

decide and distribute the IPSec security policies to apply

on the level of its PEPs. Concerning the Monitoring

Service integrated in this platform, it automates the PDP

functioning.

The PDP is provided with a set of Security Association

Databases (SADs) (fig.3) where each SAD contains three

static tables; SA_param, Networks_Info and PEPs_Needs.

The table SA_param contains ten SAs (SA_id, IPSec

Extension, algorithm, ciphering key, IPSec mode, SPI)

while the table Networks_Info contains the necessary PEPs

IP addresses and networks masks. Concerning the table

PEPs_Needs, it contains the SAs, selected and decided by

the PDP, in order to put them in the disposal of its PEPs.

4.2. IPSecServ functioning

In order not to give luck to others to discover our security

parameters, we must not use durably the same security

parameters. Thus, we estimated two periods for changing

the applied SAs and modifying the SAD static tables

contents. Let TSA and TSAD be the periods of renewing the

applied SAs and SADs databases contents. Precisely, to

assure a good security level, we have to limit the number

of changes of the PEPs IPSec configurations during each

change of the SADs tables contents. Thus, we minimise the

period TSAD to prohibit any attempt to discover our

security parameter and chose TSAD = 5 * TSA. Practically,

the procedure is:

The MS asks, during each TSA, the PDP to change the SA

applied by its PEPs. Moreover it asks also, during each

TSAD, the PDP to change the SADs contents. These two

operations are realized by CORBA environment and are in

the form of remote methods invocations as it is described

on the interface (PkiServ_MS) of the following idl file

(IPSec_PKI.idl):

 module IPSEC_Serv {

 // Interface of methods invoked by the Monitoring Service:

 interface PkiServ_MS {

oneway void modifySADParam();

 oneway void changeappliedSA();

 };

 ……………. // other interfaces.

 };

The specification of the obligation policy permitting to

change the SAs, applied on the level of the PEPs, is :

 inst oblig PolicyMgmtSA {

 on EventChangeAppliedSA() ;

 Subject System/Resources/Servers/IPSecServ ;

 Target t = MgmtInfo/Databases/SADs ;

 do id_SA = selectSAID() −> param_SA[] = selectParam(id_SA)

 −> storeSA(t.PEPs_Needs,param_SA[]) −> registryTask();

With the Reception of the event EventChangeAppliedSA(),

the subject IPSecServ selects randomly, on the level of the

table SA_param of each database of the target domain

SADs (fig.3), a SA identifier and its corresponding

parameters. The subject invokes afterwards the method

StoreSA() to stores the resulted SAs in the table

PEPs_Needs in order to put them in the disposal of its

PEPs. Finally, the subject invoks the method

registryTask() to registry this management task in a

special database reserved for storing the subjects

management operations (OpMgmtDB) (fig.3).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

244

The corresponding UML modelisation is :

Fig.6. Diagram of sequence representing the necessary interactions to

change the applied SA on the level of PEPs.

The specification of the obligation policy allowing to

renew the SADs databases contents is:

 inst oblig PolicyMgmtSAD {

 on EventChangeSADsContent() ;

 Subject System/Resources/Servers/IPSecServ ;

 Target t = MgmtInfo/Databases/ SADs ;

 do delete(t) −> prtcl=Selectpro() −> algo=SelectAlgo(prtcl)

 −> key= calculKey(prtcl,algo) −> mode=SelectMode()

 −> spi=CalculSPI()

 −> StoreSAD(t.SA_param,prtcl,algo,key,mode,spi)

 −> registryTask();

With the reception of the event

EventChangeSADsContent(), the subject IPSecServ

proceeds in the following way to store ten new recordings

in the tables SA_param of each database of the target

domain SADs. Firstly, it calls the method delete() to erase

the considered tables contents. Then, it calls the adequate

methods to select and calculate the IPSec security

parameters. Finally, the table SA_param of each database

will receive ten new recordings through the method

StoreSAD() and the operation will be registered in the

database OpMgmtDB by invoking the method

registryTask(). The corresponding UML modelisation is:

Fig.7. Diagram of sequence representing the necessary interactions to

change the SADs’ contents.

SADInfoDB is the main database used by the IPSecServ to

fill SADs static tables (SA_param).

Concerning the PEPs, they consult periodically, during

each T (T<TSA), the PDP to get a SA to apply. This task

is developed by the CORBA environment and is assured
precisely through the method getSAParam() of the

interface PkiServ_PEPs of the following idl file

IPSec_PKI.idl :

 module IPSEC_Serv {

 ……

 // Interface of methods invoked by the PEPs:

 interface PkiServ_PEPs {

 string getSAParam(in string pep_id, in string pep_passwd,SAD_id);

 };

 };

In order to get the necessary SA to apply, the PEP has to

send its own identity information (PEP identifier, PEP

password, and PEP SAD identifier) to the IPSecServ.

These information are received by the IPSecServ as

arguments of the method getSAParam() to be used to

identify it.

4.3. Role-based control of the resources access

The specification of roles allows to organise and facilitate

resources and services management. Thus, the use of roles

specifications in our approach will be usefull to protect our

environment reesources and services from any

unauthorized access.

 - IPSecServ access control :

IPSecServ is the main component of our management

environment. Thus, a role type must be specified to protect

it against all possible dangers:

IJCSNS International Journal of Computer Science and Network Security, , VOL.7 No.5, May 2007

245

type role Servers_Manager (set tgt) {

/*Declaration and instantiation of an authorization policy type to control

the server access : */

type auth+ ServersAccessCtrl (target tgt1){ action

configure(), remove(), enable(), disable(); }

inst auth+ Serv_CtrlAcces = ServersAccessCtrl (tgt) ;

/* Declaration and instantiation of an obligation policy type to intervene

in the case of server breakdown : */

type oblig Servers_Supervisor (target tgt1) {

 on Serv_FailEvent() ;

 do repair(tgt1); }

inst oblig Serv_Controller = Servers_Supervisor (tgt);

……….. \\ Other policies attributed to the role.

} // End of the role type declaration.

// Domains specification :

// System Managers Domain.

Domain dmnSysMgers = Personal/Managers/Sys_Mgers ;

// Security Server Domain.

Domain dmnServs = System/Servers/IPSecServ;

// Instantiation of the role Servers_Manager:

inst role role_Serv_Mger = Servers_Manager(dmnServs) @

dmnSysMgers;

- Databases access control :

Because of the sensibility of our environment databases

information, a role type must be also specified to control

their access :

type role DBs_Manager (set tgt) {

/*Declaration and instantiation of an authorization policy type to control

the access to the target : */

 type auth+ DBsAccessCtrl (target tgt1){

 action configure(), remove(), add(), modify(); }

 inst auth+ DB_CtrlAcces = DBsAccessCtrl (tgt) ;

/* Declaration and instantiation of an obligation policy type to intervene

in the case of the target breakdown : */

type oblig DBs_Supervisor (target tgt2) {

 on DB_FailEvent() ;

 do intervene(tgt2); }

inst oblig DB_Controller = DBs_Supervisor (tgt);

……….. \\ Other policies attributed to the role.

} // End of the role type declaration.

// Domains specification :

// System Managers Domain.

Domain dmnSysMgers = Personal/Managers/Sys_Mgers ;

// Databases Domain.

Domain dmnDBs = MgmtInfo/Databases;

// Instantiation of the role DBs_Manager:

inst role role_DBs_Mger = DBs_Manager(dmnDBs) @

dmnSysMgers;

- Domain ‘Simple_Users’ access control :

The domain Simple_Users contains the necessary

information on the environment users. Therefore, it must

be protected, through a role type specification, against all

dangerous access such as unauthorized add/suppression of

users, destruction, etc. :

type role Users_Manager (set tgt) {

/*Declaration and instantiation of an authorization policy type to control

the access to the target: */

type auth+ Users_accessCtrl (target tgt1){

 action Add(), remove(),Modify(); }

inst auth+ Users_ACCtrl = Users_accessCtrl (tgt) ;

/*Declaration and instantiation of an obligation policy type to intervene

in the case of the target dysfunction : */

 type oblig Users_Supervisor (target tgt2) {

 on Users_FailEvent() ;

 do intervene(tgt2); }

 inst oblig Users_Controller = Users_PEPs_Supervisor (tgt);

……….. \\ Other policies attributed to the role.

} // End of the role type declaration.

// Domains specification :

// System Managers Domain.

Domain dmnSysMgers = Personal/Managers/Sys_Mgers ;

Domain dmnUsers = Personal/Simple_Users; // PEPs Domain.

// Instantiation of the role Users_Manager:

inst role Users_Mger = Users_Manager(dmnUsers) @ dmnSysMgers;

- PEPs access control :

A role type must be also specified to manage the PEPs of

our environment against all dangerous access

(suppression/add of PEPs to the sub-domains of the

domain PEPs (fig.4)):

type role PEPs_Manager (set tgt) {

/*Declaration and instantiation of an authorization policy type to control

the access to the target : */

type auth+ PEPsAccessCtrl (target tgt1){

 action Add(), remove(),Modify(); }

inst auth+ PEPs_CtrlAcces = PEPsAccessCtrl (tgt) ;

/*Declaration and instantiation of an obligation policy type to intervene

in the case of the target dysfunction : */

type oblig PEPs_Supervisor (target tgt2) {

 on PEPs_FailEvent() ;

 do intervene(tgt2); }

inst oblig PEPs_Controller = PEPDom_Supervisor (tgt);

……….. \\ Other policies attributed to the role.

} // End of the role type declaration.

// Specification of domains :

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

246

// System Managers Domain..

Domain dmnSysMgers = Personal/Managers/Sys_Mgers ;

Domain dmnPEPs = System/Resources/PEPs; //Domain ‘PEPs’.

// Instantiation of the role PEPs_Manager :

inst role role_PEPs_Mger = PEPs_Manager(dmnPEPs) @

dmnSysMgers;

4.4. Results and execution

In our example, the IP addresses of our environment sub-

networks (fig.8) are of the form 11.0.j.0 (1<j<255) and the

address of the interconnecting network is 50.0.0.0. The IP

addresses of the PEPs assuring the inter-domain

communications security are illustrated like this:

Figure 8. IP adressing

In order to simplify the implementation of our prototype,

we used three databases; two databases SADs (SAD1.mdb

and SAD2.mdb) and a database PepAadb.mdb (PEP

Authentication and Authorization Database) (fig.3). The

database PepAadb.mdb contains only a static table

(PEP_Info) (fig.9).

Fig.9. Content of the table PEP_Info of the database PepAadb.mdb.

The next executions will be restricted to the databases

SAD1.mdb (tables SA_param, Networks_Info and

PEP_Needs) (fig.10), and PepAadb.mdb (fig.9).

Figure 10. Tables of the databases SAD1.mdb.

Concerning the renew of the PEPs IPSec configurations

and SADs tables contents, we chose, as we already

mentioned, to change five times the PEPs IPSec

configurations during each renew of the SADs tables

contents. Thus, the method changeSA() is invoked five

successive times during each invocation of the method

changeSADcontent().

Concerning the execution of the prototype, the content of

the table SA_param (fig.9) was the result of the second

invocation of the method changeSADcontent(). With these

table SA_param data, the method changeSA() was invoked

five successive times and the content of the table

PEPs_Needs (fig.9) corresponds to the third invocation of

this method.

The implementation the methods changeSADcontent() and

changeSA(), on the level of the PKIServ, is:

………… // Program

public String changeSADContent(){

 // A loop to act on the databases

 for (int i=1; i<=2; i++) { SAD1.mdb and SAD2.mdb.

// Method to suppress the contents of the considered databases tables.

 delete(SAD[i]);

 // Method to change the contents of the selected databases.

 changeContenent(SAD[i]);

 }

}

………… // Program

public String changeSA(){

IJCSNS International Journal of Computer Science and Network Security, , VOL.7 No.5, May 2007

247

// A loop to act on the databases SAD1.mdb and SAD2.mdb.

 for (int j =1; j<=2; i++) {

 int r = (int)(Math.random()*10);

 int id_SA = r % 3; // Random choice of a SA identifier.

 // Selection of the considered SA parameters .

 String param = selectSAParam(SAD[j],id_SA);

 // Method to store the SA selected in the table PEPs_Needs.

 Store(SAD[j],param); }

}

………… // Program

For this content of the table PEPs_Needs (fig.9), we dealt
with the example of the PEPs pair (PEP1,PEP6) assuring

the security of the communications between the domains

LAN1 and LAN2. Thus, in order to change its IPSec

configuration, the PEP1 (PEP_id_source = 1) proceeded in

the following way:

Firstly, it requested the IPSecServ, through the method

getSAParam(), to get a SA to apply. Secondly, the PDP

checked the PeP identity and authorisation through the

consultation of database PepAadb.mdb (table PEP_Info

(fig.9)). Finally, The IPSecServ gave it the following

response:

Fig.11. Obtained parameters to construct the desired SA

As we already discussed, a SA is one-way connection.

Consequently, two SAs (a SA in each direction) must be

defined to protect the two directions of a traditional

communication.

Concerning our execution, the Obtained SA is composed

of two sub-SAs (two lines) and concerns two PEPs. The

SA lines order depends on the position of the PEPs in the

table PEP_Info (PepAadb.mdb (fig.9)). Thus, the PEP

located the first in the PEP_Info receives the two lines in

the order which they have in the table PEPs_Needs else it

will receive them in the reversed order.

Consequently, with the reception of the desired SA (fig.11),

the PEP1 changed its IPSec configuration and its new

IPSec configuration was then:

Add 50.0.0.1 50.0.0.6 esp 1500 –m transprot –A hmac-

sha1 ‘‘aaaabbbbaaaabbbbaaaa ’’

Add 50.0.0.6 50.0.0.1 ah 3621–m tunnel –E keyed—

sha1 ‘‘rcarcarcarcarcarcarc ’’

The PEP6 proceeded also in the same way to renew its

IPSec configuration. Its new IPSec configuration was:

Add 50.0.0.6 50.0.0.1 ah 3621–m tunnel –E keyed—

sha1 ‘‘rcarcarcarcarcarcarc ’’

Add 50.0.0.1 50.0.0.6 esp 1500 –m transprot –A hmac-

sha1 ‘‘aaaabbbbaaaabbbbaaaa ’’

5. Related works

IPSec protocol was the objective of several research works.

Theses works have either studied the protocol IPSec itself

or used it to develop some security solutions.

In the contexte of security solutions, an approach is

presented in [23] to distribute the IPSec security policies.

This approach is based on an infrastructure characterised

by the use of PDP, PEPs, PIB, COPS-PR protocol, LDAP

protocol and a database of policy rules.

In the same contexte, Al-Chaal has presented a dynamic

and centralized approach [24] that is easily administrable

and based on the VPN technology (IPVPNs: IP Virtual

Private Networks). This approach is is based on a Network

Operation System (NOS) to deal with all management

tasks such as group adhesion, VPN topology creation, etc..

Moreover, this approach contributes also in web services

security and techniques of load division and performances

amelioration.

In the contexte of works devoted to the study of the IPSec

protocol itself, many studies have been developped [25] to

discuss the mechanisms and the main uses of the IPSec

protocol.

Our proposed approach rests on the research works

devoted to policy based management inside Imperial

College. It is policy based and characterized by the

employment of important concepts such as domains,

Ponder language, roles, monitoring service, CORBA

objects , PDP and PEPs. Concerning the CORBA

environment, it was very useful in the implementation of

the IPSecServ-MS and IPSecServ-PEPs communication

thanks to remote methods invocation that provides. These

basic elements permitted us to develop a dynamic, flexible

and extensible platform to manage the inter-domain

communications security. The flexibility and extensibility

of policy-based management concept will allow to apply it

in other architectures and security solutions such as

distributed systems, distributed virtual laboratories,

databases, Web servers, etc.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

248

6. Conclusion

Because of the vulnerability of systems and the various

attacks which could target enterprises such as spying,

piracy and destruction, security became an important and

decisive parameter which must be taken in consideration

during each exchange of information between domains.

Then, the inter domain communications security requires a

special effort because the traditional solutions are now

insufficient and exceeded. The current tendency is the

dynamic security through intelligent environments

characterized by their flexibility and extensibility.

Our work constitutes a contribution to the efforts devoted

to this subject. Thus, we proposed a dynamic IPSec

security infrastructure which decides and distributes IPSec

security associations at exact times. Moreover, the

proposed infrastructure allows to change, in an intelligent

way, the contents of the security databases without any

intervention of human.

Our security infrastructure is also characterized by the use

of Ponder language, roles, and domains which permit to

organize and facilitate more the management of the

security environment.

7. Bibliographie

[01] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. “The

Ponder Policy Specification language”. Proc. Policy 2001,

International Workshop on Policies for Distributed

Systems and Networks, Bristol, United Kingdom, January

[02] S. Kent, and R. Atkinson. ‘‘Security Architecture for the

Internet Protocol’’, RFC 2401, November 1998. 29-31

2001.

[03] M.S. Sloman. ‘‘Policy Driven Management for Distributed

Systems’’, Journal of Network and Systems

Management,2(4):333-360,Plenum Press, 1994.

[04] M.S. Sloman and K.P. Twidle. ‘‘Domains: A Framework

for Structuring Management Policy’’, in Network and

distributed systems management, ed. Morris Sloman,

Addison-Wesley, pp.433-453, 1994.

[05] S. Kent, and R. Atkinson ‘‘IP Authentication Header’’, RFC

2402, November 1998.

[06] S. Kent, and R. Atkinson, ‘‘IP Encapsulating Security

Payload (ESP)’’, RFC 2406, November 1998.

[07] hsc: http://www.hsc.fr/ressources/articles/ipsec-tech/, last

update : 23 October 2002.

[08] A. Sekkaki, M. El Hamzaoui, B. Bensassi. ‘‘Policy-based

Management of a Virtual Laboratory Communications

Security’’. In Proc. The First IEEE International Workshop

on Broadband Convergence Networks (BCN2006), pp.199-

204, Vancouver, Canada, April 7 (2006).

[09] C.B. Westphall, A. Sekkaki, L.M. Alvarez and W.T.

Watanabe. ‘‘Extending TINA Secure On-Line Accounting

Services’’, Journal of Network and Systems Management,

Vol.11, No.4, December 2003.

[10] M. El Hamzaoui, A. Sekkaki, B. Bensassi, ‘‘Policy-Based

Management of the inter-Domain communications

Security’’, in: Proc. IEEE/IFIP 4th Latin American

Network Operations and Management

Symposium (LANOMS), pp. 269-274, Porto Alegre, Brazil,

2005.

[11] M. El Hamzaoui, A. Sekkaki, B. Bensassi, ‘‘Policy-based

Resolution of the Diffie-Hellman protocol vulnerability’’,

in: Proc. IEEE/IFIP 4th Latin American Network

Operations and Management Symposium (LANOMS), pp.

277-282, Porto Alegre, Brazil, 2005.

[12] M. El Hamzaoui , A. Sekkaki, B. Bensassi. ‘‘ Infrastructure

to manage the IPSec Security Policies’’. In Proc.

GRES’2006 - Gestion de REseau et de Service, 6ème

Colloque Francophone, Bourdeaux-France, 2006.

[13]. R. Yavatkar, D. Pendarakis, and R. Guerin. ‘‘ A Framework

for Policy-based Admission Control ’’, RFC 2753, January

(2000).

[14] Imperial College : http://www.doc.ic.ac.uk/, last update :

2003.

[15] E.C. Lupu. “A Role-Based Framework for Distributed

Systems Management”. PhD. Dissertation, Imperial

College of Science, Technology and medicine, University

of London, UK,1993.

[16] E.C. Lupu, and M.S. Sloman. ‘‘Towards A Role Based

Framework For Distributed Systems Management’’,

Journal of Network and Systems Management, vol.5, no.1,

Plenum Pess. Systems Management,2(4):333-360,Plenum

Press,1997.

[17] R. Croock, D. Ince, and B. Nuseibeh. ‘‘Modelling access

policies using roles in requirements engineering’’,

Information and Software Technology 45(2003)979-997,

April 2003.

[18] E.C. Lupu, D.a. Marriott, M.S. Sloman and N. Yialelis. ‘‘A

Policy Based Role Framework For Access Control’’, First

ACM/NIST Role Based Access Control workshop,

Gaithersburg, USA, December 1995.

[19] E.C. Lupu, Z. Milosevic, and M.S. Sloman. “Use of Roles

and Policies for Specifying, and Managing a Virtual

Enterprise”. Proceedings of the 9th IEEE International

Workshop on Research Issues on Data Engineering:

Information Technology for Virtual Enterprises (RIDE-

VE'99). Sydney, Australia, March 23-24, 1999.

[20] L. Lymberopoulos, E. Lupu, and M.Sloman. “PONDER

Policy Implementation and Validation in a CIM and

Differentiated Services Framework”. 9th IEEE/IFIP

Network Operations and Management Symposium (NOMS

2004), Seoul, Korea, May 2004.

[21] L. Lymberopoulos, E. Lupu, and M.Sloman. ‘‘An Adaptive

Policy-Based Framework for Network Services

Management’’. Journal of Network and Systems

Management, Vol.11, No.3, September 2003.

[22] N. Damianou, N. Dulay, E.C. Lupu and M.S. Sloman.

‘‘Tools for Domain-Based Management of Distributed

Systems’’, IEEE/IFIP Network operations and management

symposium (NOMS2002), pp.213-218, Florence,Italy,15-

19 April,2002.

[23] F. Barrère, A. Benzekri, F. Grasset, R. Laborde and Y.

Raynaud. ‘‘ Distribution de politiques de sécurité IPsec’’,

GRES’01-Gestion de Réseau et de Service,4ème Colloque

Francophone, pp. 271-284, Marrakech-Maroc,

Décembre2001.

IJCSNS International Journal of Computer Science and Network Security, , VOL.7 No.5, May 2007

249

[24] L. Al-Chaal, “Dynamic and Easily Manageable Approach

for Secure IP VPN Environments”. Ph.D Dissertation,

Institut National Polytechnique de Grenoble, France, 2005.

[25] TCP/IP Guide: http://www.tcpipguide.com/free/

t_IPSecModesTransportandTunnel.htm, last update :

September 2005.

Abderrahim Sekkaki received a

D.Sc. in Network Management

domain from the Paul Sabatier

University, France, in 1991: and a

Dr. of State Degree from Hassan

II University, Morocco, in 2002.

He does research on distributed

systems and policies based

network management. Presently,

he is a Professor in Computer

Science at the Hassan II

University, Casablanca, Morocco.

El Hamzaoui Mustapha is

currently a doctoral student in

Faculty of Science, University

Hassan II Aïn Chock. His

primary research interest is in

based-policy Management of

networks security.

