
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

250

This work was supported by grant No. R01-2004-000-10730-0 from

the Basic Research Program of Korea Science & Engineering

Foundation.

Efficient Fast Motion Estimation Method for H.264

Hyung-Su Jeon and Cheol-Jung Yoo

Chonbuk National University, Jeonju, Jeonbuk, South KOREA

Summary

Although motion compensation for H.264 produces high

coding efficiency through its use of multiple reference

frames and macro blocks, it also increases the overall

coding complexity due to the motion search for various

cases. This study proposes a fast motion estimation method

to obtain a motion vector able to reduce the overall coding

complexity and obtain the required computation in motion

search by reusing the sum of absolute difference.

Experimental results show that the proposed fast motion

estimation method significantly reduces the performance

time, with negligible degradation in video quality.

Key words:
motion vector, H.264, motion predication, motion estimation.

1. Introduction

In recent years, with the sharply increasing demand for real

time information about digital video, the capacity of

communication media has also been increasing greatly but

not at a sufficient rate for transferring and storing high

image quality video. Accordingly, a new H.264 coding

standard, with better coding performance than existing

MPEG-2 or H.263, has emerged[1][2].

H264's compression method has the advantage of

providing various multimedia services, but it achieves

motion vector predication of the macro block unit through

compression by loss and damage of the image data. With

its advantage of providing diversified multimedia services,

the H.264 coding method estimates the motion vector in

macro blocks for coding without the loss of image data.

The motion vector predication significantly increases

the number of operations by repeating the motion

predication in each mode of the macro block, so it is

unreasonable to use the H.264 coding method in digital

communication media such as mobile handsets. Therefore,

a new decoding method with low complexity of memory

performance is required to reduce power consumption in

mobile handsets by decreasing the number of operations

arising out of the H.264 motion predication. Several

methods have been proposed to estimate the motion of

current blocks by using the spatiotemporal characteristics

among the motion vectors and deciding the search origin

or the search pattern for the current blocks according to the

estimated motion to increase the speed of the motion

estimation[3].

These methods can obtain a suitable motion vector by

estimating the pixels having small block matching errors

with the motion vector via a check of all pixels in the

search region of the reference frame for motion estimation,

because they can increase the coding efficiency by

decreasing the spatiotemporal overlapping; however, they

involve excessive computations. Fast block matching

methods have been suggested with spatiotemporal

characteristics, but these introduce several problems such

as improperly estimating the current motion block by

erroneous judgment of motion information and selecting

unsuitable search patterns in addition to excessive search

points.

With this background of the problem of the demand

for many operations in the course of carrying out an

operation of the sum of absolute difference and

determining the optimal motion vector for all cases in

blocks to increase the coding efficiency in H.264, this

study proposes to improve the motion search speed by

reusing the sum of absolute difference for various blocks

and decreasing the computations required for calculating

the sum of absolute difference in the motion search of

pixels with spatiotemporal characteristics.

This study comprises the following sections. Section 2

introduces the block size decision method and motion

estimation methods. Section 3 proposes the new motion

estimation method according to pixel and sub-pixel.

Section 4 describes the result of comparative analysis on

performance time and the image quality between the

proposed method and the existing methods. Section 5

presents the study conclusion.

2. Background

2.1 Block Size Decision Method

In the H.264 standard, motion predication is conducted in

block modes of various forms (16×16, 16×8, 8×16, 8×8,

8×4, 4×8, 4×4), as shown in Fig. 1. In H.264, repeated

motion predication is performed in the same manner for

these block modes. For the motion vector, the sum of

absolute difference and the value of the motion vector are

calculated, as is the position of the minimum value. The

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

251

rate of distortion(RD) is calculated for mode selection

from all block modes, including the intra mode and skip

mode. Then, the block mode with the lowest RD is decided

as the mode for the macro block [4][5].

Fig. 1. Block Mode for Motion Predication

The macro block is calculated according to the

following equations:

rateDistortionvalueRD ×+=− λ (1)

∑∑
= =

−=
16

1

16

1

2
),(),(

i j

jiPFjiIFDistortion (2)

Here, IF(i,j) is pixel value for the time of (i,j) for the

current macro block, while PF(i,j) is that for the time of

(i,j) for the restored macro block. In (1), Distortion is the

sum of the square of the difference between the macro

block for the original image and the restored macro block,

as shown in (2). λ is a constant to be decided by

quantization parameter, and rate is a necessary number of

bits to represent the information of the macro block such as

CBP (Coded Block Pattern), motion vector, block mode,

etc. As described above, H.264 uses block modes, so one

macro block may be divided into several sub-blocks.

While small blocks can be used in parts with detailed and

substantial motion, large ones are necessary in parts with

simple and little motion.

2.2 Existing Motion Estimation Methods

The motion predication method is broadly used in video

coding on the basis of the block matching method of

dividing one image frame into the same blocks in certain

size and finding the most similar block to the current block

in the search region of the reference frame[6][7]. That is,

the motion vector is the difference in position between the

current block and the block having the smallest matching

error from the current block.

For motion estimation, the following fast block

matching methods have been suggested to estimate the

motion vector: the diamond search (DS) method, adaptive

search method for motion vector field, adaptive search

method for estimated motion vector field, and low

complexity motion estimation method using spatiotemporal

correlation.

The DS method is based on the fact that the motion

vector distribution of pixels forms a diamond shape

centered on the search origin of the search region, which

determines the center of the search pattern through the

diamond pattern and forms a new diamond pattern, i.e., a

large or small diamond pattern to the estimate motion

vector[8].

The adaptive search method for the motion vector

field uses as many search points in its predication of the

motion vector for pixels as do the existing search methods

which estimate the motion vector for pixels with a fixed

search pattern and a fixed search origin, irrespective of the

degree of motion of the current block. To solve this

problem, this method estimates the motion vector for

integer-pixels by estimating the motion of the current block

and adaptively selecting a search pattern and search origin

suitable for the estimated motion[9].

The adaptive search method for estimating the motion

vector field uses temporal correlation and spatial

correlation between the motion vectors for integer-pixels.

This method decides the search origin and search pattern to

estimate the integer-pixel motion of the current blocks by

using motion vectors and the information of motion vectors.

It improves the motion estimation speed with various

threshold (T) values[3].

The low complexity motion estimation method using

spatiotemporal correlation estimates the motion of the

current block with spatiotemporal correlation between the

motion vectors and adaptively decides the search origin

and search pattern according to the estimated degree of

motion to estimate the motion vector since it is difficult to

identify whether the current block of the current frame is

more influenced by temporal correlation or spatial

correlation. To complete the motion estimation in the early

stage, a simple T value is used to improve the motion

estimation speed[10].

Regarding the problem of existing fast block

matching methods, they start the predication of the integer-

pixel motion vector from the search origin by always using

a fixed search pattern, irrespective of the degree of integer-

pixel motion for the current block since they cannot

estimate the integer-pixel motion for the current block.

Therefore, they require numerous search points in

estimating the integer-pixel motion vector. If only spatial

correlation is used, when the current block is largely

influenced by the spatial correlation, the integer-pixel

motion vector can be exactly estimated with a small

number of search points. Otherwise, the motion of the

current block cannot be exactly estimated, and therefore

many integer-pixel search points have to be checked and a

poor result is obtained in terms of the image quality in the

predication of the integer-pixel motion vector. For methods

which use only one of temporal correlation and spatial

correlation among the motion vectors, an error may arise in

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

252

estimating the degree of the integer-pixel motion for the

current block due to the difficulty in identifying whether

the current block is more influenced by temporal

correlation or spatial correlation. In addition, though

methods based on spatiotemporal correlation can estimate

the motion of the current block more correctly, the number

of computations is increased because complicated

numerical expressions and conditions of calculation are

used to estimate the degree of integer-pixel motion for the

current block. Therefore, this study decreases the number

of computations for various blocks by reusing the sum of

absolute difference to solve the problem of excessive

computations.

3. Proposed Motion Estimation Method

The goal of this method is to use the least number of

computations and maintain the best condition of the

current image quality in estimating the pixel motion for the

current block through simple numerical expressions.

Furthermore, this method compensates and restores the

image based on the motion estimation result. As matching

criteria to measure the degree of similarity to a certain

block in the current block of the current frame and the

search region of the previous frame, Mean Square Error

(MSE), Mean Absolute Error (MAE), and Sum of

Absolute Difference(SAD) are used.

∑∑
= =

− ++−







=

M

u

N

v

tt vyuxXyxX
MN

vuMSE
1 1

2

1),(),(
1

),((3)

∑∑
= =

− ++−







=

M

u

N

v

tt vyuxXyxX
MN

vuMAE
1 1

2

1),(),(
1

),((4)

∑∑
= =

− ++−







=

M

u

N

v

tt vyuxXyxX
MN

vuSAD
1 1

2

1),(),(
1

),((5)

In (3), (4), and (5), M, N indicate the width and length of

the block, Xt the current frame, and Xt-1 the previous frame.

3.1 Integer-pixel Motion Estimation Algorithm

Regarding the motion search for various block sizes of the

H.264 standard, one 16×16 macro block is gradually

divided in detail to investigate the motion vector.

Therefore, 4 motion vectors in the 4×4 block are highly

correlated with the motion vectors in the 8×8 block for

each suitable position. Similarly, 4 motion vectors in the

8×8 block are highly correlated with motion vectors in the

16×16 macro block. Therefore, this study presents a search

method able to get a motion vector in the macro block of

such a structure.

If one same object is present in the macro block and

the motion vectors in the 4×4 block are similar to each

other, the motion compensation efficiency is increased in

the upper blocks due to relative decrease in the weight of

the motion vector overhead. On the contrary, if the motion

vectors in the macro block are differently distributed, the

motion compensation efficiency is decreased due to the

increase of distortion in the upper blocks and the lower

similarity between the motion vectors. Thus the proposed

method changes the motion vector search method for the

upper blocks by using such a distribution of motion vectors

in the 4×4 block. The method is described in detail below.

The motion vector is obtained by using the existing

fast motion search method in the 4×4 macro block, and the

calculation is conducted in the manner shown in (6) for the

upper blocks.










=

−=

∑

∑

=

=
n

i

bb

n

i

bb

imv
n

mv

mvimv
n

d

1

1

2

)(
1

))((
1

 (6)

Here, mvb(i) is the unit vector for the time of i in the

given block and
bmv is the mean vector for n unit vectors

to compose the given block. The d value reflects the

distribution of unit vectors, and the similarity to unit

vectors can be judged, such that with a larger d value the

unit vectors give a better indication of each different

direction. That is, the origin and pattern of the motion

vector search are decided with the variance value d among

the unit vectors.

If the values of all unit vectors are the same, d

becomes 0, the unit vector is decided as the motion vector

for the given block, and the motion search is not conducted.

If d is less than the T, the motion vectors in the given block

are apparently uniformly distributed and, therefore, the

point of the lowest distortion is investigated through a

SDSP search while
bmv of the mean vector for the unit

vectors is the origin of SDSP. If d is larger than T, then

LDSP and SDSP searches are conducted. That is, if d is

larger than T, the motion vector is searched in the same

search manner as in the DS method, except for the origin.

With a larger dispersion of unit vectors, the similarity

decreases between
bmv of the mean vector of the unit

vectors and the motion vector, which necessitates a

broader search.

In addition, upon searching in the various blocks, the

number of operations for the sum of absolute difference

can be greatly decreased by saving and reusing the sum of

absolute difference to avoid repeated operation of such a

sum. Therefore, upon completion of the motion search

from the 4×4 block to the 16×16 block, operation of the

sum of the absolute difference according to each position

is saved and reused in the 4×4 unit block. Prior to

calculating the sum of absolute difference for the given

block, it is checked whether or not the sum of absolute

difference saved in the 4×4 block is present in the block; if

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

253

it is, the value is used, and the sum of absolute difference

is operated and saved only for the other 4×4 blocks inside.

To minimize the additionally memory capacity required by

this operation of the sum of absolute difference to some

degree, an integer-pixel motion search algorithm is used to

limit the search region and thereby save the sum of

absolute difference to a certain range, as shown in Fig. 2.

Input : Reference picture

Output : Integer-pixel motion vector

begin

{

 if(mode==4×4)) { // For 4×4 block

 fact_motion_search(); // Fast motion search

 }

 else if(mode==4×8 or 8×4 or 8×8) {

 // For 4×8, 8×4, 8×8 block

 submacroblock_mode_decision();

 // Use motion vector(unit vector) in 4×4 block.

 // Calculate d value of motion vector dispersion by using (6).

 if(D==0) mv = average_vector;

// Decide motion vector as
bmv .

 else {

 start_point = average_vector; // Decide the origin as
bmv .

 diamond_search(); // Diamond search

 }

 }

 else if(mode==8×16 or 16×8 or 16×16)

 // For 8×16, 16×8, 16×16 block

 {

 submacroblock_mode_decision();

 // Use motion vector(unit vector) in 8×8 block.

 // Calculate d value of motion vector dispersion by using (6).

 if(D==0) mv = average_vector;

 // Decide motion vector as
bmv .

 else {

 start_point = average_vector;

 // Decide the origin as
bmv
.

 diamond_search(); // Diamond search

 }

 }

}

end.

Fig. 2. Proposed Integer-pixel Motion Search Algorithm

3.2 Pixel Motion Estimation Algorithm

As the motion vector of the H.264 standard has an

accuracy level to 1/4 pixel, a sub-pixel motion search is

additionally required. Before the sub-pixel motion search

is conducted, each sub-pixel at the 1/2 and 1/4 positions is

obtained through image interpolation. Then, centered on

the motion vector at the obtained integer-pixel position, the

position having the minimum sum of absolute difference

among the sub-pixels in the surroundings is searched to

decide the final motion vector.

For this sub-pixel motion search, in JM (Joint Model)

of the current reference codec for H.264, a two-step search

is conducted, as shown in Fig. 3. A point having the

minimum sum of absolute difference is searched for among

8 surrounding 1/2 pixel positions, including the present

position centered on the integer-pixel unit motion vector

(step 1). A point having the minimum sum of absolute

difference is searched for again among 8 surrounding 1/4

pixel positions centered on the position having the

minimum sum of absolute difference to fix it as final

motion vector (step 2).

Fig. 3. Two Step Search Method

As shown in Fig. 3, the total number of search

positions necessary for sub-pixel motion search is 17 in JM.

Therefore, operation of the transformed sum of absolute

difference in the 4×4 block is conducted 17 times

according to the mode of each macro block. Thus the total

required number of operations per macro block for the

transformed sum of absolute difference to all kinds of

block mode in a macro block is 1904.

Total operations for the transformed sum of absolute difference

= 17 × 16(MB16×16) + 8×2(MB16×8) + 8×2(MB8×16) + 4×4×4(MB8×8sub)

= 1904 times

Consequently, a fast motion search method for the

sub-pixel motion search is necessary. Currently, the H.264

motion vector enhances the entropy coding efficiency by

taking advantage of the fact that blocks around the left,

upside and right top have a high spatial similarity to each

other. According to the statistics, the probability that the

motion vector is the same as the predicted motion vector

(PMV) is 50%, and the probability that the motion vector

is present at the SDSP position, centered on and including

PMV, is about 70%.

Based on this probability model, an SDSP search

centered on PMV is proposed for the sub-pixel motion

search in this study. First, if PMV is present in a region

±0.7 from the integer-pixel unit motion vector point having

the minimum sum of absolute difference, a comparison on

the sum of absolute difference or the transformed sum is

made between PMV and the integer-pixel unit motion

vector, and the point having a minimum value is set as the

origin of search. Otherwise, the integer-pixel motion vector

is set as the origin of the search, the SDSP search is

repeatedly conducted, and the final motion vector is

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

254

decided. The search process for the proposed method is

shown in Fig. 4.

Fig. 4. SDSP-based Search Process

The proposed sub-pixel motion search algorithm, as

shown in Fig. 5.

Input : Reference picture

Output : sub-pixel motion vector

// Obtain motion vector(mv) through integer-pixel motion

search.

begin

{

 if(abs(mv-pmv)<= 0.7) // For less than ±0.7 from mv and

// pmv(predicted motion vector)

 {

 pt=sum_abs_diff();

 // Calculate sad or transformed sad between pmv and mv.

 start_point = pt;

 // Set the position having a minimum value as the origin.

 }

 else

 start_point = mv;

 // Set the integer-pixel motion vector as the origin.

 do {

 small_diamond_search_pattern(); // Conduct SDSP.

 } while((pt=sum_abs_diff()) == center of SDSP);

 // Repeat until pt becomes the center of SDSP.

 mv = center_point;

// Decide the position of the center with motion vector.

}

end.

Fig. 5. Proposed Pixel Motion Search Algorithm

4. Experiment and Comparative Analysis

For comparison of the method proposed in this study with

the experiment on the H.264 reference software, an

original video is finally converted into a digital signal

(values of 0 and 1) through encoding.

In this experiment, the source code for the H.264

Reference Software Version JM10.2 was used [11], and 6

kinds of video (Claire, Carphone, Foreman, News,

Salesman, Silent) sized QCIF(176X144) were used in a

Pentium-4 PC running at 3.0GHz with 2.0GB RAM. As

shown in the experimental conditions of Table 1, the result

was obtained with digital signals of the encoding results

through the experiment on the proposed method, in

addition to the reference software

Table 1: Encoder Experiment Conditions

Parameter Value Parameter Value

Profile 77 (Main) YUV Format YUV 4:2:0

Level IDC 30 (Level 3.0) B-Frame Used

Entropy Coding CABAC Frame Skip 1

Reference Picture 5 Search range 16

4.1 Comparative Analysis Based on the Search

Method

The existing DS and the improved method of MVFAST

and its performance were compared on the proposed fast

motion search method. For comparison of the performance

of each method, a speed improvement was performed for

the sum of absolute difference or the transformed sum in

the 4×4 blocks in terms of the computations in comparison

with a full search (FS), as shown in Table 2. SSAD

indicates the speed improvement for the integer-pixel

motion search, while the transformed SAD indicates that

for the sub-pixel motion search.

Table 2. Comparison of Speed Improvement according to Method

DS MVFAST Proposed method Method

Image

Q

P SSAD ST-SAD SSAD ST-SAD SSAD ST-SAD

28 63.4 1 144.2 1 856.1 2.2
Claire

32 63.8 1 142.4 1 869.9 2.2

28 80.7 1 168.4 1 1134.8 3.1
Container

32 82 1 173.3 1 1167.8 3.1

28 47.4 1 95.5 1 254.8 2.1
Foreman

32 48.5 1 98.2 1 275.4 2.1

28 75.2 1 152.1 1 752.2 2.8
News

32 76.2 1 153.9 1 810.8 2.8

28 66.8 1 139.1 1 722.7 2.2
Salesman

32 67.8 1 140.2 1 758.6 2.2

28 72.4 1 136.9 1 574 2.5
Silent

32 72.6 1 139.3 1 621.1 2.5

Average 68.1 1 140.3 1 733.2 2.5

Also, concerning the transformed sum of absolute

difference necessary for the sub-pixel motion search, the

proposed method showed an average 2.7-fold speed

improvement compared to the two step search, contrary to

existing methods.

To examine the actual speed improvement when the

proposed method is implemented in the H.264 coder, TS

(Time Saving) is measured for the method subject to

compare on the basis of fast FS (FFS) being implemented

in JM, as shown in equation (7).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

255

)(

) ()(

FFST

methodSelectedTFFST
TS

ME

MEME −
=

(7)

Therefore increasing TS indicates that the

performance time is relatively more reduced compared to

FFS. Table 3 shows the speed improvement for the

proposed method on this FFS. To compare the

performance of the proposed method with the existing fast

motion search method, it was compared with the fast

motion search method [12] adopted in the JVT (Joint

Video Team) standardization meeting (hereafter referred

as JM_FME) and the DS method. JM_FME is already

implemented in JM, and it minimizes the image

degradation by applying a global search upon the integer-

pixel motion search in order to solve the problem of a local

minimum value for the existing fast motion search

algorithms.

Table 3. Comparison of Performance Time between the Proposed

Method and the Existing Algorithms

Integer-pixel Sub-pixel Pixel

Image

QP
DS

JM_F

ME

Proposed

method
JM_FME

Proposed

method

28 92.3 88.8 97.99 29.14 49.21
Claire

32 91.8 89.44 97.84 34.02 54.97

28 75.64 85.11 96.75 54.6 79.69 Carphon

e 32 73.68 87.17 95.15 36.58 69.84

28 55.89 66.78 91.79 35.19 51.48
Foreman

32 60.51 72.6 88.14 23.82 43.6

28 77.8 77.15 88.54 33.13 69.42
News

32 74.1 83.82 90.76 38.7 59.64

28 91.21 93.65 97.49 44.35 56.78
Salesman

32 81.87 91.89 98.67 36.34 57.5

28 68.54 89.08 82.76 31.89 54.89
Silent

32 72.54 77.15 86.94 23.2 52.31

Average 74.4 83.08 92.71 31.39 55.61

4.2 Comparative Analysis on the Image Quality

The video quality measurement method is divided into

subjective and objective measurement methods. Significant

factors for recognition of the video quality for subjective

video quality measurement include time attention and up-

to-date effects [13]. These factors involve difficulty in the

correct and mathematical measurement of the visual video

quality. The complexity and cost of the subjective video

quality measurement method has led researchers to take an

interest in automatic video quality measurement methods

using algorithms. Video coding and video processing

system developers depend upon an objective video quality

measurement method. For comparison of the video quality,

between coded and restored images, according to the

popular video quality measurement method guaranteeing

easy and rapid calculation, equation (9) PSNR(Peak Signal

to Noise Ratio) is frequently used.

∑∑
= =

− ++−







=

M

u

N

v

tt vyuxXyxX
MN

vuMAE
1 1

2

1),(),(
1

),(
(8)

)
255
(log10

2

10
MSE

PSNR = (9)

Here, MSE means the mean square error, M and N

each indicates the width and length of the block, Xt the

current frame, and Xt-1 the previous frame.

Table 4 shows the comparison between PSNR and bit

rate according to each method. Since the rate control

algorithm was not applied, each PSNR and bit rate based

on each quantization coefficient was represented by image.

For both DS and MVFAST, 0.04~0.08dB of loss was

found on average with regard to PSNR, compared to FS,

while the bits were increased by 3% and 1%, respectively,

regarding the bit rate. On the contrary, a PSNR loss of

about 0.07dB and a bit rate increase of about 2% were

observed for the proposed method, compared to FS. For

the Foreman image, the greatest performance degradation

was found concerning the coding efficiency in the

proposed method, as well as the existing one. This

originated from the heterogeneous characteristic of the

image, i.e., the faster motion than the other images and the

T value for the proposed method needs to be adjusted to be

further suited to such characteristic.

Table 4. Comparison on PSNR and Bit Rate between the Proposed

Method and the Existing Algorithms

FS MVFAST
Proposed

method

PSNR bitrate PSNR bitrate PSNR bitrate

Method

Image

QP

[db] [Kbps] [db] [Kbps] [db] [Kbps]

28 33.86 55.78 33.84 55.69 33.84 55.84
Claire

32 30.44 27.11 30.12 27.17 30.28 27.64

28 35.97 23.59 35.89 23.54 35.87 24.13
Container

32 33.19 13.23 33.14 13.1 33.24 13.29

28 35.94 70.28 35.78 72.25 35.84 74.12
Foreman

32 33.16 43.07 33.16 45.16 33.12 46.51

28 36.64 44.57 36.57 45.75 36.61 45.1
News

32 33.66 27.54 33.62 28.44 33.54 27.94

28 34.78 57.48 34.86 57.45 34.78 57.37
Salesman

32 31.4 27.44 31.41 27.51 31.56 27.38

28 35.6 57.84 35.16 58.9 35.74 59.03
Silent

32 32.95 34.95 33.42 35.36 32.89 35.49

In Tables 3 and 4, the PSNR value is higher in either

the reference software or the proposed method. The PSNR

value showed little variation. Specially, the image quality

was improved compared to that of the existing method

when there was little change in picture motion.

Fig. 6 graphically presents the FS measured for 6

experimental images and the proposed method. The image

quality shows little variation because of the similar PSNR

values.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

256

Claire (QCIF)Claire (QCIF)Claire (QCIF)Claire (QCIF)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

frame number

P
S
N

R
 (

d
b
)

JM

Proposed

Carphone (QCIF)Carphone (QCIF)Carphone (QCIF)Carphone (QCIF)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

frame number

P
S
N

R
 (

d
b
)

JM

Proposed

Foreman (QCIF)Foreman (QCIF)Foreman (QCIF)Foreman (QCIF)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

frame number

P
S
N

R
 (

d
b
)

JM

Proposed

News (QCIF)News (QCIF)News (QCIF)News (QCIF)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

frame number

P
S
N

R
 (

d
b
)

JM

Proposed

Salesman (QCIF)Salesman (QCIF)Salesman (QCIF)Salesman (QCIF)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

frame number

P
S
N

R
 (

d
b
)

JM

Proposed

Si lent (QCIF)Si lent (QCIF)Si lent (QCIF)Si lent (QCIF)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

frame number

P
S
N

R
 (

d
b
)

JM

Proposed

Fig. 6. Comparison on PSNR among Images

5. Conclusion

Although H.264 is used for digital data broadcasting,

mobile handsets, etc., due to its better coding rate and

image quality in comparison with existing coding standards,

the encoding and decoding methods have been

complicated by the development of new coding methods.

H.264, however, introduces the problem of a bottleneck

state to increase the overall encoding complexity, requires

excessive decoding time, increases memory bandwidth,

and ultimately impairs system efficiency because the sum

of absolute difference is obtained for all cases in blocks in

order to determine the optimal motion vector as a means of

increasing the coding efficiency.

Therefore, this study attempted to estimate the motion

vector with the spatiotemporal characteristics of a video

frame and to propose a motion search method to reduce the

number of repeated operations by reusing the sum of

absolute difference as calculated in various blocks upon

the motion search.

In the experimental results, the proposed method

reduced the repeated calculation of the sum of absolute

difference and accordingly the performance time, played

an important role in decreasing the complexity of the

H.264 encoder, and displayed great speed improvement,

without image degradation, while searching for the motion

vector, compared to the existing fast motion search method.

These results confirm the suitability and efficiency of

this fast motion estimation method for application to VOD

and image communication. Furthermore, the method may

be offered in mobile settings, by encoding the video with

high efficiency and reducing the motion compensation time,

and implemented in the broadcasting of mobile settings

such as ground wave DMB and satellite DMB. Finally, it

will enable video conferencing, VOD and streaming

service by using wired networks (ISDN, Ethernet, LAN,

DSL, MODEM, etc.) with high efficiency.

Although the motion search method proposed in this study

shows a better result in terms of the image quality and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.5, May 2007

257

speed in small images or images with regular motion, it

causes degradation in images with large motions and

estimates the motion vector too slowly. Further studies are

therefore necessary to solve this problem. For high-speed

video decoding in digital communication media like

mobile handsets, continuous research on efficient memory

control in mobile handsets is required to solve the low

memory problem.

References

[1] C. Kim and J-N Hwang, "Fast and Automatic Video Object

Segmentation and Tracking for Content-Based

Applications," IEEE Transaction on Circuits and Systems

for Video Technology, Vol. 12, No. 2, pp. 122-129, 2002.

[2] M D Walker, M Nilsson, T Jebb, and R Turnbull, "Mobile

Video-Streaming," BT Technology Journal, Vol 21 No 3, pp.

192-202, 2003.

[3] A. M. Tourapis, O. C. Au, and M. L. Liou, "Predictive

Motion Vector Field Adaptive Search Technique

(PMVFAST) - Enhancing Block Based Motion Estimation,"

Visual Communication and Image Processing, Proceeding of

SPIE, Vol. 4310, pp. 883-891, 2001.

[4] Jeyun Lee, Woongil Choi, Byeung Woo Jeon, and Minsoo

Suk, “ Fast Motion Estimation and Mode Decision for

Variable Block Sizes Motion Compensation in H.264,” The

Institute of Electronics Engineers of Korea, Journal of IEEK,

Vol. 40, No. 4, pp. 49-59, 2003.

[5] In-Cheol Jeong and Jong-Ki Han, “ An Efficient Algorithm

for Motion Estimation in H.264,” Journal of KICS, Vol. 29,

No. 12C, pp. 1669-1676, 2004.

[6] P. Kuhn, Algorithms, Complexity Analysis and VLSI

Architectures for MPEG-4 Motion Estimation, Kluwer

Academic Publishers, 1999.

[7] HyoSun Yoon, GueeSang Lee, “ An Adaptive Block

Matching Algorithm Based on Temporal Correlations,”

Journal of KIPS, Vol. 9-B, No. 2, pp. 199-204, 2002.

[8] J. Y. Than, S. Raganath, and A. A. Kassim, "A Novel

Unrestricted Center-Based Diamond Search Algorithm for

Block Motion Estimation," IEEE Transaction on Circuits

and Systems for Video Technology, Vol. 8, No. 4, pp. 369-

377, 1998.

[9] Prabhudev Irappa Hosur and K. K. Ma, "Report on

Performance of Fast Motion Using Motion Vector Adaptive

Search Technique," ISO/IEC/JTC1/SC29/WG11 M5453,

1999.

[10] Hyo-Sun Yoon, Mi-Young Kim, and Guee-Sang Lee,

“Low Complexity Motion Estimation Based on Spatio-

Temporal Correlations,” Journal of KISS, Vol. 31, No. 9,

pp. 1142-1149,, 2004.

[11] H.264/AVC Reference Software Version JM10.2,

http://bs.hhi.de/～suehring/tml/index.htm, Joint Video Team,

2003.

[12] Zhibo Chen, Peng Zhou, Yun He, and Yidong Chen, "Fast

Integer Pel and Fractional Pel Motion Estimation for JVT,"

JVT Document, JVT-F017, Dec. 2002.

[13] N. Wade and M. Swanston, Visual Perception: An

Introduction, 2nd Edition, Psychology Press, 2001.

[14] H-S Jeon, H-M Noh, C-J Yoo, and O-B Chang, "Design of

H.264/AVC-Based Software Decoder for Mobile Phone,"

ICCSA 2006, LNCS 3482, pp. 188-197, 2006.

[15] H-S Jeon, C-J Yoo, and O-B Chang, "On Motion

Compensation of H.264/AVC Software Decoder," MITA

2006, pp. 402-405, 2006.

[16] ITU-T, ITU-T Rec. H.264 Advanced Video Coding, 2003.

[17] ISO/IEC 14496-10, Information Technology - Coding of

Audio-Visual Objects - Part 10: Advanced Video Coding,

2003.

Hyung-Su Jeon received the B.S.

degree in Mathematics from Chonbuk

National University, Jeonju, Korea in

1992, and M.S. and Ph.D. degrees in

Computer Science from Chonbuk

National University, Jeonju, Korea in

1997 and 2007. His research interests

include multimedia application, image

processing, and transcoding etc.

Cheol-Jung Yoo received the B.S.

degree in Computer and Statistics from

Chonbuk National University, Jeonju,

Korea, in 1982, M.S. degrees in Computer

and Statistics from Chonnam National

University, Kwangju, Korea, in 1985, and

Ph.D. degree in Computer and Statistics

from Chonbuk National University,

Jeonju, Korea, in 1994. He is currently an

associate Professor, Department of

Computer Science, Chonbuk National University, Jeonju, Korea.

His research interests are software development process, software

quality, component software, software metrics, software agent,

GNSS, GIS, education engineering, and recognition science etc.

