
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

10

Manuscript received June 5, 2007

Manuscript revised June 20, 2007

Characterising ACLs by Rule Dependency: Effects on
Optimisation Effectiveness

Vic Grout, Stuart Cunningham, Rich Picking, John McGinn, John Davies

Centre for Applied Internet Research (CAIR), University of Wales, NEWI, Wrexham, UK

Summary
This paper considers the effects of dependencies between rules in
Access Control Lists (ACLs). Dependent rules may not be
reordered in an ACL if the policies of the list are to be preserved.
This is an obstacle to the optimisation of rule order intended to
reduce the time taken matching packets against rules. In this
paper, the concept of rule dependency is defined in relation to
the problem of minimising processing latency. The concepts of
dependence and possible dependence are introduced and the
relationship between them considered. Two measures of
dependency, the dependency index and the fragmented
dependency index are defined and formulated and an upper
bound for each is derived. Examples of real-world ACLs are
studied and the implications for practical optimisation discussed.
Key words:
Access Control Lists (ACLs), Rule dependencies, Optimisation,
Packet latency.

1. Introduction

Access Control Lists (ACLs) play a major rôle in the
process of passing or blocking traffic through certain
regions of a network. They can permit or deny traffic
from or to given sources or destinations, or discriminate
on the basis of content or other characteristics. In addition,
their ability to filter network traffic makes ACLs suitable
for a wider purpose; any in which there is a need to choose
certain traffic, probably as data packets, for a given policy.
Network Address Translation (NAT), traffic shaping,
various aspects of Internet routing, and numerous other
traffic policies all require packets to which the policy is to
be applied to be separated from those to which it is not.
ACLs may vary considerably in size, structure and
purpose but it is not uncommon for each packet to be
tested against several ACLs on its passage across a single
internet router and many more across a complete
autonomous system or domain. It is therefore useful to
optimise ACLs for efficiency.

An ACL is an ordered list of rules. Each rule accepts or
rejects a packet based on one or some of its characteristics

- its profile. Typically, a packet may be considered on the
basis of its source and/or destination address or traffic type,
although other features, or flags, may be relevant

[1][2]. Fig. 1 gives an example of a typical ACL in the
syntax of the Cisco Internetwork Operating System (IOS)
[3]. The use of the terms permit and deny reflect the
original role of ACLs in passing or blocking traffic
(although their use is now considerably more widespread).
Each packet to be tested against an ACL is compared with
the first rule, then the second, and so on, until a rule
matches its profile. The rule is then permitted or denied
accordingly and no more rules are considered. There is
taken to be an implicit ‘deny all’ rule terminating each list
to deal with packets not matched by any other rule. ACL
optimisation effectively means finding an ordering of its
rules that minimises processing time and thus packet
latency.
(1) access-list 173 permit icmp any any
(2) access-list 173 permit tcp any any established
(3) access-list 173 deny ip RANGE MASK any
(4) access-list 173 deny ip 10.77.23.0 0.255.255.255 any
(5) access-list 173 deny ip 172.16.2.0 0.15.255.255 any
(6) access-list 173 deny ip 192.168.1.0 0.0.255.255 any
(7) access-list 173 deny ip 169.254.1.0 0.0.255.255 any
(8) access-list 173 deny ip 192.168.2.0 0.0.0.255 any
(9) access-list 173 permit tcp any host MAILSERVER eq smtp
(10) access-list 173 permit tcp any host NAMESERVER eq domain
(11) access-list 173 permit udp any eq 53 host NAMESERVER gt 1024
(12) access-list 173 permit tcp host MANAGER host SUN eq telnet
(13) access-list 173 permit tcp host MANAGER host SERIAL0
(14) access-list 173 permit tcp host MANAGER host ETHERNET0
(15) access-list 173 permit udp host MANAGER host SERIAL0 eq snmp
(16) access-list 173 permit tcp any host FTPSERVER eq ftp
(17) access-list 173 permit tcp any eq ftp-data host FTPSERVER
(18) access-list 173 permit tcp any eq ftp-data any gt 1024
(19) access-list 173 permit tcp any host WWWSERVER eq www
(20) access-list 173 permit tcp any host SWWWSERVER eq 443
(21) access-list 173 permit udp EXT-NTPSERVER any eq 123
(22) access-list 173 permit udp any range 6970 7170 any
(23) access-list 173 deny ip any any

Fig. 1. A Typical ACL

However, rule order can be critical in an ACL. To
illustrate this, consider two rules as follows: rule 1
permits packets with characteristic A (source address, for
example) and rule 2 denies packets with characteristic B
(destination address, say). A packet with a profile
matching both characteristics (from A to B in this case)
will match both rules. The rules are dependent.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

11

Consequently, the order of rule 1 … rule 2 will permit the
A to B packet whereas the order rule 2 … rule 1 will deny
it. In Fig. 1, rules 8 and 9 are dependent: an SMTP packet
from the 192.168.2.0 network to the mail-server will
match both. It is the intention of the policy, in its given
form, that such a packet should be blocked. However,
promoting rule 9 above rule 8 would (incorrectly) pass it.
Not all rules will be dependent in this way but those that
are must have their relative order in the list preserved if
the ACL is to retain its intended purpose. Of course, this
only applies for rules of opposite types. Several ‘permit’
rules in a contiguous block, for example, can be freely
reordered among themselves. This paper considers the
effect of dependent rules on the effectiveness of any
optimisation (latency minimisation) process.

2. ACL Structure

Where appropriate in this paper, abbreviations are used as
follows: ∃, ‘there is’ or ‘there exists’; ∀, ‘for all’ or ‘for
every’; ∧, ‘and’; ⇔, ‘if and only if’; and →, ‘such that’.
Using the notation in [4], define A* to be the set of all
addresses available within a given system, define B* to be
the set of all protocols recognised by the system and
define F* = {0, 1}w to be the set of w flag vectors ({0, 1}
w-tuples acting on B*) valid for the system. For
completeness only, X* represents the set of payloads.

A packet, pk = (Sak, Dak, bk, fk, Xk), is defined by its
constituents: Sak ∈ A*, the source address; Dak ∈ A*, the
destination address; bk ∈ B*, the protocol; fk ∈ F*, the
flags vector and Xk ∈ X*, the payload. A rule, ri = (ti, SAi,
DAi, Bi, σi), consists of: a type, ti ∈ {permit, deny}, SAi ⊆
A*: the source range, DAi ⊆ A*: the destination range, Bi
⊆ B*: the protocol range, and a flags predicate, σi: F* a
{true, false}. Only ti is a required component in all
syntaxes. If any other components are absent then SAi =
A*, DAi = A*, Bi = B* or σi ≡ true by default. A policy, Z
= [r1, r2, ..., rn] is an (ordered) sequence of n rules to
achieve some purpose. The last rule in any policy
implicitly denies all traffic; that is, tn = deny, SAn = A*,
DAn = A*, Bn = B* and σn ≡ true. A packet, pk, matches a
rule, ri (for which we write pk ∇ ri), if its addresses and
protocols are within the range of the rule and if its flags
vector satisfies the rule’s flags predicate. That is,

pk ∇ ri ⇔ (Sak ∈ SAi) ∧ (Dak ∈ DAi) ∧
(bk ∈ Bi) ∧ σi (fk), (1)

in which case the packet will be permitted or denied
according to ti.

A dependency exists between two rules, ri and rj, if they
are of opposite type and it is possible that there exists a
packet, pk, that matches both rules ((pk ∇ ri) ∧ (pk ∇ rj));
that is ri and rj are dependent if

 (ti ≠ tj) ∧ ∃ pk → (Sak ∈ SAi ∩ SAj) ∧
(Dak ∈ DAi ∩ DAj) ∧ (bk ∈ Bi ∩ Bj) (2)
∧ σi(fk) ∧ σj(fk).

Eliminating the packet, pk, from this expression, allows a
{0, 1} dependency matrix, D = (dij: 1≤ i,j ≤ n), to be
defined:

 dij ⇔ (ti ≠ tj) ∧ (SAi ∩ SAj ≠ ∅) ∧
(DAi ∩ DAj ≠ ∅) ∧ (Bi ∩ Bj ≠ ∅) ∧ (3)
(Σi ∩ Σj ≠ ∅),

where Σi ⊆ F* is the subset of flag vectors satisfying σi.
Two rules, ri and rj, are possibly dependent if they are of
opposite type (ti ≠ tj), giving a possible dependency matrix,
P = (pij: 1≤ i,j ≤ n), defined as pij ⇔ (ti ≠ tj). If dij = 1
then the order of rules i and j must be preserved if the
behaviour of the policy is to be maintained. Detecting
dependencies and anomalies, particularly in real-time on a
production router is not trivial, however [5][6]. If there is
any uncertainty then it may be necessary to apply the same
restriction when pij = 1.

An access list, or simply list, L, implements a policy, Z =
[r1, r2, ..., rn], if it is a permutation of the rules of Z such
that the order of dependencies is preserved. Let ri(L) be
the rule at position i in L. A special case of a list
implementing a policy, Z, is the identity list, IZ = [r1, r2, ...,
rn], for which ri(IZ) = ri ∀ i (1≤ i ≤ n). IZ is usually the
starting point for any ACL optimisation, particularly
iterative search techniques.

The hit-rate, h(ri(L)), of rule ri in a list L, is the probability
that a packet will match ri in L. Hit-rates can be calculated
dynamically using counters within the IOS or hardware
[7][8]. The latency, λ(ri), of a rule ri is the time taken to
(independently) process ri. This may be calculated from
the length of a rule, the nature of the protocols involved or
taken from stored tables. In some systems, latencies may
be constant for all rules but this is not assumed in this
paper. The cumulative latency, κ(ri(L)), of ri in a list L, is
the time taken to process ri and all rules preceding it in L.

 ∑
=

=
i

i LrLr
1

))(())((
ϕ

ϕλκ . (4)

The expected latency, E(L), of a list L, is then given by

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

12

∑
=

=
n

i
ii LrLrhLE

1
))(())(()(κ (5)

 ∑ ∑
= =

=
n

i

i

ii LrLrh
1 1

))(())((
ϕ

λ .

Optimising an ACL requires us to find (or approximate)
the list, L, implementing a policy, Z, that minimises E(L),
subject to the constraints of the dependency matrices, D or
P. In [4], the problem is shown to be NP-complete [9].

P: Permit D: Deny X – No dependencies ? – Possible dependencies

RULE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
& TYPE P P D D D D D D P P P P P P P P P P P P P P P D

1 P
2 P
3 D
4 D
5 D
6 D
7 D
8 D
9 P

10 P
11 P
12 P
13 P
14 P
15 P
16 P
17 P
18 P
19 P
20 P
21 P
22 P
23 P
24 D

X – No ? - Possible
dependencies dependencies

? – Possible
dependencies

X – No ?
dependencies

X

X ?

?

X

?

X – No dependencies ?

X ? – Possible dependencies

X

Fig. 2. ACL Dependencies

3. Rule Dependencies

Define the dependency index (DI) to be the ratio of
dependent rule pairs to all rule pairs. Larger numbers of
rule dependencies (larger DIs) restrict ACL optimisation
by making more potential rule reorderings (e.g. swaps)
illegal [10]. For n rules, there are n2 potential
dependencies. However, dependencies are not possible
between rules of the same type so, for a policy of x
permits and y denys (n = x + y), the number of possible
dependencies is n2 – x2 – y2 with DI bounded above by (n2
– x2 – y2) / n2. Fig. 2 shows these relationships for the
ACL in Fig. 1 with n = 24, x = 17, y = 7 and DI ≤ (576 –
289 - 49) / 576 = 0.41. Fig. 3 shows how the limit for DI
varies with x (and y), the minimum value of 0 occurring
when x (or y) = n and the maximum value of 0.5 when x =
y = n/2.

DI provides a measure of the (lack of) freedom to reorder
rules in the optimisation process. However, this assumes
that all rule swaps (say) are considered within the
optimisation algorithm ([4][11][12][13], for example). In
the real-world, such an approach would be too complex to
be embedded in a router’s hardware or software and,

typically, only adjacent swaps are considered (Grout et al.,
2005). If the search algorithm prohibits swaps between
non-adjacent (permit or deny) blocks then a different
dependency index is required to be meaningful.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25

Upper bound for DI

x: Number of Permits

x + y = n n = 24

n2 – x2 – y2

n2

Fig. 3. A Bound for DI

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 231 2 3 4 6 8 12 24

Upper bound for FDI ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− ∑∑

==

yx b

k
k

b

j
j YXn

n 1

2

1

22
2 ||||1

bx + by

|Xj| = |Yk| = n / (bx + by)
∀ 1 ≤ j ≤ bx and 1 ≤ k ≤ by

Fig. 4. Typical Bound for the Fragmented Dependency Index (FDI).

To this end, suppose an ACL, L, consists of bx blocks of
permits, Xj (1≤ j ≤ bx) and by blocks of denys, Yk (1≤ k ≤
by). Then

 ∑∑
==

+=+=
yx b

k
k

b

j
j YXyxn

11

|||| , (6)

where |B| represents the number of rules in block B. If
swaps are not permitted (or considered) between non-
contiguous blocks, then the number of infeasible or
possibly dependent pairs is increased to

 2

11

22 |||| k

b

k

b

j
j YXn

yx

∑∑
==

−− (7)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

13

(again consider Fig. 2) and the fragmented dependency
index (FDI) bounded above by

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−− ∑∑

==

2

11

22
2 ||||1

k

b

k

b

j
j YXn

n

yx

. (8)

For the example in Figs. 1 and 2, bx = by = 2, |X1| = 2, |Y1|
= 6, |X2| = 15 and |Y2| = 1 giving FDI ≤ (576 – 4 – 36 –
225 – 1) / 576 = 0.54. In general, FDI is minimised
when bx = 1 and by = 0 (|X1| = n) or bx = 0 and by = 1
(|Y1| = n) and maximised by alternating single permits and
denys (bx = by = n/2, |Xj| = |Yk| = 1 ∀ 1 ≤ j,k ≤ bx,by)
giving a bound of (n2 – n) / n2, which tends to 1 as n
increases – the worst case. Fig. 4 illustrates the general
bound for equally sized permit/deny blocks, |Xj| = |Yk| = n
/ (bx + by) ∀ 1 ≤ j ≤ bx ∧ 1 ≤ k ≤ by.

4. Discussion

This section uses the DI and FDI of real-world ACLs to
discuss the suitability of simple optimisation techniques.
In [10] the following three-part heuristic, called δ-OPT, is
proposed for simple, embedded minimisation of expected
latency:

Step 1: Initialisation (following manual
 ACL configuration)
 for i := 1 to n do
 hi := 1 \ hit rates equal at start

Step 2: Promotion (on a packet matching rule i)
 h(ri) := 2h(ri) \ increase matched hit-rate
 if (di-1 i=0) and (h(ri)λ(ri-1)
 > h(ri-1)λ(ri)) then \ (or pi-1 i = 0)
 Swap(ri-1, ri) \ promote if E(L) reduced

Step 3: Reduction (periodically
 to prevent overflow)
 for i := 1 to n do
 h(ri) := h(ri) / max j h(rj)

Derivation and details are to be found in the original paper.
There is some processing cost associated with
implementing this algorithm. However, depending upon
the nature of the traffic and dependency indices of the
rules, this simple optimisation can be shown to be
worthwhile (i.e. to reduce overall expected latency) for
ACLs above a certain length (number of rules, n). Table 1
summarises these results as the minimum number of rules
for the saving in ACL latency to outweigh the latency
from the algorithm. S is the stability of the traffic flow,
essentially a probability that a given packet is similar to
the previous one in that it matches the same rule in the
ACL, L. δ-OPT performs better for more stable traffic.

However, only for values of DI approaching 1 is
optimisation worthless.

Table 1: Minimum value of n for δ-OPT to reduce E(L)

 DI = 0.00 0.25 0.50 0.75 1.00

S 0.00 19 21 23 33 ∞

 0.25 16 19 21 29 ∞

 0.50 13 15 19 26 ∞

 0.75 9 10 13 21 ∞

 1.00 8 9 12 17 ∞

As an example, on the basis of these results and the
calculations from Section 3, δ-OPT can be seen to have a
positive benefit for the ACL in Fig. 1 for all traffic flows,
S. (DI = 0.41 and FDI = 0.54, n = 24 and, from Table 1,
taking an index of 0.5, optimisation will be worthwhile for
ACLs larger than 23 rules, even for the worst case, S = 0.)
This analysis is now applied to a number of real-world
ACLs. Table 2 summarises the characteristics of several
ACLs taken from a variety of production applications.
(No attempt has been made to remove
redundancies/inconsistencies, etc. from these ACLs: they
are taken directly from source.) ACLs B, C and D are
taken from college/university LANs, F, G and H from
company networks and A and E from SOHO
environments connecting to the Internet via an ISP. ACLs
I, J and K are derived from templates for various standard
security configurations. In each case, the upper bound is
calculated for the two dependency indices. These values
are plotted in Fig. 5 for comparison.

Table 2: Permit/deny block structure for various real-world ACLs with
corresponding dependency indices

ACL n x y bx by Xj Yk DI * FDI*

A 16 10 6 2 3 6, 4 2, 3, 1 0.47 0.74

B 53 20 33 4 4 10,
7, 2,
1

14, 12,
5, 2

0.47 0.81

C 55 10 45 2 3 5, 5 27, 17, 1 0.30 0.65

D 144 27 117 6 7 4, 7,
6, 6,
3, 1

18, 32,
12, 6,
25, 21, 3

0.30 0.87

E 19 7 12 1 2 7 6, 6 0.47 0.66

F 93 22 71 3 4 13,
8, 1

41, 17,
12, 1

0.36 0.73

G 111 29 82 1 2 29, 80, 2 0.39 0.41

H 62 4 58 2 3 2, 2 22, 32, 4 0.12 0.60

I 172 54 118 2 3 31,
23

77,40,1 0.43 0.70

J 68 19 49 4 5 1, 1, 16, 8, 0.40 0.83

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

14

15,
2

12, 10, 3

K 63 22 41 2 3 18,
14

18, 13,
10

0.45 0.76

* upper bound

On the basis of the derived dependency indices in Table 2,
and the limits given in Table 1, Table 3 summarises the
effectiveness of the δ-OPT heuristic for each of the ACLs,
A, B, …, K. In each case, and separately for each of DI
and FDI, the algorithm is marked as worthwhile or
otherwise depending on whether its cost in terms of
implementation is exceeded by the gain in expected
latency.
Table 3 suggests that, at least for the ACLs tested, the
choice of DI or FDI bound for assessing the viability of
the δ-OPT algorithm for different lists may not be as
important as might be thought. Only in 3 of the 55
ACL/traffic combinations does it affect the effectiveness
of the algorithm. Whether or not this is true generally
does not affect this paper’s outcomes. The point is that
these bounds can be used in this manner to assess
algorithmic performance.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A B C D E F G H I J K

Upper bound for FDI

Upper bound for DI

Fig. 5. Comparing Bounds for DI and FDI for real-world ACLs.

Table 3. Effectiveness of δ-OPT for real-world ACLs

ACL S = 0.00 0.25 0.50 0.75 1.00

A DI* / FDI* 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

B 1 / 0 1 / 0 1 / 1 1 / 1 1 / 1

C 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

D 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

E 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1

F 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

G 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

H 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

I 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

J 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1

K 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1
 * 1: worthwhile 0: not worthwhile

5. Conclusions

We deal initially with the limitations of this work. Firstly,
no attempt has been made to tighten the (upper) bounds on
DI and FDI. It is unlikely to be possible to achieve this
formally and to compare rules in a pairwise manner is far
from trivial individually and is extremely complex for an
entire ACL [5][6]. An empirical study of the relationship
between actual DI and FDI values and their theoretical
bounds for real-world ACLs is beyond a paper of this
length but is left open as an avenue for future research.
Secondly, comparative results are only given for the δ-
OPT heuristic. This is partly because this is the only ACL
optimisation process sufficiently efficient to be embedded
in router hardware [10] and partly because only for δ-OPT
are the limit values in Table 1 available. However,
extending the analysis to other forms of optimisation
([4][7][8][11][12][14], for example), whilst not providing
efficient solutions, may serve to aid the analysis of the
relationship between DI and FDI and their bounds and
their different behaviour for ACLs with varying (e.g.
block) structures. Thirdly, while the significance of
different traffic characteristics is recognised (by the
stability factor, S), this cannot be pursued to the fullest
extent here.

There are a number of satisfactory outcomes, however.
Firstly, the matching of packets and rules and the
optimisation of rule order within ACLs is formalised to
enable the relationship between ACL structure and rule
dependency to be analysed. The optimisation objectives
of minimising expected latency are hindered by excessive
dependence between rules and may render certain ACLs,
or types of ACLs inappropriate for optimisation. This can
be measured, in principle, by the DI and FDI dependency
indices and, in practice, approximated by their bounds. A
simple formula is given for each bound that can be
calculated easily for any ACL. A number of tests on real
world ACLs then demonstrate how these bounds, in
conjunction with empirical testing and simulation [10],
show how ACLs may be classified conveniently as
appropriate or inappropriate for optimisation.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

15

References
[1] Cisco, 2000. Access Control Lists, Cisco Systems, USA,

(http://www.cisco.com/univercd/cc/td/doc/product/software/
ios113ed/113ed_cr/secur_c/scprt3/scacls.htm).

[2] Sedayao, J., 2001. Cisco IOS Access Lists, O’Reilly, USA.
[3] JANet, 2005. JANET-CERT Example Router Configuration,

(http://www.ja.net/CERT/JANET-CERT/prevention/template.html).
[4] Grout, V. and McGinn, J., 2005. Optimisation of Policy-

Based Routing Using Access Control Lists, IFIP/IEEE
Symposium on Integrated Network Management, Nice,
France, 16th-19th May 2005 (full version available at
http://www.newi.ac.uk/groutv/papers/acls.pdf).

[5] Hari, B., Suri, S. and Parulkar, G., 2000. Detecting and
Resolving Packet Filter Conflicts, Proceedings of the 19th
Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM00), pp1203-1212.

[6] Al-Shaer, E. and Hamed, H., 2004. Modeling and
Management of Firewall Policies, IEEE Transactions on
Network and Service Management, Vol. 1-1, April 2004.

[7] Cisco, 2002. ACL Optimizer and Hits Optimizer, Cisco
Systems,
USA,(www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/
cw2000/fam_prod/acl_mgr/aclm_1_x/1_5/u_guide/ac1js.pd
f).

[8] Cisco, 2003 ACL Manager, Cisco Systems, USA,
(http://www.cisco.com/en/US/partner/products/sw/cscowork
/ps402/products_user_guide_book09186a00801f42b9.html).

[9] Garey, M.R. and Johnson, D.S., 1979. Computers and
Intractability: A guide to the theory of NP-completeness,
W.H. Freeman, New York.

[10] Grout, V., Davies, J. and McGinn, J., 2006. An Argument
for Simple Embedded ACL Optimisation, Computer
Communications Vol. 30, No. 2, January 2007, pp280-277.

[11] Bukhatwa, F. and Patel, A., 2003. Effects of Ordered
Access Lists in Firewalls, Proceedings of IADIS
WWW/Internet International Conference (W3I 2003),
Algarve, Portugal, 5th-8th November 2003, pp257-264.

[12] Bukhatwa, F., 2004. High Cost Elimination Method for
Best Class Permutation in Access Lists, Proceedings of
IADIS WWW/Internet International Conference (W3I 2004),
Madrid, Spain, 6th-9th October 2004, pp287-294.

[13] Grout, V., McGinn, J. and Davies, J., 2005. Reducing
Processing Latency in Network Packet Filters, Proceedings
of the 5th International Network Conference (INC 2005),
Samos, Greece, pp. 3-10.

[14] Cisco, 2004. Turbo Access Control Lists, Cisco Systems,
USA,(http://www.cisco.com/univercd/cc/td/doc/product/soft
ware/ios120/120newft/120limit/120s/120s6/turboacl.htm).

Vic Grout was awarded the BSc
(Hons) degree in Mathematics and
Computing from the University of
Exeter (UK) in 1984 and the PhD
degree in Communication
Engineering from Plymouth
Polytechnic (UK) in 1988.
He has worked in senior positions
in both academia and industry for
twenty years and has published
and presented over 120 research
papers. He is currently a Reader

in Computer Science at the University of Wales NEWI,
Wrexham in the UK, where he leads the Centre for Applied
Internet Research (CAIR). His research interests and those of his
research students span several areas of computational
mathematics, particularly the application of heuristic principles
to large-scale problems in network design and management.
Dr. Grout is a Chartered Engineer, Chartered Scientist, Chartered
Mathematician and Chartered IT Professional, a Member of the
ACM, IEEE Computer and Communications Societies, a senior
member of the IEEE and a Fellow of the British Computer
Society (BCS) and Institution of Engineering and Technology
(IET). He chairs the biennial international conference series on
Internet Technologies and Applications (ITA 05 and ITA 07).

Stuart Cunningham was
awarded the BSc degree in
Computer Networks in 2001, and
in 2003 was awarded the MSc
Multimedia Communications
degree with Distinction, both
from the University of Paisley
(UK).
Stuart is a Member of the British
Computer Society (BCS), the
Institute of Engineering &

Technology (IET) and a member of the MPEG Music Notation
Standards working group.
Stuart's research interests are in the areas of computer networks,
audio compression, and computer music. He is a current PhD
student at the University of Wales, studying under the
supervision of Dr. Vic Grout.

Rich Picking has a BSc(Hons)
degree in Computing and
Operational Research from Leeds
Polytechnic (UK, 1986), an MSc
in Control Engineering and
Information Technology
(University of Sheffield, UK,
1987) and a PhD in Interactive
Multimedia Interface Design
from Loughborough University
(UK) in 1996. Dr. Picking has

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

16

authored and edited numerous papers, proceedings and guides in
various fields of Internet Technologies and Applications. He
currently a Principal Lecturer in Computing in the School of
Computing and Communications Technology within the Faculty
of Business, Science and Technology at the University of Wales
NEWI, Wrexham in the UK.

John McGinn was awarded the
BSc(Hons) degree in Multimedia
Computing by the University of
Wales in 2000 and is currently
working towards the PhD degree
as a Research Fellow in the Centre
for Applied Internet Research
(CAIR) at the University of Wales,
NEWI (UK).
John’s research interests include
network protocols and standards
and distributed collaboration and

visualisation. He has published and presented a number of
technical papers on topics from information visualisation to ACL
optimisation. He is a member of the British Computer Society
(BCS) and the Institution of Engineering and Technology (IET).

John Davies has a BSc(Hons) in
Control Engineering from the
University of Salford, UK (1973).
He has worked for British
Nuclear Fuels, Sension, the
University of London Computer
Centre and Daresbury
Laboratories (UK) as a Project
Manager, Chief Engineer, Senior
Lecturer and Higher Scientific
Officer respectively. He is

currently a Senior Lecturer in Computing at the University of
Wales, NEWI (UK) completing a PhD in network traffic
prediction.
John has research interests in various aspects of network
measurement, simulation and management and has published a
number of technical papers on network routing, traffic
congestion and optimisation. He is a member of the Institution
of Engineering and Technology (IET)

