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Summary 
This paper considers the effects of dependencies between rules in 
Access Control Lists (ACLs).  Dependent rules may not be 
reordered in an ACL if the policies of the list are to be preserved.  
This is an obstacle to the optimisation of rule order intended to 
reduce the time taken matching packets against rules.  In this 
paper, the concept of rule dependency is defined in relation to 
the problem of minimising processing latency.  The concepts of 
dependence and possible dependence are introduced and the 
relationship between them considered.  Two measures of 
dependency, the dependency index and the fragmented 
dependency index are defined and formulated and an upper 
bound for each is derived.  Examples of real-world ACLs are 
studied and the implications for practical optimisation discussed. 
Key words: 
Access Control Lists (ACLs),  Rule dependencies,  Optimisation,  
Packet latency. 

1. Introduction 

Access Control Lists (ACLs) play a major rôle in the 
process of passing or blocking traffic through certain 
regions of a network.  They can permit or deny traffic 
from or to given sources or destinations, or discriminate 
on the basis of content or other characteristics.  In addition, 
their ability to filter network traffic makes ACLs suitable 
for a wider purpose; any in which there is a need to choose 
certain traffic, probably as data packets, for a given policy.  
Network Address Translation (NAT), traffic shaping, 
various aspects of Internet routing, and numerous other 
traffic policies all require packets to which the policy is to 
be applied to be separated from those to which it is not.  
ACLs may vary considerably in size, structure and 
purpose but it is not uncommon for each packet to be 
tested against several ACLs on its passage across a single 
internet router and many more across a complete 
autonomous system or domain.  It is therefore useful to 
optimise ACLs for efficiency. 

An ACL is an ordered list of rules.  Each rule accepts or 
rejects a packet based on one or some of its characteristics 

- its profile.  Typically, a packet may be considered on the 
basis of its source and/or destination address or traffic type, 
although other features, or flags, may be relevant 

 

[1][2].  Fig. 1 gives an example of a typical ACL in the 
syntax of the Cisco Internetwork Operating System (IOS) 
[3].  The use of the terms permit and deny reflect the 
original role of ACLs in passing or blocking traffic 
(although their use is now considerably more widespread).  
Each packet to be tested against an ACL is compared with 
the first rule, then the second, and so on, until a rule 
matches its profile.  The rule is then permitted or denied 
accordingly and no more rules are considered.  There is 
taken to be an implicit ‘deny all’ rule terminating each list 
to deal with packets not matched by any other rule.  ACL 
optimisation effectively means finding an ordering of its 
rules that minimises processing time and thus packet 
latency. 
(1) access-list 173 permit icmp any any 
(2) access-list 173 permit tcp any any established 
(3) access-list 173 deny ip RANGE MASK any 
(4) access-list 173 deny ip 10.77.23.0 0.255.255.255 any  
(5) access-list 173 deny ip 172.16.2.0 0.15.255.255 any 
(6) access-list 173 deny ip 192.168.1.0 0.0.255.255 any 
(7) access-list 173 deny ip 169.254.1.0 0.0.255.255 any 
(8) access-list 173 deny ip 192.168.2.0 0.0.0.255 any 
(9) access-list 173 permit tcp any host MAILSERVER eq smtp 
(10) access-list 173 permit tcp any host NAMESERVER eq domain 
(11) access-list 173 permit udp any eq 53 host NAMESERVER gt 1024 
(12) access-list 173 permit tcp host MANAGER host SUN eq telnet 
(13) access-list 173 permit tcp host MANAGER host SERIAL0 
(14) access-list 173 permit tcp host MANAGER host ETHERNET0 
(15) access-list 173 permit udp host MANAGER host SERIAL0 eq snmp 
(16) access-list 173 permit tcp any host FTPSERVER eq ftp 
(17) access-list 173 permit tcp any eq ftp-data host FTPSERVER 
(18) access-list 173 permit tcp any eq ftp-data any gt 1024 
(19) access-list 173 permit tcp any host WWWSERVER eq www 
(20) access-list 173 permit tcp any host SWWWSERVER eq 443 
(21) access-list 173 permit udp EXT-NTPSERVER any eq 123 
(22) access-list 173 permit udp any range 6970 7170 any  
(23) access-list 173 deny ip any any 

 

Fig. 1. A Typical ACL 

However, rule order can be critical in an ACL.  To 
illustrate this, consider two rules as follows:  rule 1 
permits packets with characteristic A (source address, for 
example) and rule 2 denies packets with characteristic B 
(destination address, say).  A packet with a profile 
matching both characteristics (from A to B in this case) 
will match both rules.  The rules are dependent.  
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Consequently, the order of rule 1 … rule 2 will permit the 
A to B packet whereas the order rule 2 … rule 1 will deny 
it.  In Fig. 1, rules 8 and 9 are dependent: an SMTP packet 
from the 192.168.2.0 network to the mail-server will 
match both.  It is the intention of the policy, in its given 
form, that such a packet should be blocked.  However, 
promoting rule 9 above rule 8 would (incorrectly) pass it.  
Not all rules will be dependent in this way but those that 
are must have their relative order in the list preserved if 
the ACL is to retain its intended purpose.  Of course, this 
only applies for rules of opposite types.  Several ‘permit’ 
rules in a contiguous block, for example, can be freely 
reordered among themselves.  This paper considers the 
effect of dependent rules on the effectiveness of any 
optimisation (latency minimisation) process. 

2. ACL Structure 

Where appropriate in this paper, abbreviations are used as 
follows: ∃,  ‘there is’ or ‘there exists’; ∀, ‘for all’ or ‘for 
every’; ∧, ‘and’; ⇔, ‘if and only if’; and →, ‘such that’.  
Using the notation in [4], define A* to be the set of all 
addresses available within a given system, define B* to be 
the set of all protocols recognised by the system and 
define F* = {0, 1}w to be the set of w flag vectors ({0, 1} 
w-tuples acting on B*) valid for the system.  For 
completeness only, X* represents the set of payloads. 

A packet, pk = (Sak, Dak, bk, fk, Xk), is defined by its 
constituents: Sak ∈ A*, the source address; Dak ∈ A*, the 
destination address; bk ∈ B*, the protocol; fk ∈ F*, the 
flags vector and Xk ∈ X*, the payload.  A rule, ri = (ti, SAi, 
DAi, Bi, σi), consists of: a type, ti ∈ {permit, deny}, SAi ⊆ 
A*:  the source range, DAi ⊆ A*:  the destination range, Bi 
⊆ B*:  the protocol range, and a flags predicate, σi: F* a 
{true, false}.  Only ti is a required component in all 
syntaxes.  If any other components are absent then SAi = 
A*, DAi = A*, Bi = B* or σi ≡ true by default.  A policy, Z 
= [r1, r2, ..., rn] is an (ordered) sequence of n rules to 
achieve some purpose.  The last rule in any policy 
implicitly denies all traffic; that is, tn = deny, SAn = A*, 
DAn = A*, Bn = B* and σn ≡ true.  A packet, pk, matches a 
rule, ri (for which we write pk ∇ ri), if its addresses and 
protocols are within the range of the rule and if its flags 
vector satisfies the rule’s flags predicate.  That is, 

pk ∇ ri ⇔ (Sak ∈ SAi) ∧ (Dak ∈ DAi) ∧ 
(bk ∈ Bi) ∧ σi (fk),      (1) 

in which case the packet will be permitted or denied 
according to ti. 

A dependency exists between two rules, ri and rj, if they 
are of opposite type and it is possible that there exists a 
packet, pk, that matches both rules ((pk ∇ ri) ∧ (pk ∇ rj)); 
that is ri and rj are dependent if 

 (ti ≠ tj) ∧ ∃ pk →  (Sak ∈ SAi ∩ SAj) ∧ 
(Dak ∈ DAi ∩ DAj) ∧ (bk ∈ Bi ∩ Bj)     (2) 
∧ σi(fk) ∧ σj(fk).                    

Eliminating the packet, pk, from this expression, allows a 
{0, 1} dependency matrix, D = (dij: 1≤ i,j ≤ n), to be 
defined: 

 dij  ⇔  (ti ≠ tj) ∧  (SAi ∩ SAj ≠ ∅) ∧ 
(DAi ∩ DAj ≠ ∅) ∧ (Bi ∩ Bj ≠ ∅) ∧     (3) 
(Σi ∩ Σj ≠ ∅),                    

where Σi ⊆ F*  is the subset of flag vectors satisfying σi.  
Two rules, ri and rj, are possibly dependent if they are of 
opposite type (ti ≠ tj), giving a possible dependency matrix, 
P = (pij: 1≤ i,j ≤ n),  defined as pij  ⇔  (ti ≠ tj).  If dij = 1 
then the order of rules i and j must be preserved if the 
behaviour of the policy is to be maintained.  Detecting 
dependencies and anomalies, particularly in real-time on a 
production router is not trivial, however [5][6].  If there is 
any uncertainty then it may be necessary to apply the same 
restriction when pij = 1. 

An access list, or simply list, L, implements a policy, Z = 
[r1, r2, ..., rn], if it is a permutation of the rules of Z such 
that the order of dependencies is preserved.  Let ri(L) be 
the rule at position i in L.  A special case of a list 
implementing a policy, Z, is the identity list, IZ = [r1, r2, ..., 
rn], for which ri(IZ) = ri ∀ i (1≤ i ≤ n).  IZ is usually the 
starting point for any ACL optimisation, particularly 
iterative search techniques. 

The hit-rate, h(ri(L)), of rule ri in a list L, is the probability 
that a packet will match ri in L.  Hit-rates can be calculated 
dynamically using counters within the IOS or hardware 
[7][8].  The latency, λ(ri), of a rule ri is the time taken to 
(independently) process ri.  This may be calculated from 
the length of a rule, the nature of the protocols involved or 
taken from stored tables.  In some systems, latencies may 
be constant for all rules but this is not assumed in this 
paper.  The cumulative latency, κ( ri(L)), of ri in a list L, is 
the time taken to process ri and all rules preceding it in L. 

 ∑
=

=
i

i LrLr
1

))(())((
ϕ

ϕλκ .     (4) 

The expected latency, E(L), of a list L, is then given by 
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Optimising an ACL requires us to find (or approximate) 
the list, L, implementing a policy, Z, that minimises E(L), 
subject to the constraints of the dependency matrices, D or 
P.  In [4], the problem is shown to be NP-complete [9]. 

P: Permit  D: Deny  X – No dependencies  ? – Possible dependencies

RULE 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24   
& TYPE   P  P  D  D  D  D  D  D  P  P  P  P  P  P  P  P  P  P  P P  P  P  P  D

1  P   
2  P   
3  D   
4  D   
5  D   
6  D   
7  D   
8  D   
9  P   

10  P   
11  P   
12  P   
13  P   
14  P   
15  P   
16  P   
17  P   
18  P   
19  P   
20  P   
21  P   
22  P   
23  P   
24 D   

X – No                  ? - Possible
dependencies               dependencies

? – Possible
dependencies

X – No                  ?
dependencies

X

X         ?

?

X

?

X – No dependencies           ?

X                ? – Possible dependencies

X

 
Fig. 2.  ACL Dependencies 

3. Rule Dependencies 

Define the dependency index (DI) to be the ratio of 
dependent rule pairs to all rule pairs.  Larger numbers of 
rule dependencies (larger DIs) restrict ACL optimisation 
by making more potential rule reorderings (e.g. swaps) 
illegal [10].  For n rules, there are n2 potential 
dependencies.  However, dependencies are not possible 
between rules of the same type so, for a policy of x 
permits and y denys (n = x + y), the number of possible 
dependencies is n2 – x2 – y2 with DI bounded above by (n2 
– x2 – y2) / n2.  Fig. 2 shows these relationships for the 
ACL in Fig. 1 with n = 24, x = 17, y = 7 and DI ≤ (576 – 
289 - 49) / 576 = 0.41.  Fig. 3 shows how the limit for DI 
varies with x (and y), the minimum value of 0 occurring 
when x (or y) = n and the maximum value of 0.5 when x = 
y = n/2. 

 
DI provides a measure of the (lack of) freedom to reorder 
rules in the optimisation process.  However, this assumes 
that all rule swaps (say) are considered within the 
optimisation algorithm ([4][11][12][13], for example).  In 
the real-world, such an approach would be too complex to 
be embedded in a router’s hardware or software and, 

typically, only adjacent swaps are considered (Grout et al., 
2005).  If the search algorithm prohibits swaps between 
non-adjacent (permit or deny) blocks then a different 
dependency index is required to be meaningful. 
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Fig. 3. A Bound for DI 
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Fig. 4.  Typical Bound for the Fragmented Dependency Index (FDI). 

To this end, suppose an ACL, L, consists of bx blocks of 
permits, Xj (1≤ j ≤ bx) and by blocks of denys, Yk (1≤ k ≤ 
by).  Then 

 ∑∑
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where |B| represents the number of rules in block B.  If 
swaps are not permitted (or considered) between non-
contiguous blocks, then the number of infeasible or 
possibly dependent pairs is increased to 
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(again consider Fig. 2) and the fragmented dependency 
index (FDI) bounded above by 

 ⎟
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For the example in Figs. 1 and 2, bx = by = 2, |X1| = 2, |Y1| 
= 6, |X2| = 15 and |Y2| = 1 giving FDI ≤ (576 – 4 – 36 – 
225 – 1) / 576  =  0.54.  In general, FDI is minimised 
when bx = 1 and by = 0 (|X1| = n) or  bx = 0 and by = 1 
(|Y1| = n) and maximised by alternating single permits and 
denys (bx = by = n/2, |Xj| = |Yk| = 1 ∀ 1 ≤ j,k ≤ bx,by) 
giving a bound of (n2 – n) / n2, which tends to 1 as n 
increases – the worst case.  Fig. 4 illustrates the general 
bound for equally sized permit/deny blocks, |Xj| = |Yk| = n 
/ (bx + by) ∀ 1 ≤  j ≤ bx ∧ 1 ≤ k ≤ by. 

4. Discussion 

This section uses the DI and FDI of real-world ACLs to 
discuss the suitability of simple optimisation techniques.  
In [10] the following three-part heuristic, called δ-OPT, is 
proposed for simple, embedded minimisation of expected 
latency: 
 
Step 1: Initialisation (following manual 
                               ACL configuration) 
   for i := 1 to n do 
      hi := 1  \ hit rates equal at start 
 
Step 2: Promotion (on a packet matching rule i) 
   h(ri) := 2h(ri)    \ increase matched hit-rate 
   if (di-1 i=0) and (h(ri)λ(ri-1) 
         > h(ri-1)λ(ri)) then      \ (or pi-1 i = 0) 
      Swap(ri-1, ri)  \ promote if E(L) reduced 
 
Step 3: Reduction (periodically 
                             to prevent overflow) 
   for i := 1 to n do 
      h(ri) := h(ri) / max j h(rj) 
 
Derivation and details are to be found in the original paper.  
There is some processing cost associated with 
implementing this algorithm.  However, depending upon 
the nature of the traffic and dependency indices of the 
rules, this simple optimisation can be shown to be 
worthwhile (i.e. to reduce overall expected latency) for 
ACLs above a certain length (number of rules, n).  Table 1 
summarises these results as the minimum number of rules 
for the saving in ACL latency to outweigh the latency 
from the algorithm.  S is the stability of the traffic flow, 
essentially a probability that a given packet is similar to 
the previous one in that it matches the same rule in the 
ACL, L.   δ-OPT performs better for more stable traffic.  

However, only for values of DI approaching 1 is 
optimisation worthless. 

Table 1:  Minimum value of n for δ-OPT to reduce E(L) 

 DI = 0.00 0.25 0.50 0.75 1.00 

S 0.00 19 21 23 33 ∞ 

 0.25 16 19 21 29 ∞ 

 0.50 13 15 19 26 ∞ 

 0.75 9 10 13 21 ∞ 

 1.00 8 9 12 17 ∞ 

As an example, on the basis of these results and the 
calculations from Section 3, δ-OPT can be seen to have a 
positive benefit for the ACL in Fig. 1 for all traffic flows, 
S.  (DI = 0.41 and FDI = 0.54, n = 24 and, from Table 1, 
taking an index of 0.5, optimisation will be worthwhile for 
ACLs larger than 23 rules, even for the worst case, S = 0.)  
This analysis is now applied to a number of real-world 
ACLs.  Table 2 summarises the characteristics of several 
ACLs taken from a variety of production applications.  
(No attempt has been made to remove 
redundancies/inconsistencies, etc. from these ACLs: they 
are taken directly from source.)  ACLs B, C and D are 
taken from college/university LANs, F, G and H from 
company networks and A and E from SOHO 
environments connecting to the Internet via an ISP.  ACLs 
I, J and K are derived from templates for various standard 
security configurations.  In each case, the upper bound is 
calculated for the two dependency indices.  These values 
are plotted in Fig. 5 for comparison. 

Table 2:  Permit/deny block structure for various real-world ACLs with 
corresponding dependency indices 

 

ACL n x y bx by Xj Yk DI * FDI*

A 16 10 6 2 3 6, 4 2, 3, 1 0.47 0.74

B 53 20 33 4 4 10, 
7, 2, 
1 

14, 12, 
5, 2 

0.47 0.81

C 55 10 45 2 3 5, 5 27, 17, 1 0.30 0.65

D 144 27 117 6 7 4, 7, 
6, 6, 
3, 1 

18, 32, 
12, 6, 
25, 21, 3 

0.30 0.87

E 19 7 12 1 2 7 6, 6 0.47 0.66

F 93 22 71 3 4 13, 
8, 1 

41, 17, 
12, 1 

0.36 0.73

G 111 29 82 1 2 29, 80, 2 0.39 0.41

H 62 4 58 2 3 2, 2 22, 32, 4 0.12 0.60

I 172 54 118 2 3 31, 
23 

77,40,1 0.43 0.70

J 68 19 49 4 5 1, 1, 16, 8, 0.40 0.83
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15, 
2 

12, 10, 3 

K 63 22 41 2 3 18, 
14 

18, 13, 
10 

0.45 0.76

* upper bound 

On the basis of the derived dependency indices in Table 2, 
and the limits given in Table 1, Table 3 summarises the 
effectiveness of the δ-OPT heuristic for each of the ACLs, 
A, B, …, K.  In each case, and separately for each of DI 
and FDI, the algorithm is marked as worthwhile or 
otherwise depending on whether its cost in terms of 
implementation is exceeded by the gain in expected 
latency. 
Table 3 suggests that, at least for the ACLs tested, the 
choice of DI or FDI bound for assessing the viability of 
the δ-OPT algorithm for different lists may not be as 
important as might be thought.  Only in 3 of the 55 
ACL/traffic combinations does it affect the effectiveness 
of the algorithm.  Whether or not this is true generally 
does not affect this paper’s outcomes.  The point is that 
these bounds can be used in this manner to assess 
algorithmic performance. 

0
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1
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Upper bound for FDI

Upper bound for DI

 
Fig. 5.  Comparing Bounds for DI and FDI for real-world ACLs. 
 

Table 3.  Effectiveness of δ-OPT for real-world ACLs 
 

ACL S = 0.00 0.25 0.50 0.75 1.00

A DI* / FDI*  0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

B  1 / 0 1 / 0 1 / 1 1 / 1 1 / 1

C  1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

D  1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

E  1 / 0 1 / 1 1 / 1 1 / 1 1 / 1

F  0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

G  1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

H  1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

I  1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

J  1 / 0 1 / 1 1 / 1 1 / 1 1 / 1

K  1 / 1 1 / 1 1 / 1 1 / 1 1 / 1
                                                           *  1: worthwhile   0: not worthwhile 

5. Conclusions 

We deal initially with the limitations of this work.  Firstly, 
no attempt has been made to tighten the (upper) bounds on 
DI and FDI.  It is unlikely to be possible to achieve this 
formally and to compare rules in a pairwise manner is far 
from trivial individually and is extremely complex for an 
entire ACL [5][6].  An empirical study of the relationship 
between actual DI and FDI values and their theoretical 
bounds for real-world ACLs is beyond a paper of this 
length but is left open as an avenue for future research.  
Secondly, comparative results are only given for the δ-
OPT heuristic.  This is partly because this is the only ACL 
optimisation process sufficiently efficient to be embedded 
in router hardware [10] and partly because only for δ-OPT 
are the limit values in Table 1 available.  However, 
extending the analysis to other forms of optimisation 
([4][7][8][11][12][14], for example), whilst not providing 
efficient solutions, may serve to aid the analysis of the 
relationship between DI and FDI and their bounds and 
their different behaviour for ACLs with varying (e.g. 
block) structures.  Thirdly, while the significance of 
different traffic characteristics is recognised (by the 
stability factor, S), this cannot be pursued to the fullest 
extent here. 

There are a number of satisfactory outcomes, however.  
Firstly, the matching of packets and rules and the 
optimisation of rule order within ACLs is formalised to 
enable the relationship between ACL structure and rule 
dependency to be analysed.  The optimisation objectives 
of minimising expected latency are hindered by excessive 
dependence between rules and may render certain ACLs, 
or types of ACLs inappropriate for optimisation.  This can 
be measured, in principle, by the DI and FDI dependency 
indices and, in practice, approximated by their bounds.  A 
simple formula is given for each bound that can be 
calculated easily for any ACL.  A number of tests on real 
world ACLs then demonstrate how these bounds, in 
conjunction with empirical testing and simulation [10], 
show how ACLs may be classified conveniently as 
appropriate or inappropriate for optimisation. 
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