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Summary 
“State Abstraction” is a framework in which states of a data 
structure (or an object) are divided into small number of 
exclusive sets (“Abstract States,” or AST), and current abstract 
state is explicitly managed by the code.  In “State Abstraction-
based Synchronization” (or AST-sync), abstract states of the data 
structure guarded by a critical region are similarly managed, and 
an activities can enter the region only when current state is 
included in the pre-specified set.  For example, in a bounded 
buffer, “get” operation can proceed only in “full” or “mid” state, 
but not in “empty” state. AST-sync can express conditional 
synchronization in concise and readable manner, and can be 
efficiently implemented.  Today, thread libraries are widely used 
for concurrent programming on shared-memory multiprocessors.  
On POSIX thread and other well-known thread libraries, 
condition variables are used for conditional inter-thread 
synchronization.  However in those APIs, complex conditional 
synchronization using multiple condition variables are difficult 
to understand and error-prone. Hence, programming style with 
single condition variable is widely used.  Standard 
synchronization scheme on Java programming languages is 
effectively designed likewise.  In this scheme, all threads are 
woken up on each event and have to check for their continuing 
conditions repeatedly, leading to large overhead.  Thus, we are 
proposing an alternative conditional synchronization scheme and 
associated API for thread libraries based on AST-sync.  In our 
scheme, every mutex acquisition are guarded by a set of abstract 
states on which the processing can continue.  In this paper, we 
report our kernel-level implementation of AST-sync based on 
multiprocessor-capable POSIX thread library bundled in 
FreeBSD 6.0-RELEASE, and its performance evaluation using 
micro benchmarks.  As the result, we have observed 2--3 times 
speedups against popular “repeated tests” type synchronization 
code for some cases. 
Key words: 
Conditional Synchronization, Thread Libraries, Condition 
Variables, Guards. 

1. Introduction 

In systems with concurrency, such as multiprocessor 
systems or distributed (networked) systems, some 
synchronization mechanism is needed to ensure 
correctness of entire computation.  
 
In case of (possibly distributed) shared-memory systems, 
critical regions are mainly used.  In critical regions, only 
one activity (process or thread) may enter the region at any 
moment.  When second activity tries to enter the region, 

its execution is automatically delayed until the first 
activity leaves the region. 
 
However in some cases, execution of the activity should 
be delayed even when no other activity is in the region.  
For example, if the region encloses a bounded buffer, 
“getter” activity must delay execution when the buffer is 
empty.  The execution of the activity will be delayed until 
any “putter” enters the region, puts data into the buffer 
(now the buffer is non-empty), and leave the region.  This 
kind of synchronization is called “conditional 
synchronization” because execution is delayed until some 
specific condition (buffer becomes non-empty in the 
above example) is established. 
 
Condition variables [4], semaphores [5], conditional 
critical region (CCR) [3] are well known standard 
mechanisms for conditional synchronization.  However, 
each of them has their own drawbacks.  A semaphore is a 
kind of counters, thus it is applicable only when the 
“condition” is expressed as a count. 
 
A condition variable represents a “waiting queue” on 
which activities can be put to sleep and woken up 
afterwards. Each “condition” (e.g. buffer full, buffer 
empty and so on) corresponds to one condition variable.  
Therefore, the code tends to become complex when 
multiple such condition exists. Moreover, if there are 
overlaps among conditions, condition variables cannot be 
used. More accurately, the implementation must permit 
one activity to sleep on multiple condition variable “at the 
same time.”  However we do not know any condition 
variable implementation with such functionality. 
 
A conditional critical region is a critical region associated 
with boolean expression (“guard expression”).  As the 
conditions are directly expressed as boolean expressions, 
this scheme is general and comprehensive.  On the other 
hand, an activity must evaluate a guard at each (trial-) 
entry to the region (repeated tests), resulting higher 
overhead. 
 
Herlihy [1] has eliminated the overhead by evaluating 
guards on transactional memory, but his scheme requires 
to implement all memory access for guard evaluation as 
transactional memory access.  Such strong constraint 
limits applicability of his scheme. 
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The authors have proposed an alternative (simple and 
comprehensive) conditional synchronization mechanism, 
namely abstract state-based synchronization (AST-sync), 
and have been investigating its application to object-
oriented languages[8][9]. 
 
Our scheme can also be incorporated to traditional thread 
libraries (e.g. POSIX thread) in a portable manner.  In [10], 
we have presented AST-sync thread API implemented on 
top of POSIX API.  Using AST-sync, conditional 
synchronization among threads can be expressed in a 
simple and straightforward manner.  However, portable 
implementation uses repeated test (as in CCR) internally, 
so its performance is similar to CCR. 
 
Therefore, we have developed new, kernel-based 
implementation of AST-sync.  We have modified 
FreeBSD 6.0-RELEASE operating system kernel and 
bundled POSIX thread library, so that AST-sync is 
directly handled by the kernel.  We have measured the 
performance of our new implementation, compared them 
against traditional schemes, and got the favorable result. 
 
In section 2, we explain concepts of abstract state and 
abstract state-based synchronization (AST-sync), along 
with the thread library API we have developed.  In section 
3, we describe our kernel-based implementation of AST-
sync mechanism.  In section 4, performance evaluations 
and their results are shown.  Finally in section 5, the 
summary and conclusion is described. 

2. Abstract State-based Synchronization and 
Thread Libraries 

2.1 Abstract States and Synchronization 

In object-oriented languages, an object might have several 
different states.  The state of an object is represented as the 
set of instance variable values.  However, as an object 
corresponds to abstract data type (ADT) value, users of 
the object are not concerned with detailed state differences. 
 
For example, in a bounded buffer object, data currently 
stored inside and their ordering are part of its state.  
However, users of the buffer are almost never concerned 
with such details; they are mostly concerned with 
“whether the buffer is empty, partially filled, or 
completely filled.” 
Therefore, we propose to explicitly declare set of those 
“states” as in {empty, mid, full} and concentrate 
only on difference among those “states.”  These “states” 
are actually abstractions of the objects' detailed internal 

states described above.  Hence, we call those “states” as 
“abstract states.” 
 
In ordinary object-oriented languages, it is widely adopted 
conventions that programmers (or designers of classes) 
prepare predicate methods such as isEmpty(), 
isFull(). These predicate methods convey information 
as to which abstract state the object is currently in.  This 
scheme has the following drawbacks: 
 
1. Not all boolean-valued method corresponds to abstract 

state differences.  Therefore, what are the set of abstract 
states and how they can be examined is not always clear.  

2. It incurs method invocation overhead (method inlining 
and other optimization might eliminate this overhead).  

3. Boolean expression inside the predicate methods needs 
be evaluated every time, even when abstract state has 
not changed. 

 
In our proposal, abstract states are represented by small 
integer values, and the current state value is stored in the 
fixed place of an object.  When the object's abstract state 
changes, the object is responsible in updating its abstract 
state value correctly.  From outside the object, this fixed 
place can be examined to determine abstract state of the 
object in an efficient manner. 
 
So far we have explained the concept of abstract states.  
Next we explain abstract state-based synchronization 
(AST-sync).  In object-based concurrent systems, each 
critical region guards corresponding object from 
concurrent access. 
 
With the above assumptions, conditional synchronization 
will delay entry to the region until corresponding objects' 
abstract state becomes the one of specified set.  This is 
because abstract states captures state difference visible 
(what matters) to the user of the object. If a 
synchronization condition does not correspond to abstract 
state differences, then one should reconsider set of abstract 
state for the object. For example, “putter” is delayed when 
the buffer's abstract state is full, and can proceed when 
the state becomes mid or empty. 
 
Based on the above observation, abstract state-based 
synchronization (AST-sync) is formalized as follows: 
 
1. A critical region is associated to an object with abstract 

states.  
2. Upon entry to a critical region, an activity present set of 

abstract states (“entry set”) for which it can proceed.  If 
the object is not in one of those states, entry is delayed.  

3. If the objects' state is (or becomes) contained in the 
entry set, the activity enters the region.  State of the 
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object is temporally set to null -- which means that 
object is locked and no other activity can enter the 
region.  

4. When the activity leaves the region, the objects' state is 
restored (to previous value, or to new value 
corresponding to the state change).  At this time, when 
some activity is waiting and restored state is in its 
waiting set, the activity is woken up and enters the 
region. Note that we make no assumption on region 
entry orderings when multiple activities are waiting. 

 
When the number of abstract state does not exceed the 
number of bits in the hardware word, each state can be 
assigned to single bit within the word, and entry condition 
can be tested efficiently by “and” mask operation [8].  The 
scheme can also be extended to the case where class 
inheritance is being used [9]. 

2.2 POSIX Thread API 

As described above, AST-sync is suitable to be used with 
thread libraries.  In this way, concurrent programs written 
in C or C++ languages can obtain full benefits of AST-
sync. 
 
We have based our AST-sync thread API on popular, 
widely used POSIX thread [6] API.  Firstly, we describe 
bounded buffer example in POSIX thread API. In POSIX 
thread, critical regions are associated to mutex lock, and 
conditional synchronization is implemented using 
condition variables.  In the following code, mutex is 
mutex lock type, and nonfull, nonempty is condition 
variable data type. 
 
void put(T p) {  
   pthread_mutex_lock(&mutex);  
   while( [[[ the buffe is full ]]] )  
     pthread_cond_wait(&nonfull, &mutex);  
   [[[ store data to the buffer]]]  
   pthread_cond_signal(&nonempty);  
   pthread_mutex_unlock(&mutex);  
 }  
 void get(T *p) {  
   pthread_mutex_lock(&mutex);  
   while( [[[the buffer is empty]]] )  
     pthread_cond_wait(&nonempty, &mutex);  
   [[[ extract data and put to *p ]]]  
   pthread_cond_signal(&nofull);  
   pthread_mutex_unlock(&mutex);  
 } 

 
When a thread sleeping on a condition variable is woken 
up, it seems as if the waiting condition is satisfied and 
repeated tests of the conditions are unnecessary.  However, 
in POSIX specification, some other thread might obtain 
lock before the woken thread enters the region, so 
repeated test is mandatory (although looping case will be 
quite rare). 
 

Using multiple condition variables is apparently complex 
and not easy to read.  Therefore, many programs use only 
one condition variable and pthread_cond_broadcast 
for signaling.  With broadcast, all threads are woken up, 
enter the region one by one and test for the condition.  In 
most cases, only one thread is successful in the test and 
proceeds; others are put to sleep again. 
 
We call such style as “repeated tests.”  In repeated tests, 
entry to the critical region is controlled solely by the 
boolean expression (guard), thus it can be seen as a kind 
of CCR implementation.  Java have only one condition 
variable per lock (=object), thus repeated tests is widely 
adopted. 

2.3 AST-sync API for Thread Libraries 

In this section, we explain AST-sync based thread API we 
have designed.  API itself is shown in table 1.  We 
represent abstract states as suggested in the end of the 
section  2.1.   Therefore, number of abstract states must 
not exceed number of bits in an int value (32 or 64).  We 
think this number as being sufficient, for the number of 
“abstract” states (which programmers have to investigate 
one by one in their code) should not be so large. 

Table 1: AST-sync based thread API 
API functio

n 
int ast_mutex_init(struct ast_mutex 

*m, int state) 
int ast_mutex_destroy(struct ast_mutex 

*m) 
void ast_mutex_enter(struct ast_mutex 

*m, int mask) 
void ast_mutex_exit(struct ast_mutex 

*m, int state) 

Initialize 
mutex 

Destroy 
mutex 
Enter 
regin 
Leave 
region 

 
 
In original POSIX thread, evaluation of region entry 
conditions (guards) has to be placed inside the critical 
region to prevent interference among threads.  If repeated 
tests are used, repeated entry to the region leads to 
increased overhead. 
 
In AST-sync, an entry condition is a set of abstract states, 
and is represented by single mask value.  Therefore, upon 
mutex entry we hand this mask value to the library call 
ast_mutex_enter, and synchronization is all handled 
within the call. 
 
Upon exit form the region, next abstract state have to be 
established, so we hand the new state value to 
ast_mutex_exit.  Additionally, guarded object have to 
be in some well-defined state upon startup, so we hand the 
initial state to ast_mutex_init. 
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Using the designed API, bounded buffer example will be 
written as in the following (initial state is assumed to be 
S_EMPTY, and buffer size is assumed to be larger than 1). 
 
void put(T p) {  
   ast_mutex_enter(&mutex, S_MID|S_EMPTY);  
   [[[ store data to the buffer ]]]  
   if( [[[ the buffe is full ]]] )  
     ast_mutex_exit(&mutex, S_FULL);  
   else  
     ast_mutex_exit(&mutex, S_MID);  
 }  
 void get(T *p) {  
   ast_mutex_enter(&mutex, S_FULL|S_MID);  
   [[[ extract data and put to *p ]]]  
   if( [[[the buffer is empty]]] )  
     ast_mutex_exit(&mutex, S_EMPTY);  
   else  
     ast_mutex_exit(&mutex, S_MID);  
 } 

 
Note that after ast_mutex_enter is returned, buffer is 
already in the desired state and can be handled 
immediately. On the other hand, new (correct) abstract 
state has to be established when releasing the lock through 
ast_mutex_exit. 
 
In summary, code among ast_mutex_enter and 
ast_mutex_exit forms a critical region, and conditional 
synchronization is controlled through state values (or 
masks) handed to API. 

3. Implementation 

We first implemented AST-sync API on top of POSIX 
thread API in a portable manner, but its performance is 
similar to repeated tests.  To attain better performance, we 
have included AST-sync functionality in the FreeBSD 
kernel.  We have based our implementation on FreeBSD 
6.0-RELEASE and bundled POSIX-compatible thread 
library. 
 
FreeBSD had three implementations of POSIX-compatible 
thread libraries, as in the followings: 
 
1. A pure user-level thread implementation (libc_r).  
2. An implementation in which kernel threads and user 

threads have 1-1 correspondence (libthr).  
3. An implementation in which kernel threads and user 

threads have M-N correspondence (libthread). 
 
This time, we have chosen (2) as the base of our AST-
sync implementation.  (1) is user-level only 
implementation and cannot use multiple CPUs, thus was 
not suited to our research. (3) have to manage complex 
correspondence between user and kernel level thread, so 
was not chosen this time. 
 

Below, we explain how we have modified libthr 
implementation and kernel functionalities used by this 
implementation to incorporate AST-sync. 
 
Figure 1 shows the data structure in the user data space 
related to the modification.  pthread_mutex is the mutex 
data structure of the original implementation.  umtx_t 
field in the data structure is accessed from the lock service 
inside the kernel.  Thus, we call umtx_t field as “kernel 
lock” field.  
 

 

Fig.1  User-space Data Structure 

pthread_cond is the condition variable data structure of 
the original implementation.  This structure includes two 
umtx_t field, one for exclusive access to pthread_cond 
structure, and the other for exclusive access to queue 
structure (explained shortly) inside the kernel.  
 
ast_mutex is a new data structure for our AST-sync 
implementation.  The structure consists of original 
pthread_mutex data structure and extra one word for the 
current “Abstract State” value. 
 
Figure 2 shows the related data structures in the kernel 
space.  umtx_chain is a hash table; its entries are head of 
double-linked list data structure.  When the numbers of 
mutex and condition variables are not large, each slot of 
the hash table will corresponds to single mutex or 
condition variable (or is unused). 
 

 

Fig.2  Kernel-space Data Structure 
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In the original kernel, each element of the double-linked 
list included thread ID and address of the kernel lock 
(umtx_t data structure) in the user space.  To implement 
AST-sync functionality, we have added two more field as 
in the following: 
 
• ast_bits --- Mask value representing the set of 

abstract states for which a thread is waiting.  
• owner --- Field for holding a value used while 

obtaining umtx_t lock, when the waiting thread is 
being woken up. 

 
These fields are used only when a thread enters wait status 
using AST-sync functionality. Additionally, one of the 
field is used to remove bugs (described later) on condition 
variable synchronization.  The field stores the count of 
signal/broadcast at the conditional wait entry, and is used 
to verify that no anomaly in wakeup order exists. 
 
When inserting waiting thread to the double-lined list, 
insertion either at the head or at the tail is possible (no 
difference in processing cost).  Original implementation 
has chosen head as the insertion point.  This is perhaps 
more efficient, because choosing recently slept thread 
increases possibility of cache reuse.  Thus, we have not 
changed the choice. 
 
Kernel call from within thread library uses dedicated 
system call _umtx_op().  It had following four 
commands in the original kernel: 
 
• UMTX_OP_LOCK --- Locks umtx_t.  
• UMTX_OP_UNLOCK --- Releases umtx_t.  
• UMTX_OP_WAIT --- Sleeps on umtx_t.  
• UMTX_OP_WAKE --- Wakes up threads sleeping on 

umtx_t.  As a parameter, the number of threads to 
wake up is specified. 

 
To implement AST-sync, we have included two additional 
commands as in the followings: 
 
• UMTX_OP_WAIT2 --- Sleeps on umtx_t with AST-sync.  

As a parameter, state mask is specified.  
• UMTX_OP_WAKE2 --- Wakes up thread sleeping on 

umtx_t with AST-sync.  As a parameter, state value is 
specified.   

 
The latter command uses linear search over the double-
linked list and wakes up the first thread which matches 
mask condition. We could eliminate linear search by using 
more complex data structure, but as a result of evaluation 
(described in the following section), overhead of current 
simple implementation is negligible with moderate (about 
500) numbers of waiting threads. 

 
In the original implementation, pthread_mutex_lock 
updated mutex data structure (in the user space) and 
acquired umtx_t in one place.  However, in AST-sync, 
umtx_t is not released but handed to the thread being 
woken up. Therefore, we separated function to update 
mutex data structure and umtxt_t operation. 
 
After the modification (during evaluation), we have found 
that original pthread_mutex_lock algorithms was not 
correct. Actually, the code first released umtx_t (to guard 
mutex data structure) and then immediately slept on 
umtx_t. However, as this “release and sleep” was not 
atomic, interference could occur (and had occurred in our 
micro benchmark evaluations). 
 
Therefore, we modified this part of code to enter the 
kernel while holding the first umtx_t and “release and 
sleep” performed indivisibly in the kernel. As the result 
of this modification, performance of condition variable 
synchronization was improved.  This is perhaps due to the 
decrease in system calls (from original two to one per 
condition variable operation).  For the fair comparison, we 
have used this “improved” version in the following 
evaluation. 

Table 2: # of modified lines 
File # Modified lines #Total lines 

thr_mutex.c
thr_cond.c 
thr_umtx.c 
thr_umtx.h

60 
16 
22 
3 

1678 
344 
80 
87 

kern_umtx.
c 
(kernel) 

181 772 

 
We have modified four files among 60 files in the thread 
library (libthr), and one file in the FreeBSD kernel.  
Details are shown on table 2.  Workload was full three 
days by one of the authors, including reading relevant 
codes in the original library and kernel code.  Additionally, 
the bug explained above required one week to track and 
fix. 

4. Evaluation 

4.1 Micro Benchmark 

To evaluate the modified library, we have measured 
performance of following micro bentimarks: 
 

• Standard bounded buffer, which have three states 
{empty, mid, full}.  Putter threads are delayed 
while the state is full, and getter threads are delayed 
while the state is empty.  
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• Bounded buffer with a watermark, having states 
{empty, midlow, midhigh, full} (clients can 
also see if the buffer is filled halfway or not).  In this 
benchmark, the third kind of thread, namely 
“marginal putter” is added. Marginal putter threads 
can proceed only when the status is either empty or 
midlow. 

 
In each of the cases, one buffer with the capacity of ten 
data is used, while the numbers of each kind of threads are 
chosen to represent typical conditions for real systems.  
 
Following implementations of the bounded buffer are 
used: 
 

• Condition variable-based implementation --- 
Implementation with the framework presented in 
section 2.2.  As explained previously, condition 
variables cannot be used when there are overlaps 
among conditions.  Thus, wartermarked buffer 
cannot be implemented in this scheme.  

• Repeated tests --- Uses one condition variable; all 
threads are woken up (broadcast) on every state 
changes and tests conditional expression repeatedly.  
(Today's widely used scheme)  

• Portable implementation of AST-sync --- AST-sync 
API is implemented on top of POSIX Thread API.  
Repeated tests are used internally.   

• Kernel implementation of AST-sync --- The core of 
AST-sync API is implemented inside the kernel.  
(The one we have explained in the previous section.) 

 
For each of the cases, we have measured performance for 
both small and large number of waiting threads.  The 
former is represented by the case in which the numbers of 
getter and putter threads are the same, while the latter is 
represented by the case in which only one getter thread 
exists.  
 
In the following, (NwxCw:NrxCr) means Nw putter threads 
each putting Cw data combined with Nr getter threads each 
getting Cr data.  For watermaked buffer, (NwxCw:NvxCv: 
NrxCr) means likewise, with Nv and Cv representing the 
number and put count for marginal putter (refrain from 
putting when the buffer is more than halfway filled).  
 
Measurement was done in Pentium II 350MHz 2CPU 
machine.  GCC 3.4.4 with -O4 optimization is used for 
compilation.  100 measurements were performed for each 
case.  In the tables 3-6, average of 100 measurements and 
standard deviation (in parenthesis) is presented.  All time 
units are in seconds. 

Table 3: Bounded buffer with small # of waits (500x100:500x100) 

Kind. impl. User time Syst. time Elaps. time 
Cond. vars 1.273 

(0.100) 
12.277 

  (0.176) 
7.16 

 (0.100) 
Repeated tests 3.133 

(0.942) 
34.181 

(11.461) 
20.26 

(6.805) 
Portable AST 3.080 

(0.881) 
33.637 

 (10.097) 
19.91 

(6.012) 
Kernel AST 0.601 

(0.071) 
8.269 

  (0.264) 
6.41 

(0.203) 

Table4: Bounded buffer with large # of waits (500x100:1x50,000) 
Kind. impl. User time Syst. time Elaps. time 
Cond. vars 1.081 

(0.087) 
9.872 

 (0.244) 
5.80 

(0.106) 
Repeated tests 2.713 

(0.254) 
28.684 

  (2.230) 
16.99 

(1.356) 
Portable AST 2.785 

(0.215) 
29.366 

  (1.890) 
17.40 

(1.128) 
Kernel AST 0.530 

 (0.060) 
7.340 

(0.129) 
5.75 

 (0.083) 

Table5: Watermarked buffer with small # of waits 
(250x100:250x100:500x100) 

Kind. impl. User time Syst. time Elaps. time 
Repeated tests 4.161 

 (1.065) 
46.892 

(13.262) 
27.83 

 (7.865) 
Portable AST 3.934 

(0.894) 
44.130 

 (11.312) 
26.19 

 (6.698) 
Kernel AST 0.594 

(0.073) 
8.261 

 (0.229) 
6.38 

(0.169) 

Table6: Watermarked buffer with large # of waits 
(250x100:250x100:1x50,000) 

Kind. impl. User time Syst. time Elaps. time 
Repeated tests 3.158 

 (0.249) 
33.392 

  (2.216) 
19.82 

(1.328) 
Portable AST 2.924 

 (0.198) 
30.858 

  (1.562) 
18.27 

(0.930) 
Kernel AST 0.539 

(0.060) 
7.432 

 (0.126) 
5.83 

 (0.080) 
 
From the tables, we can observe the followings:  
 

• Performance of repeated tests and portable AST is 
largely equivalent.  This is the expected result, as 
portable AST is implemented using repeated tests 
inside.  

• Comparing condition variables and kernel AST, 
kernel AST is a bit superior both in user time and 
system time.  This might come from the fact that both 
user code and kernel code is simpler in kernel AST.  

• In spite of the above, superiority of kernel AST 
decreases when the numbers of waiting threads are 
large.  This might come from the fact that current 
kernel AST implementation uses linear search over 
double-linked list on conditional wakeup, meaning 
search overhead proportional to the number of 
waiting threads. (Note: data on table 4 is uniformly 
smaller compared to table 3 because the number of 
getter threads is decreased from 500 to 1.)  
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• Compared to kernel AST, repeated tests (corresponds 
to CCR) and portable AST incurs four to five times 
overhead.  This is the expected result, as kernel AST 
wakes up only one thread which is guaranteed to 
proceed, while repeated tests or portable AST wakes 
up all (500) waiting thread to perform conditional 
expression evaluation or bit mask test, which will 
evaluate to false on most cases.  

• In watermaked buffer cases, repeated tests and 
portable AST shows performance degradation.  This 
is probably due to the fact that more states have to be 
checked and kind of threads are increased.  In 
contrast, kernel AST shows no performance 
degradation in spite of the above facts. 

 
Also note that, condition variable-based synchronization 
cannot be used for overlapped conditions (as in 
wartermarked buffers), but AST-sync does not have such 
restriction. 

4.2 Data-Thread Correspondence 

To examine more details, we have assigned numbers 0-
99999 to the data transferred (in time order) and numbers 
0-499 to getter and putter threads, and plotted points 
indicating which getter and putter handled which data (for 
“small number of waits” cases).  Figures 3, 4 and 5 shows 
plots for condition variables, repeated tests and kernel 
AST respectively.  In each, vertical axis corresponds to 
data number and horizontal axis corresponds to thread 
number (left half shows putter status and right half shows 
getter status). 

Examining these plots, repeated tests shows the tendency 
of randomized thread assignment because all threads are 
woken up and fight for control for each datum.  Condition 
variables show more orderly correspondence and locality, 
but still show some randomness.  On the contrary, kernel 
AST shows good locality, which indicates decreased inter-
thread contentions.  

 

Fig.3  Thread # versus data # plots (Cond. vars) 

 

 

Fig.4  Thread # versus data # plots (Repeated tests) 

The reason for such locality can be explained as follows.  
When a putter (call this thread “A”) is suspended due to 
full buffer, one of the getters (call this thread “B”) is 
selected and resumed, which will eventually empty the 
buffer and suspends.  Then, last putter suspended (thread 
“A”) is resumed.  When “A” blocks again, “B” will be 
resumed again. This pairing will continue until one of 
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them finishes its job or some global randomization effect 
(e.g. process swap out or such) occurs.  
 
This kind of coroutine-like behavior leads to good locality 
and better performance.  However, note that the code itself 
is general one and no thread paring is explicitly coded.  
 
Also note that the above effect is the result of LIFO nature 
(suspended thread is inserted to the head of ready queue) 
of thread scheduler used for the experiments. 
 

 

Fig.5  Thread # versus data # plots (Kernel AST) 

4.3 Benchmark with More Logical CPUs 

To investigate cases for larger number of CPUs, we have 
also conducted measurements on Pentium D 3.2GHz 
2CPU machines with HyperThreading off (the number of 
logical CPUs is 2) and on (the number of logical CPUs is 
4).  The results are shown on tables 7 and 8.  
 
When the numbers of logical CPUs are 2, obtained data 
are mostly similar to the above result.  However, data for 4 
logical CPUs shows different trends from the above result 
when the number of waiting threads are small (table 7) and 
large (table 8). 
 
Small number of waiting threads: 
• For condition variables, repeated tests and portable 

AST, 3-4 times increase in system time is observed.  
On the contrary, kernel AST show only 20% increase 
in system time.  

• Repeated tests and portable AST show 50% increase in 
user time, while on condition variables and kernel AST 
only slight increase is observed.  

• For condition variables, repeated tests and portable 
AST, 100% (twice) increase in elapsed time was 
observed. On the contrary, kernel AST showed only 
10% increase in elapsed time. 

Table7: 2 vs 4 CPU: bounded buffer with small # of waits 
(1,000x1,000:1,000x1,000) 

Kind. impl. and 
# CPUs 

User time Syst. time Elaps. time 

2 5.189 
 (0.206) 

59.255 
(1.250) 

33.58 
(0.757) 

Cond. vars 

4 6.252 
(0.448) 

192.580 
(11.929) 

65.82  
  (3.523) 

2 6.658 
(1.267) 

85.804 
(18.400) 

49.19 
(10.964) 

Repeated 
tests 

4 10.267 
 (1.305) 

292.771 
 (37.942) 

105.80 
(12.686) 

2 6.884 
(1.508) 

86.683 
(23.160) 

50.09 
(13.813) 

Portable 
AST 

4 10.277 
 (1.214) 

290.425 
(34.602) 

104.98 
 (11.606) 

2 2.110 
(0.113) 

45.436 
(1.634) 

31.00  
(0.874) 

Kernel 
AST 

4 2.200 
(0.126) 

54.224  
 (1.002) 

33.01 
 (0.519) 

Table8: 2 vs 4 CPU: bounded buffer with large # of waits 
(1,000x1,000:1x1,000,000) 

Kind. impl. and 
# CPUs 

User time Syst. time Elaps. time 

2 4.763 
(0.205) 

44.719 
  (1.754) 

26.46 
 (1.044) 

Cond. vars 

4 5.581 
(0.226) 

148.897 
 (3.933) 

53.02 
(1.271) 

2 14.599 
(1.422) 

196.267 
(19.348) 

116.47 
 (12.232) 

Repeated 
tests 

4 6.892 
(0.252) 

208.172 
 (4.350) 

76.04 
(1.336) 

2 14.044 
 (1.223) 

185.283 
 (15.694) 

110.19 
  (9.840) 

Portable 
AST 

4 7.013 
 (0.250) 

206.813 
  (5.044) 

75.59 
  (1.538) 

2 2.022 
 (0.125) 

37.319 
(0.622) 

30.40 
  (0.412) 

Kernel 
AST 

4 1.953 
 (0.121) 

56.588 
 (0.371) 

35.22 
 (0.211) 

 
Large number of waiting threads: 
• For condition variables, the trends are the same as in 

the cases for  small number of waiting threads.  
• For repeated tests and portable AST, when compared 

against the cases for  small number of waiting threads, 
system time increases slightly, user time decreased to 
half, and elapsed time decreased by 20%-30%.  

• For kernel AST, when compared to small number of 
waiting threads, user time remains the same, system 
time increases by 50%, elapsed time increases by 20%.  
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On repeated tests and portable AST, number of waiting 
threads had the large effect.  This might be interpreted as 
follows. When the number of waiting threads is small, 
upon thread scheduling, probability of “bad luck” (putter 
scheduled on a full buffer, or getter schedule on empty 
buffer) will be 0.5 because of the symmetry of the 
situation.  When the number of waiting thread is large, the 
sole getter will always have his work and runs at his full 
speed, thus loss of throughput due to “bad luck” does not 
occur, leading to better performance. Decreased user time 
on small number of waiting threads also supports our 
guess. 
 
For condition variables implementation, it was surprising 
that we observed large increase of system time uniformly.  
It might be due to useless contention inside the kernel, but 
we have not found specific reason for this yet. 
 
In total, kernel AST implementation had uniformly 
minimal elapsed time in a stable manner (standard 
deviation of measurement was also very small).  When the 
number of logical CPU is increased, kernel AST 
implementation observed no user time increase.  System 
time increased moderately because of increased kernel 
workloads, but this increase did not affect much on the 
elapsed time. 

5. Summary 

In this paper, we have added AST-sync, a new and easy-
to-use conditional synchronization mechanism, onto 
POSIX compatible multiple CPU thread library on 
FreeBSD 6.0-RELEASE.  Two versions of AST-sync 
implementation were developed.  One is portable AST 
implementation, which builds on top of existing POSIX 
API and need no kernel modification.  The other is kernel-
based AST implementation and required moderate effort 
for kernel modification.  We have evaluated our 
implementations against existing scheme (condition 
variables and popular repeated test-style scheme) using 
micro benchmarks.  As the result, kernel-based AST 
implementation uniformly had the highest performance, 
good thread locality and was stable (no large performance 
degradation) when the number of logical CPUs is 
increased. 
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