
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

36

Manuscript received March 15, 2007

Manuscript revised June 10, 2007

State Abstraction-based Synchronization for Thread Libraries

Atsuo OHKI† and Yasushi KUNO††,

Graduate School of Business Sciences, University of Ttsukuba, Tokyo, 3-29-1 Otsuka, Bunkyo-ku, Tokyo 112-0012

Summary
“State Abstraction” is a framework in which states of a data
structure (or an object) are divided into small number of
exclusive sets (“Abstract States,” or AST), and current abstract
state is explicitly managed by the code. In “State Abstraction-
based Synchronization” (or AST-sync), abstract states of the data
structure guarded by a critical region are similarly managed, and
an activities can enter the region only when current state is
included in the pre-specified set. For example, in a bounded
buffer, “get” operation can proceed only in “full” or “mid” state,
but not in “empty” state. AST-sync can express conditional
synchronization in concise and readable manner, and can be
efficiently implemented. Today, thread libraries are widely used
for concurrent programming on shared-memory multiprocessors.
On POSIX thread and other well-known thread libraries,
condition variables are used for conditional inter-thread
synchronization. However in those APIs, complex conditional
synchronization using multiple condition variables are difficult
to understand and error-prone. Hence, programming style with
single condition variable is widely used. Standard
synchronization scheme on Java programming languages is
effectively designed likewise. In this scheme, all threads are
woken up on each event and have to check for their continuing
conditions repeatedly, leading to large overhead. Thus, we are
proposing an alternative conditional synchronization scheme and
associated API for thread libraries based on AST-sync. In our
scheme, every mutex acquisition are guarded by a set of abstract
states on which the processing can continue. In this paper, we
report our kernel-level implementation of AST-sync based on
multiprocessor-capable POSIX thread library bundled in
FreeBSD 6.0-RELEASE, and its performance evaluation using
micro benchmarks. As the result, we have observed 2--3 times
speedups against popular “repeated tests” type synchronization
code for some cases.
Key words:
Conditional Synchronization, Thread Libraries, Condition
Variables, Guards.

1. Introduction

In systems with concurrency, such as multiprocessor
systems or distributed (networked) systems, some
synchronization mechanism is needed to ensure
correctness of entire computation.

In case of (possibly distributed) shared-memory systems,
critical regions are mainly used. In critical regions, only
one activity (process or thread) may enter the region at any
moment. When second activity tries to enter the region,

its execution is automatically delayed until the first
activity leaves the region.

However in some cases, execution of the activity should
be delayed even when no other activity is in the region.
For example, if the region encloses a bounded buffer,
“getter” activity must delay execution when the buffer is
empty. The execution of the activity will be delayed until
any “putter” enters the region, puts data into the buffer
(now the buffer is non-empty), and leave the region. This
kind of synchronization is called “conditional
synchronization” because execution is delayed until some
specific condition (buffer becomes non-empty in the
above example) is established.

Condition variables [4], semaphores [5], conditional
critical region (CCR) [3] are well known standard
mechanisms for conditional synchronization. However,
each of them has their own drawbacks. A semaphore is a
kind of counters, thus it is applicable only when the
“condition” is expressed as a count.

A condition variable represents a “waiting queue” on
which activities can be put to sleep and woken up
afterwards. Each “condition” (e.g. buffer full, buffer
empty and so on) corresponds to one condition variable.
Therefore, the code tends to become complex when
multiple such condition exists. Moreover, if there are
overlaps among conditions, condition variables cannot be
used. More accurately, the implementation must permit
one activity to sleep on multiple condition variable “at the
same time.” However we do not know any condition
variable implementation with such functionality.

A conditional critical region is a critical region associated
with boolean expression (“guard expression”). As the
conditions are directly expressed as boolean expressions,
this scheme is general and comprehensive. On the other
hand, an activity must evaluate a guard at each (trial-)
entry to the region (repeated tests), resulting higher
overhead.

Herlihy [1] has eliminated the overhead by evaluating
guards on transactional memory, but his scheme requires
to implement all memory access for guard evaluation as
transactional memory access. Such strong constraint
limits applicability of his scheme.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

37

The authors have proposed an alternative (simple and
comprehensive) conditional synchronization mechanism,
namely abstract state-based synchronization (AST-sync),
and have been investigating its application to object-
oriented languages[8][9].

Our scheme can also be incorporated to traditional thread
libraries (e.g. POSIX thread) in a portable manner. In [10],
we have presented AST-sync thread API implemented on
top of POSIX API. Using AST-sync, conditional
synchronization among threads can be expressed in a
simple and straightforward manner. However, portable
implementation uses repeated test (as in CCR) internally,
so its performance is similar to CCR.

Therefore, we have developed new, kernel-based
implementation of AST-sync. We have modified
FreeBSD 6.0-RELEASE operating system kernel and
bundled POSIX thread library, so that AST-sync is
directly handled by the kernel. We have measured the
performance of our new implementation, compared them
against traditional schemes, and got the favorable result.

In section 2, we explain concepts of abstract state and
abstract state-based synchronization (AST-sync), along
with the thread library API we have developed. In section
3, we describe our kernel-based implementation of AST-
sync mechanism. In section 4, performance evaluations
and their results are shown. Finally in section 5, the
summary and conclusion is described.

2. Abstract State-based Synchronization and
Thread Libraries

2.1 Abstract States and Synchronization

In object-oriented languages, an object might have several
different states. The state of an object is represented as the
set of instance variable values. However, as an object
corresponds to abstract data type (ADT) value, users of
the object are not concerned with detailed state differences.

For example, in a bounded buffer object, data currently
stored inside and their ordering are part of its state.
However, users of the buffer are almost never concerned
with such details; they are mostly concerned with
“whether the buffer is empty, partially filled, or
completely filled.”
Therefore, we propose to explicitly declare set of those
“states” as in {empty, mid, full} and concentrate
only on difference among those “states.” These “states”
are actually abstractions of the objects' detailed internal

states described above. Hence, we call those “states” as
“abstract states.”

In ordinary object-oriented languages, it is widely adopted
conventions that programmers (or designers of classes)
prepare predicate methods such as isEmpty(),
isFull(). These predicate methods convey information
as to which abstract state the object is currently in. This
scheme has the following drawbacks:

1. Not all boolean-valued method corresponds to abstract

state differences. Therefore, what are the set of abstract
states and how they can be examined is not always clear.

2. It incurs method invocation overhead (method inlining
and other optimization might eliminate this overhead).

3. Boolean expression inside the predicate methods needs
be evaluated every time, even when abstract state has
not changed.

In our proposal, abstract states are represented by small
integer values, and the current state value is stored in the
fixed place of an object. When the object's abstract state
changes, the object is responsible in updating its abstract
state value correctly. From outside the object, this fixed
place can be examined to determine abstract state of the
object in an efficient manner.

So far we have explained the concept of abstract states.
Next we explain abstract state-based synchronization
(AST-sync). In object-based concurrent systems, each
critical region guards corresponding object from
concurrent access.

With the above assumptions, conditional synchronization
will delay entry to the region until corresponding objects'
abstract state becomes the one of specified set. This is
because abstract states captures state difference visible
(what matters) to the user of the object. If a
synchronization condition does not correspond to abstract
state differences, then one should reconsider set of abstract
state for the object. For example, “putter” is delayed when
the buffer's abstract state is full, and can proceed when
the state becomes mid or empty.

Based on the above observation, abstract state-based
synchronization (AST-sync) is formalized as follows:

1. A critical region is associated to an object with abstract

states.
2. Upon entry to a critical region, an activity present set of

abstract states (“entry set”) for which it can proceed. If
the object is not in one of those states, entry is delayed.

3. If the objects' state is (or becomes) contained in the
entry set, the activity enters the region. State of the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

38

object is temporally set to null -- which means that
object is locked and no other activity can enter the
region.

4. When the activity leaves the region, the objects' state is
restored (to previous value, or to new value
corresponding to the state change). At this time, when
some activity is waiting and restored state is in its
waiting set, the activity is woken up and enters the
region. Note that we make no assumption on region
entry orderings when multiple activities are waiting.

When the number of abstract state does not exceed the
number of bits in the hardware word, each state can be
assigned to single bit within the word, and entry condition
can be tested efficiently by “and” mask operation [8]. The
scheme can also be extended to the case where class
inheritance is being used [9].

2.2 POSIX Thread API

As described above, AST-sync is suitable to be used with
thread libraries. In this way, concurrent programs written
in C or C++ languages can obtain full benefits of AST-
sync.

We have based our AST-sync thread API on popular,
widely used POSIX thread [6] API. Firstly, we describe
bounded buffer example in POSIX thread API. In POSIX
thread, critical regions are associated to mutex lock, and
conditional synchronization is implemented using
condition variables. In the following code, mutex is
mutex lock type, and nonfull, nonempty is condition
variable data type.

void put(T p) {
 pthread_mutex_lock(&mutex);
 while([[[the buffe is full]]])
 pthread_cond_wait(&nonfull, &mutex);
 [[[store data to the buffer]]]
 pthread_cond_signal(&nonempty);
 pthread_mutex_unlock(&mutex);
 }
 void get(T *p) {
 pthread_mutex_lock(&mutex);
 while([[[the buffer is empty]]])
 pthread_cond_wait(&nonempty, &mutex);
 [[[extract data and put to *p]]]
 pthread_cond_signal(&nofull);
 pthread_mutex_unlock(&mutex);
 }

When a thread sleeping on a condition variable is woken
up, it seems as if the waiting condition is satisfied and
repeated tests of the conditions are unnecessary. However,
in POSIX specification, some other thread might obtain
lock before the woken thread enters the region, so
repeated test is mandatory (although looping case will be
quite rare).

Using multiple condition variables is apparently complex
and not easy to read. Therefore, many programs use only
one condition variable and pthread_cond_broadcast
for signaling. With broadcast, all threads are woken up,
enter the region one by one and test for the condition. In
most cases, only one thread is successful in the test and
proceeds; others are put to sleep again.

We call such style as “repeated tests.” In repeated tests,
entry to the critical region is controlled solely by the
boolean expression (guard), thus it can be seen as a kind
of CCR implementation. Java have only one condition
variable per lock (=object), thus repeated tests is widely
adopted.

2.3 AST-sync API for Thread Libraries

In this section, we explain AST-sync based thread API we
have designed. API itself is shown in table 1. We
represent abstract states as suggested in the end of the
section 2.1. Therefore, number of abstract states must
not exceed number of bits in an int value (32 or 64). We
think this number as being sufficient, for the number of
“abstract” states (which programmers have to investigate
one by one in their code) should not be so large.

Table 1: AST-sync based thread API
API functio

n
int ast_mutex_init(struct ast_mutex

*m, int state)
int ast_mutex_destroy(struct ast_mutex

*m)
void ast_mutex_enter(struct ast_mutex

*m, int mask)
void ast_mutex_exit(struct ast_mutex

*m, int state)

Initialize
mutex

Destroy
mutex
Enter
regin
Leave
region

In original POSIX thread, evaluation of region entry
conditions (guards) has to be placed inside the critical
region to prevent interference among threads. If repeated
tests are used, repeated entry to the region leads to
increased overhead.

In AST-sync, an entry condition is a set of abstract states,
and is represented by single mask value. Therefore, upon
mutex entry we hand this mask value to the library call
ast_mutex_enter, and synchronization is all handled
within the call.

Upon exit form the region, next abstract state have to be
established, so we hand the new state value to
ast_mutex_exit. Additionally, guarded object have to
be in some well-defined state upon startup, so we hand the
initial state to ast_mutex_init.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

39

Using the designed API, bounded buffer example will be
written as in the following (initial state is assumed to be
S_EMPTY, and buffer size is assumed to be larger than 1).

void put(T p) {
 ast_mutex_enter(&mutex, S_MID|S_EMPTY);
 [[[store data to the buffer]]]
 if([[[the buffe is full]]])
 ast_mutex_exit(&mutex, S_FULL);
 else
 ast_mutex_exit(&mutex, S_MID);
 }
 void get(T *p) {
 ast_mutex_enter(&mutex, S_FULL|S_MID);
 [[[extract data and put to *p]]]
 if([[[the buffer is empty]]])
 ast_mutex_exit(&mutex, S_EMPTY);
 else
 ast_mutex_exit(&mutex, S_MID);
 }

Note that after ast_mutex_enter is returned, buffer is
already in the desired state and can be handled
immediately. On the other hand, new (correct) abstract
state has to be established when releasing the lock through
ast_mutex_exit.

In summary, code among ast_mutex_enter and
ast_mutex_exit forms a critical region, and conditional
synchronization is controlled through state values (or
masks) handed to API.

3. Implementation

We first implemented AST-sync API on top of POSIX
thread API in a portable manner, but its performance is
similar to repeated tests. To attain better performance, we
have included AST-sync functionality in the FreeBSD
kernel. We have based our implementation on FreeBSD
6.0-RELEASE and bundled POSIX-compatible thread
library.

FreeBSD had three implementations of POSIX-compatible
thread libraries, as in the followings:

1. A pure user-level thread implementation (libc_r).
2. An implementation in which kernel threads and user

threads have 1-1 correspondence (libthr).
3. An implementation in which kernel threads and user

threads have M-N correspondence (libthread).

This time, we have chosen (2) as the base of our AST-
sync implementation. (1) is user-level only
implementation and cannot use multiple CPUs, thus was
not suited to our research. (3) have to manage complex
correspondence between user and kernel level thread, so
was not chosen this time.

Below, we explain how we have modified libthr
implementation and kernel functionalities used by this
implementation to incorporate AST-sync.

Figure 1 shows the data structure in the user data space
related to the modification. pthread_mutex is the mutex
data structure of the original implementation. umtx_t
field in the data structure is accessed from the lock service
inside the kernel. Thus, we call umtx_t field as “kernel
lock” field.

Fig.1 User-space Data Structure

pthread_cond is the condition variable data structure of
the original implementation. This structure includes two
umtx_t field, one for exclusive access to pthread_cond
structure, and the other for exclusive access to queue
structure (explained shortly) inside the kernel.

ast_mutex is a new data structure for our AST-sync
implementation. The structure consists of original
pthread_mutex data structure and extra one word for the
current “Abstract State” value.

Figure 2 shows the related data structures in the kernel
space. umtx_chain is a hash table; its entries are head of
double-linked list data structure. When the numbers of
mutex and condition variables are not large, each slot of
the hash table will corresponds to single mutex or
condition variable (or is unused).

Fig.2 Kernel-space Data Structure

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

40

In the original kernel, each element of the double-linked
list included thread ID and address of the kernel lock
(umtx_t data structure) in the user space. To implement
AST-sync functionality, we have added two more field as
in the following:

• ast_bits --- Mask value representing the set of

abstract states for which a thread is waiting.
• owner --- Field for holding a value used while

obtaining umtx_t lock, when the waiting thread is
being woken up.

These fields are used only when a thread enters wait status
using AST-sync functionality. Additionally, one of the
field is used to remove bugs (described later) on condition
variable synchronization. The field stores the count of
signal/broadcast at the conditional wait entry, and is used
to verify that no anomaly in wakeup order exists.

When inserting waiting thread to the double-lined list,
insertion either at the head or at the tail is possible (no
difference in processing cost). Original implementation
has chosen head as the insertion point. This is perhaps
more efficient, because choosing recently slept thread
increases possibility of cache reuse. Thus, we have not
changed the choice.

Kernel call from within thread library uses dedicated
system call _umtx_op(). It had following four
commands in the original kernel:

• UMTX_OP_LOCK --- Locks umtx_t.
• UMTX_OP_UNLOCK --- Releases umtx_t.
• UMTX_OP_WAIT --- Sleeps on umtx_t.
• UMTX_OP_WAKE --- Wakes up threads sleeping on

umtx_t. As a parameter, the number of threads to
wake up is specified.

To implement AST-sync, we have included two additional
commands as in the followings:

• UMTX_OP_WAIT2 --- Sleeps on umtx_t with AST-sync.

As a parameter, state mask is specified.
• UMTX_OP_WAKE2 --- Wakes up thread sleeping on

umtx_t with AST-sync. As a parameter, state value is
specified.

The latter command uses linear search over the double-
linked list and wakes up the first thread which matches
mask condition. We could eliminate linear search by using
more complex data structure, but as a result of evaluation
(described in the following section), overhead of current
simple implementation is negligible with moderate (about
500) numbers of waiting threads.

In the original implementation, pthread_mutex_lock
updated mutex data structure (in the user space) and
acquired umtx_t in one place. However, in AST-sync,
umtx_t is not released but handed to the thread being
woken up. Therefore, we separated function to update
mutex data structure and umtxt_t operation.

After the modification (during evaluation), we have found
that original pthread_mutex_lock algorithms was not
correct. Actually, the code first released umtx_t (to guard
mutex data structure) and then immediately slept on
umtx_t. However, as this “release and sleep” was not
atomic, interference could occur (and had occurred in our
micro benchmark evaluations).

Therefore, we modified this part of code to enter the
kernel while holding the first umtx_t and “release and
sleep” performed indivisibly in the kernel. As the result
of this modification, performance of condition variable
synchronization was improved. This is perhaps due to the
decrease in system calls (from original two to one per
condition variable operation). For the fair comparison, we
have used this “improved” version in the following
evaluation.

Table 2: # of modified lines
File # Modified lines #Total lines

thr_mutex.c
thr_cond.c
thr_umtx.c
thr_umtx.h

60
16
22
3

1678
344
80
87

kern_umtx.
c
(kernel)

181 772

We have modified four files among 60 files in the thread
library (libthr), and one file in the FreeBSD kernel.
Details are shown on table 2. Workload was full three
days by one of the authors, including reading relevant
codes in the original library and kernel code. Additionally,
the bug explained above required one week to track and
fix.

4. Evaluation

4.1 Micro Benchmark

To evaluate the modified library, we have measured
performance of following micro bentimarks:

• Standard bounded buffer, which have three states
{empty, mid, full}. Putter threads are delayed
while the state is full, and getter threads are delayed
while the state is empty.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

41

• Bounded buffer with a watermark, having states
{empty, midlow, midhigh, full} (clients can
also see if the buffer is filled halfway or not). In this
benchmark, the third kind of thread, namely
“marginal putter” is added. Marginal putter threads
can proceed only when the status is either empty or
midlow.

In each of the cases, one buffer with the capacity of ten
data is used, while the numbers of each kind of threads are
chosen to represent typical conditions for real systems.

Following implementations of the bounded buffer are
used:

• Condition variable-based implementation ---
Implementation with the framework presented in
section 2.2. As explained previously, condition
variables cannot be used when there are overlaps
among conditions. Thus, wartermarked buffer
cannot be implemented in this scheme.

• Repeated tests --- Uses one condition variable; all
threads are woken up (broadcast) on every state
changes and tests conditional expression repeatedly.
(Today's widely used scheme)

• Portable implementation of AST-sync --- AST-sync
API is implemented on top of POSIX Thread API.
Repeated tests are used internally.

• Kernel implementation of AST-sync --- The core of
AST-sync API is implemented inside the kernel.
(The one we have explained in the previous section.)

For each of the cases, we have measured performance for
both small and large number of waiting threads. The
former is represented by the case in which the numbers of
getter and putter threads are the same, while the latter is
represented by the case in which only one getter thread
exists.

In the following, (NwxCw:NrxCr) means Nw putter threads
each putting Cw data combined with Nr getter threads each
getting Cr data. For watermaked buffer, (NwxCw:NvxCv:
NrxCr) means likewise, with Nv and Cv representing the
number and put count for marginal putter (refrain from
putting when the buffer is more than halfway filled).

Measurement was done in Pentium II 350MHz 2CPU
machine. GCC 3.4.4 with -O4 optimization is used for
compilation. 100 measurements were performed for each
case. In the tables 3-6, average of 100 measurements and
standard deviation (in parenthesis) is presented. All time
units are in seconds.

Table 3: Bounded buffer with small # of waits (500x100:500x100)

Kind. impl. User time Syst. time Elaps. time
Cond. vars 1.273

(0.100)
12.277

 (0.176)
7.16

 (0.100)
Repeated tests 3.133

(0.942)
34.181

(11.461)
20.26

(6.805)
Portable AST 3.080

(0.881)
33.637

 (10.097)
19.91

(6.012)
Kernel AST 0.601

(0.071)
8.269

 (0.264)
6.41

(0.203)

Table4: Bounded buffer with large # of waits (500x100:1x50,000)
Kind. impl. User time Syst. time Elaps. time
Cond. vars 1.081

(0.087)
9.872

 (0.244)
5.80

(0.106)
Repeated tests 2.713

(0.254)
28.684

 (2.230)
16.99

(1.356)
Portable AST 2.785

(0.215)
29.366

 (1.890)
17.40

(1.128)
Kernel AST 0.530

 (0.060)
7.340

(0.129)
5.75

 (0.083)

Table5: Watermarked buffer with small # of waits
(250x100:250x100:500x100)

Kind. impl. User time Syst. time Elaps. time
Repeated tests 4.161

 (1.065)
46.892

(13.262)
27.83

 (7.865)
Portable AST 3.934

(0.894)
44.130

 (11.312)
26.19

 (6.698)
Kernel AST 0.594

(0.073)
8.261

 (0.229)
6.38

(0.169)

Table6: Watermarked buffer with large # of waits
(250x100:250x100:1x50,000)

Kind. impl. User time Syst. time Elaps. time
Repeated tests 3.158

 (0.249)
33.392

 (2.216)
19.82

(1.328)
Portable AST 2.924

 (0.198)
30.858

 (1.562)
18.27

(0.930)
Kernel AST 0.539

(0.060)
7.432

 (0.126)
5.83

 (0.080)

From the tables, we can observe the followings:

• Performance of repeated tests and portable AST is
largely equivalent. This is the expected result, as
portable AST is implemented using repeated tests
inside.

• Comparing condition variables and kernel AST,
kernel AST is a bit superior both in user time and
system time. This might come from the fact that both
user code and kernel code is simpler in kernel AST.

• In spite of the above, superiority of kernel AST
decreases when the numbers of waiting threads are
large. This might come from the fact that current
kernel AST implementation uses linear search over
double-linked list on conditional wakeup, meaning
search overhead proportional to the number of
waiting threads. (Note: data on table 4 is uniformly
smaller compared to table 3 because the number of
getter threads is decreased from 500 to 1.)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

42

• Compared to kernel AST, repeated tests (corresponds
to CCR) and portable AST incurs four to five times
overhead. This is the expected result, as kernel AST
wakes up only one thread which is guaranteed to
proceed, while repeated tests or portable AST wakes
up all (500) waiting thread to perform conditional
expression evaluation or bit mask test, which will
evaluate to false on most cases.

• In watermaked buffer cases, repeated tests and
portable AST shows performance degradation. This
is probably due to the fact that more states have to be
checked and kind of threads are increased. In
contrast, kernel AST shows no performance
degradation in spite of the above facts.

Also note that, condition variable-based synchronization
cannot be used for overlapped conditions (as in
wartermarked buffers), but AST-sync does not have such
restriction.

4.2 Data-Thread Correspondence

To examine more details, we have assigned numbers 0-
99999 to the data transferred (in time order) and numbers
0-499 to getter and putter threads, and plotted points
indicating which getter and putter handled which data (for
“small number of waits” cases). Figures 3, 4 and 5 shows
plots for condition variables, repeated tests and kernel
AST respectively. In each, vertical axis corresponds to
data number and horizontal axis corresponds to thread
number (left half shows putter status and right half shows
getter status).

Examining these plots, repeated tests shows the tendency
of randomized thread assignment because all threads are
woken up and fight for control for each datum. Condition
variables show more orderly correspondence and locality,
but still show some randomness. On the contrary, kernel
AST shows good locality, which indicates decreased inter-
thread contentions.

Fig.3 Thread # versus data # plots (Cond. vars)

Fig.4 Thread # versus data # plots (Repeated tests)

The reason for such locality can be explained as follows.
When a putter (call this thread “A”) is suspended due to
full buffer, one of the getters (call this thread “B”) is
selected and resumed, which will eventually empty the
buffer and suspends. Then, last putter suspended (thread
“A”) is resumed. When “A” blocks again, “B” will be
resumed again. This pairing will continue until one of

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

43

them finishes its job or some global randomization effect
(e.g. process swap out or such) occurs.

This kind of coroutine-like behavior leads to good locality
and better performance. However, note that the code itself
is general one and no thread paring is explicitly coded.

Also note that the above effect is the result of LIFO nature
(suspended thread is inserted to the head of ready queue)
of thread scheduler used for the experiments.

Fig.5 Thread # versus data # plots (Kernel AST)

4.3 Benchmark with More Logical CPUs

To investigate cases for larger number of CPUs, we have
also conducted measurements on Pentium D 3.2GHz
2CPU machines with HyperThreading off (the number of
logical CPUs is 2) and on (the number of logical CPUs is
4). The results are shown on tables 7 and 8.

When the numbers of logical CPUs are 2, obtained data
are mostly similar to the above result. However, data for 4
logical CPUs shows different trends from the above result
when the number of waiting threads are small (table 7) and
large (table 8).

Small number of waiting threads:
• For condition variables, repeated tests and portable

AST, 3-4 times increase in system time is observed.
On the contrary, kernel AST show only 20% increase
in system time.

• Repeated tests and portable AST show 50% increase in
user time, while on condition variables and kernel AST
only slight increase is observed.

• For condition variables, repeated tests and portable
AST, 100% (twice) increase in elapsed time was
observed. On the contrary, kernel AST showed only
10% increase in elapsed time.

Table7: 2 vs 4 CPU: bounded buffer with small # of waits
(1,000x1,000:1,000x1,000)

Kind. impl. and
CPUs

User time Syst. time Elaps. time

2 5.189
 (0.206)

59.255
(1.250)

33.58
(0.757)

Cond. vars

4 6.252
(0.448)

192.580
(11.929)

65.82
 (3.523)

2 6.658
(1.267)

85.804
(18.400)

49.19
(10.964)

Repeated
tests

4 10.267
 (1.305)

292.771
 (37.942)

105.80
(12.686)

2 6.884
(1.508)

86.683
(23.160)

50.09
(13.813)

Portable
AST

4 10.277
 (1.214)

290.425
(34.602)

104.98
 (11.606)

2 2.110
(0.113)

45.436
(1.634)

31.00
(0.874)

Kernel
AST

4 2.200
(0.126)

54.224
 (1.002)

33.01
 (0.519)

Table8: 2 vs 4 CPU: bounded buffer with large # of waits
(1,000x1,000:1x1,000,000)

Kind. impl. and
CPUs

User time Syst. time Elaps. time

2 4.763
(0.205)

44.719
 (1.754)

26.46
 (1.044)

Cond. vars

4 5.581
(0.226)

148.897
 (3.933)

53.02
(1.271)

2 14.599
(1.422)

196.267
(19.348)

116.47
 (12.232)

Repeated
tests

4 6.892
(0.252)

208.172
 (4.350)

76.04
(1.336)

2 14.044
 (1.223)

185.283
 (15.694)

110.19
 (9.840)

Portable
AST

4 7.013
 (0.250)

206.813
 (5.044)

75.59
 (1.538)

2 2.022
 (0.125)

37.319
(0.622)

30.40
 (0.412)

Kernel
AST

4 1.953
 (0.121)

56.588
 (0.371)

35.22
 (0.211)

Large number of waiting threads:
• For condition variables, the trends are the same as in

the cases for small number of waiting threads.
• For repeated tests and portable AST, when compared

against the cases for small number of waiting threads,
system time increases slightly, user time decreased to
half, and elapsed time decreased by 20%-30%.

• For kernel AST, when compared to small number of
waiting threads, user time remains the same, system
time increases by 50%, elapsed time increases by 20%.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

44

On repeated tests and portable AST, number of waiting
threads had the large effect. This might be interpreted as
follows. When the number of waiting threads is small,
upon thread scheduling, probability of “bad luck” (putter
scheduled on a full buffer, or getter schedule on empty
buffer) will be 0.5 because of the symmetry of the
situation. When the number of waiting thread is large, the
sole getter will always have his work and runs at his full
speed, thus loss of throughput due to “bad luck” does not
occur, leading to better performance. Decreased user time
on small number of waiting threads also supports our
guess.

For condition variables implementation, it was surprising
that we observed large increase of system time uniformly.
It might be due to useless contention inside the kernel, but
we have not found specific reason for this yet.

In total, kernel AST implementation had uniformly
minimal elapsed time in a stable manner (standard
deviation of measurement was also very small). When the
number of logical CPU is increased, kernel AST
implementation observed no user time increase. System
time increased moderately because of increased kernel
workloads, but this increase did not affect much on the
elapsed time.

5. Summary

In this paper, we have added AST-sync, a new and easy-
to-use conditional synchronization mechanism, onto
POSIX compatible multiple CPU thread library on
FreeBSD 6.0-RELEASE. Two versions of AST-sync
implementation were developed. One is portable AST
implementation, which builds on top of existing POSIX
API and need no kernel modification. The other is kernel-
based AST implementation and required moderate effort
for kernel modification. We have evaluated our
implementations against existing scheme (condition
variables and popular repeated test-style scheme) using
micro benchmarks. As the result, kernel-based AST
implementation uniformly had the highest performance,
good thread locality and was stable (no large performance
degradation) when the number of logical CPUs is
increased.

References
[1] Tim Harris, Keir Fraser, Language Support for Lightweight

Transactions, OOPSLA'03 Proceedings, pp. 388-402, 2003.
[2] Maurice Herlihy, A Methodology for Implementing Highly

Concurrent Data Objects, TOPLAS, vol. 15, no. 6, pp. 745-
770, 1993.

[3] C. A R. Hoare, Monitors: Toward a theory of parallel
programming, International Seminar on Operating System

Techniques, A.P.I.C. Studies in Data Processing, vol. 9,
Academic Press, pp. 61-71, 1972.

[4] C. A. R. Hoare, Monitors: an operating system structuring
concept, CACM, vol. 17, no. 10, pp. 549-557, 1974.

[5] E. W. Dijkstra, The Structure of THE Multiprogramming
System, CACM, vol. 11, no. 5, pp. 341-346, 1968.

[6] ISO/IEC 9945-1:1996 Information Technology -- Portable
Operating System Interface (POSIX) -- Part 1, IEEE, 1996.

[7] James Gosling, Bill Joy, Guy Steele, Guy L. Steele, The
Java Language Specification, Addison-Wesley, 1996.

[8] Yasushi KUNO, Atsuo OHKI, p6: A State Abstraction-
Based Parallel Object-Oriented Language (in Japanese),
IPSJ Journal, vol. 38, no. 3, pp. 563-573, 1997.

[9] Yasushi Kuno, Solving Inheritance Anomaly Problems by
State Abstraction-Based Synchronization, in Jean-Paul
Bahsoun, Takanobu Baba, Jean-Pierre Briot, Akinori
Yonzezawa eds., Object-Oriented Parallel and Distributed
Programming, pp. 167-186, Hermes, 2000.

[10] Atsuo OHKI, Yasushi KUNO, Incorporating State
Abstraction-Based Synchronization into Thread Libraries
(in Japanese), IPSJ Transactions on Programming, vol. 17,
no. SIG 11 (PRO 30), pp. 28-37, 2006.

[11] Butler W. Lampson, David D. Redell: Experience with
processes and monitors in Mesa, CACM, vol. 23, no. 2, pp.
105-117, 1980.

Atsuo Ohki received the B.S.
and M.S. degrees in Engineering
from University of Tsukuba in
1979 and 1981, respectively.
During 1981-1989, he worked
as an assistant in faculty of
engineering, Shizuoka
University. He now works as a
lecturer at Graduate School of
Business Sciences, University of
Tsukuba, Tokyo.

Yasuishi Kuno received the
B.S. , M.S. and Doctoral degrees
in Computer Science from
Tokyo Institute of Technology
in 1979, 1981 and 1986,
respectively. During 1984-1989,
he worked as an assistant in the
Department of Information
Sciences in Tokyo Institute of
Technology. He now works as a
professor at Graduate School of
Business Sciences, University of

Tsukuba, Tokyo.

