
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

74

Manuscript received June 5, 2007

Manuscript revised June 20, 2007

Design of an Efficient Security Protocol Analyzer

Shinsaku KIYOMOTO†, Haruki OTA†, and Toshiaki TANAKA†

†KDDI R & D Laboratories Inc. Information Security Laboratory

2-1-15 Ohara Fujimino-shi Saitama, 356-8502, JAPAN

Summary
In this paper, we present a efficient security protocol analyzer to
verify cryptographic security protocols. Our analyzer verifies
security protocols based on notions of provable security. The
analyzer only checks whether the core properties of security
protocols satisfy the notions, making it faster than previous tools.
The analyzer automatically checks whether authentication and
key distribution protocols satisfy definitions such as Secure
Mutual Authentication, Semantic Security, and Forward Secrecy.
A user can design and evaluate security protocols by using our
analyzer, according to the condition that the protocol will be used.
Furthermore, our analyzer has a sophisticated GUI to set security
protocols to be evaluated. Thus, the analyzer is useful for
constructing and checking security protocols for many services.
Key words:
Security Protocol, Automatic Verification, Provable Security

1. Introduction

Entity authentication protocols and key distribution
protocols are core technologies for secure services in
distributed systems. Unfortunately, cryptographic protocols
are currently designed through a process of trial and error,
and security flaws in a protocol are difficult to locate using
only a designer's review. Thus, the history of security
research has many examples of security protocols with
security flaws. For example, Denning and Sacco found a
security flaw in the Needham-Schroeder key distribution
protocol, which allows an intruder to re-use a previous
session key as a new session key [1].
Needham et al. have emphasized the need for automatic

verification methods for cryptographic protocols [2][3],
accordingly, various security protocol analyzers have been
proposed. Many protocol analyzers are based on formal
methods, where the analyzer compares possible states of a
security protocol with pre-defined states such as vulnerable
states and states based on intruder models. Such analyzers
usually take a long time to evaluate a security protocol.
Furthermore, the computational cost and required memory
space may grow in proportion to the number of protocol
flows and the states. Therefore, the optimization of
analyzer logic and protocol descriptions has been actively
discussed by researchers in the area of logic-based
automatic verification.

Bellare et al. have proposed another method for proving
protocol security. Their proof is based on provable security
in cryptology; thus, if a protocol can be proven secure in a
given model, then the protocol is guaranteed to have none
of the security flaws addressed by that model. By using the
essence of Bellare's proposal, we can describe efficient
rules for automatic verification will be described. The
essence of their work is also useful for constructing
security protocol analyzers; the difficulty lies in translating
their concepts into rules that can be interpreted by a
computer.
In this paper, we present a efficient security protocol

analyzer that enables to verify cryptographic security
protocols and describe implementation results of the
analyzer.

1.1 Related Work

Protocol verification methods can be categorized into
those based on formal verification (see[4] for a survey) and
those based on provable security.

1.1.1 Formal Verification

As an example of the former, in the Dolev and Yao model

[5] an intruder is a person with complete control over the
communication channel: the intruder can eavesdrop on all
traffic and can block or send messages to any entity.
However, they did not consider the case where an intruder
had knowledge of system secrets. Millen proposed a
protocol verification system [6] based on the Dolev-Yao
model, which uses an exhaustive search of the
communication state space. This tool has never found an
undefined attack on a cryptographic protocol. A similar
tool was proposed by Longley and Rigby [7].
The NRL Protocol Analyzer [8] is also based on the

Dolev-Yao model, and uses a similar approach to Millen
and Longley-Rigby tools. This analyzer verifies the ability
to reach insecure states in a security protocol, and has been
used to find security flaws [9][10]. However, the analyzer
cannot fully prove security, although it can provide proof

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

75

of insecure states being reachable or not. Murϕ is an
automatic verification tools proposed by Mitchell et al.
[11] . Murϕ searches for insecure points within the state
space using a model checker.
A different approach, based on formal verification, is to

use model logics, similar to the analysis of the evolution of
knowledge and belief in distributed systems. The
best-known example was developed by Burrows, Abadi,
and Needham, and is commonly known as BAN logic [12].
In the analysis, an initial set of beliefs is adopted, and
another set of beliefs is adopted when a message is
received in a protocol. If the resulting set of beliefs is
acceptable, then the protocol is declared to have been
proven correct. The logic cannot be used to prove secrecy,
only authenticity, because the logic does not attempt to
model knowledge [13]. GNY [14] logic and SVO [15]
logic are related to BAN logic and were constructed with
automatic verification in mind.
Kindred and Wing were the first to propose an automatic

verification tool based on BAN logic [16]. Mathuria et al.
proposed GNY-based automatic verification [17]. Paulson
presented a verification tool [18] based on SVO logic. An
automatic verification tool named C3PO also uses SVO
logic [19]
Improving the efficiency of logic-based automatic

verification is still being studied; methods such as Strand
Space [20], Athena [21], STA [22], TRUST [23], OFMC
[24], and ASPASyA [25] are a few currently being
developed.
Yet another approach to applying formal methods is

modeling a protocol as an algebraic system [26]
[27].Toussaint proposed an algebraic model where the
words describing a protocol are expressed by an
isomorphism between a free algebra and a crypto-algebra.
Meadows proposed an algebraic model to improve the
NRL Protocol Analyzer [28].
Roscoe et al. proposed an approach based on the process

algebra CSP [29][30]. A protocol translation tool was
proposed to use a CSP description [31] and automatic
verification tool [32] using a model checker FDR were
proposed. CAPSL and MuCAPSL are automatic
verification tools based on a intermediate language CIL
[33].
Gordon and Abadi proposed the S-π calculus [34], in

which an intruder is not explicitly modeled; instead, an
intruder is represented as an arbitrary S-π calculus process.
LOTOS defined a protocol as a state diagram and

investigated reachability analysis techniques [35].

1.2 Provable Security

Moving to the latter category, notions of entity
authentication and key distribution with provable security
were initially proposed by Bellare and Rogaway. They
proposed a two party case [36] as well as a three-party case

[37] wherein a trusted third party distributes a session key
to each entity. Their method of proving the security of
protocols was based on the method used for proving
semantic security of encryption.
Their models (BR-models) were adapted to the public key

setting by Blake-Wilson et al. [38][39][40]. Later, Bellare,
Pointcheval, and Rogaway proposed the notion of security
for password-based authentication and key distribution
[41]. Shoup and Rubin [42] adapted a new security model
to BR-models, which is used for smart-card-based
protocols. Details of these models will be shown in later
sections.
Bellare, Canetti, and Krawczyk proposed a different

approach to provable security for key-exchange protocols
[43]. Their approach is based on theory from the area of
multi-party computation. In this model, an idealized
version of the protocol is defined, and it is proven that any
real world adversary cannot be as powerful as an ideal
adversary. This approach was subsequently generalized
and applied to many cryptographic settings; this
generalization is known as Universal Composability. M.
Backes et al. have discussed how to apply the concept of
proofs in Universal Composability to the Dolev-Yao model
[44][45][46][47].
Shoup presented a framework that follows the basic

simulatability approach as in Bellare-Canetti-Krawczyk
approach, but introduces significant modifications in order
to be applicable to other cryptographic protocols [48].
Canetti and Krawczyk presented a formalized model [49]

for analyzing key exchange protocols that combine the BR
models and the Bellare-Canetti-Krawczyk model.
These approaches are still being studied. The BR models

can separate security notions according to an adversary's
ability (see 2.2), so we have chosen to adopt them.

1.3 Our Contribution

Despite all this research, no automatic verification tools
based on notions of provable security have been proposed
to date. Furthermore, the results of existing analyzers
either do not directly correspond to security notions for
security proofs, or no rules corresponding to security
notions such as Weak Forward Secrecy exist on the
analyzers.
This paper proposes a verification tool based on security

notions in BR models. The main difficulty in designing the
verification tool was how to extract common verification
rules from proofs of security protocols, since proofs
traditionally have been customized for each protocol. The
key materials for constructing proofs are features of data
such that data used for authentication is probabilistically
unforgeable by an adversary. We identify the essential
parts of the proofs and construct verification rules based on
the security notions; for example, in authentication
protocols, input data which changes an oracle to an accept

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

76

state is considered essential. Bellare's proof verifies
whether the data has sufficient randomness and security, so
our verification rules also check the same properties.
Some existing analyzers need to define methods of

attacks for analysis; in constant, our analyzer models an
adversary using queries that will be introduced later
session, and needs no rules for specific attacks. Some
existing analyzers check whether attacks are possible, but
our analyzer checks whether a security protocol is secure
under an adversarial model that includes any attacks.
Previous analyzers incurred a heavy computational cost

and large rule sets to complete verification of security
protocols. Our analyzer only verifies that core properties of
security protocols satisfy the conditions of the security
proofs. Thus, computational costs such as transaction time
and required memory size will be reduced.
Furthermore, we designed our analyzer such that a user

could operate it easily without any special skills. Our
analyzer has a sophisticated GUI to input security
protocols.
We believe our analyzer is useful for constructing and

checking security protocols for many services.

1.4 Organization

The rest of the paper is organized as follows. In Section 2,
we introduce models of provable security and security
notions. Section 3 describes the basic design of our
analyzer. Section 4 provides details of implementation, and
Section 5 shows our evaluation results. Finally, we present
some considerations and conclude this paper in Section 6.

2 Model of Provable Security for Security

Protocols

2.1 Adversary Model

The communication model proposed by Bellare and
Rogaway is independent of the specification of protocols,
and the simulation of communication is constructed using
oracles which are defined for each entity and each session.
An adversary controls all communications and interaction
between a set of oracles. An oracle of entity U in session i
is defined as Πi

U. The following queries are available to
the adversary in the Bellare-Rogaway model:

- (, ,)Send U i M
 This query allows the adversary to send message M to

an oracle Πi
U. The oracle Πi

U returns the next message
of the protocol and the result to the adversary. The
result is one of three possible results, Accept, Halt, or *.
Accept means that the authentication is successful
and/or session key is successfully computed. Halt
means that the authentication or computation of session
key has failed and/or the message M is invalid, i.e. not

defined as part of the protocol specification. The value
* is supported to suggest, for message M, that the
oracle outputs no result.

- Re (,)veal U i
This query allows the adversary to obtain a session key
without the target party. The oracle i

U∏ returns the
accepted session key to the adversary.

- (,)Corrupt U K
The adversary can know U’s current long-lived key
(LL-key) of U; this key is also known as a permanent
key of U, and change it to K. The adversary also
obtains the internal state of U by using this query.
After using a Corrupt query, the adversary cannot use
any Send query to i

U
∏ and/or the partnering oracle.

- (,)Test U i
 When an oracle Πi

U receives this query, the oracle flips
a coin { }0,1 .b ∈ If 0b = , then the oracle returns a
session key; otherwise, the oracle returns a random
string that has the same length and the same
distribution as the session key.

2.2 Definition of Protocol Security

In this subsection, we introduce security notions
regarding authentication and key distribution protocols.
The definition of secure authentication proposed by
Bellare and Rogaway is as follows:

Definition 1. Secure Mutual Authentication
If oracles

1

i

U
∏ and

2

j

U
∏ accept in a Matching

Conversation and the probability that one oracle (or both)
accepts without another oracle engaged in a Matching
Conversation is negligible, then the protocol is a secure
mutual authentication protocol.
A detailed definition of Matching Conversation may be

found in Bellare's paper (see [36][38]).
Under the Matching Conversation condition, the

adversary transfers communication between the oracles
honestly, without any interception and/or alteration. Thus,
the adversary's strategy is either to guess the correct
authentication code or to divert an expired or fresh
authentication code that is received from a non-partnering
entity. The probability that an oracle accepts without a
Matching Conversation is defined as
P r N o M a tch in gS u cc −⎡ ⎤⎣ ⎦ .If Pr No MatchingSucc −⎡ ⎤⎣ ⎦ is negligible,
the security of the protocol can be proven under the
assumption that a primitive function is secure.

Definition 2. Semantic Security of key distribution
protocols
If an adversary exists and is unable to distinguish the

session key from an independent random value with

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

77

non-negligible probability, then the protocol satisfies
semantic security as a key distribution protocol.

Semantic security includes many security notions based on
the adversary's ability, i.e. which queries an adversary can
use. We define three security notions for the Semantic
Security based on BR models. To separate models, the
analyzer can verify each adversary's model and output
whether a protocol is secure in that model. Consequently,
we can verify that the protocol is secure in an environment
assumed an adversary's ability. For example, if we assume
that the LL-key is secure in a real environment, we need
not to consider forward secrecy notions.

The notion of security against known-key attack (KKA)
assumes an adversary can obtain a previous session key or
replace a known session key. An adversary of forward
secrecy can also obtain an LL-key in addition.

The notion of forward secrecy is separated into two
notions, weak Forward Secrecy (w-FS), and strong
Forward Secrecy (s-FS), based on whether an adversary
can obtain the LL-key when a protocol has not yet finished.
Definition 2.3.2 means that the adversary can steal an
LL-key during the processing of the protocol. A protocol
that has s-FS is more secure than a protocol having w-FS.

Definition 2.1. Basic Adversary Model

If an adversary that uses the target party as an
uncorrupted party and other parties as uncorrupted oracles
exists, and if the protocol satisfies semantic security
against the adversary, then the protocol is secure against
the basic adversary model. In this model, an adversary can
use Send and Test queries, but cannot use Reveal and
Corrupt queries.

Definition 2.2. Secure against Known-key Attacks

If there exists an adversary that knows any expired
session keys of the target party and any session keys of
other parties, and if the protocol satisfies semantic security
against the adversary, then the protocol is secure against
known-key attacks. In this model, an adversary can use
Send, Test, and Reveal queries, but cannot use the Corrupt
query.

Definition 2.3.1. weak Forward Secrecy

If there exists an adversary that knows any expired
session keys of the target party and any session keys of
other parties: if the adversary can know the LL-key after
both entities are terminated; and if the protocol satisfies
semantic security against the adversary, then the protocol
has weak Forward Secrecy (w-FS). In this model, an
adversary can use Send, Test, and Reveal queries. The
adversary may also use a Corrupt query to the partner
oracle of target oracle after both oracles are terminated.

Definition 2.3.2. strong Forward Secrecy
If a protocol has forward secrecy against an adversary

who can know a LL-key during the execution of a key
exchange protocol, and get any expired session keys of the
target party, and get any session keys of other parties, then
the protocol has strong Forward Secrecy. In this model, an
adversary can use all queries, and Corrupt query can be
sent to the partner oracle of a target oracle before both
entities are terminated.

Furthermore, we define a security notion for key

distribution protocols based on unknown key-share attacks,
as proposed by S. Blake-Wilson et al.[50]. In this model,
an adversary attempts to distribute different keys to each
entity.

Definition 3. Secure against Unknown Key-Share Attacks
If the probability that oracles

1

i

U∏ and
2

j

U∏ accept and
output different session key(s) is negligible, then the
protocol is secure against unknown key-share attacks
(UKSA). This includes the case where one entity outputs
no session key.

3 Design of Analysis Method

Our analyzer checks authentication and key-distribution
protocols based on rules that take into account provable
security. Existing security analyzers have rules that define
all secure/insecure conditions, and the analyzer has to
verify that all flows and/or all possible states of the
protocols are secure. Thus, optimization of rules and
protocol descriptions is an important issue for these
analyzers. Our analyzer, on the other hand, only checks
essential transaction data, selected to satisfy provable
security.
An overview of the adversary of security protocols is

shown in Figure 1. In a provably-secure protocol, two kind
of adversaries are assumed. One adversary receives either
a session key or a random string, and must distinguish the
two. The other adversary aims to make the target entity
accepted by a flow.

Fig. 1 Adversary of Security Protocols

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

78

In the discussion of the latter adversary, we focus on the
protocol flow sent just before the entity changes to an
accepting state. The adversary can obtain a
polynomial-bound data set to eavesdrop on protocol flows
and send flows to any entity. The data set includes keys
such as previous session keys and LL-keys depending on
the adversary's models. The adversary also uses some
cryptographic function f which also depends on the kind of
adversary.

Protocol specifications decide the data set that an
adversary can obtain. Thus, the data set given to the
adversary affects the probability that the adversary is
successful. The analyzer first collects associated (essential)
data from the protocol specification, and then computes the
probability of a successful attack by the adversary.

Firstly, our analyzer extracts from a security protocol the
data sent in each flow, labels the data with some properties,
then extracts the essential data and verifies it with the
analysis rules. If the essential data satisfies the rules, the
protocol is secure.

The concept of checking essential data is based on proofs
of security protocols. The security does not depend on
other data or flows, only on the essential data. Thus, our
analyzer is faster than previous analyzers.

In addition, the analyzer calculates the probability of a
successful attack, and compares this to a configured
security parameter. Thus, the analyzer can verify that the
lengths of the essential data and the LL-key are large
enough.

An overview of our analysis process follows: a user
inputs a security protocol that consists of some flows,
where each flow contains some data. The analyzer first
extracts each chunk of data info and labels it with some
properties, including the flow from which it originated, as
shown in Figure 2. Then, the analyzer verifies the data
according to the analysis rules.

In this section, we present our analysis methods, which
are defined using the security notions discussed in the
previous section.

3.1 Preliminary

Before the discussion, we describe the basic component
of analysis rules.

3.1.1 Ideal Function f

In our analyzer, an ideal function f is an important factor
for protocol verification. To verify the protocol, we assume
that a security protocol uses secure cryptographic
algorithms, and transform the algorithms into a function f
that is an ideal cryptographic algorithm. The function f is
an ideal pseudorandom function which takes data and a
key as input, and outputs a string. The output is uniformly
selected from a domain, and the same input and key
generate the same output by the function f.

Fig. 2 Transformation from Specification to Analyzer’s Data Format

For example, if all data has the same length, the

adversary's job is to distinguish an output from a random
string, and the adversary does not know the randomly
selected input or a key, then output is indistinguishable
from a random string.
Provably-secure public-key cryptographic algorithms

provide different outputs even though the input and the key
is same. However, we treats all algorithms as though they
were the ideal function f; that is, we describe all algorithms
with a uniform function.
We also model cryptographic functions as ideal functions

where the function is nested. If a function is nested---that
is, the function has the outputs of other functions as
inputs---the analyzer roughly evaluates the function as a
composite function. For example,

{ } { }' '(()) () : 0,1 0,1 , , ()m nf f x f n x f x⋅ → ≥ ⋅ ≥
is evaluated as

{ } { }() () : 0,1 0,1m nF x F ⋅ →
where the analyzer calculates the probability of successful
attacks. Thus, the analyzer cannot compute the exact
advantage of adversary, but it is useful for addressing the
correctness of the protocols on an abstract
(protocol-specification-based) level. Furthermore, this
ideal model assumes every function is a random function;
thus, a gap between proofs of the protocol and analyzer's
evaluation result may exist. We discuss this in Section 6.
In our analyzer, a user defines a security parameter. The

security parameter is defined based on the security
requirements of the protocol. If the security parameter is k,
the probability of a successful attack is at most () 2 kp k −⋅ ,
where ()p k is a polynomial. The security parameter is
compared to the bit length of X, essential data such as
outputs of the function f, to verify that a protocol is
computationally secure.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

79

Table 1: Example of Transformation Table
Symmetric ECC-based RSA,DSA

56 112 512
80 160 1024

112 224 2048
128 256 3072
192 384 7680
256 512 15360

The length of a public/private key is mapped to the length

of a secret key using a transformation table; see Table 1.
The table may have to be changed as attacks on either class
of primitives improve.

3.1.2 Data Properties

Data properties are used in analysis rules. We define
some common data properties as follows:

- Sent : the data was sent in a previous flow.
- Included: the data is included in a flow; for example, as
data, as a key, or as data input to a function.
- Temporary: the data is created dynamically; for example,
a random number or a temporary public-key pair.
- Protected: the data is covered by the message
authentication code or digital signature, the data is
encrypted by a secret key, or the data that is inputted to a
function which inputs are the data and data that is send
with Protected and Concealed in a previous flow. It is
computationally infeasible for an adversary to forge this
data.
- Concealed: the data is encrypted by a LL-key (a secret
key or a public key) and a random number that is sent with
Protected and Concealed, and the data is not transmitted as
plaintext. It is computationally infeasible for an adversary
to obtain the data.

3.1.3 Additional Rules

Furthermore, the analyzer checks these additional rules as
a basic verification:
- a temporary public keys are Protected when they are sent.
- all session keys are longer than the security parameter.
- all LL-keys are longer than the security parameter.

3.2 Verification of Authentication Protocols

Generally speaking, “authentication” means verifying
that data calculated using an LL-key or related key, such as
an authentication code, is correct. An adversary's goal is to
send a correct authentication code (AC) to a target entity,
and change the entity to the accepting state. The
adversary's strategy is either to guess the correct
authentication code or to reuse another authentication code.
Thereby, the adversary's data set is previous ACs. Reuse of
an AC means the adversary previously obtained the AC,
and this condition implies replay attacks.

Now, we assume the authentication code is computed
using the ideal function f. The probability that an adversary
succeeds in guessing the correct authentication code
depends on the length of LL-keys and the length of the
authentication code. The probability that the reuse is
successful depends on the randomness of the input data to
the function f. If the input data is longer than the security
parameter and is randomly selected, then the adversary
cannot reuse because of the limitation on the adversary's
memory. These two conditions imply that an output of the
function f is indistinguishable from a random string.
With regards to authentication, we add the condition that

the random data have to be generated by a target entity,
because the target entity can verify the data and AC.
The analyzer evaluates the security of authentication

protocols using the following steps. The analyzer selects a
flow just before each entity changes to the accepting state,
and then checks that the flow includes protected data for
authentication such as a message authentication code,
digital signature, and symmetric encryption. The analyzer
also checks that the data is a random data generated by the
target entity, and is longer than the security parameter.

3.3 Verification of Key Distribution Protocols

In this subsection, we propose analysis rules for key
distribution protocols. Our analyzer separately checks six
security notions: Semantic Security on the basic adversary
model, Secure against UKSA, Secure against KKA, basic
Forward Secrecy, weak Forward Secrecy, and strong
Forward Secrecy.
The basic Forward Secrecy checks a conventional

security notion of forward secrecy, which is not a provable
security model. We use an analysis rule of basic Forward
Secrecy as a primitive for all forward secrecy rules.

3.3.1 Semantic Security in the Basic Adversary
Model

Semantic Security means no information is leaked by a
key distribution protocol. The adversary either cannot send
data including a session key, or the adversary can send the
data but cannot obtain any information, whether or not the
data is accepted. In addition, it is computationally
infeasible for the adversary to compute the correctness of a
session key from the communication logs.
The adversary's job is to distinguish whether a given

string is a session key or not. The adversary can compute
some data using functions. The adversary is also able to
obtain responses to data sent to a target or its partner entity.
Thus, the data set includes any results that can be obtained
any data computed from a session key to target or partner
entity; that is, the adversary cannot directly obtain a
session key, but may be able to test whether the given
string is a session key.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

80

We discuss the adversary's potential strategies in this
situation. If the data set only includes session key
seeds---that is, the session key is not used on the key
exchange protocol---the security of the protocol reduces to
the security of the session-key generating function. We
have only to check whether outputs of the key generation
function are computationally indistinguishable from
random strings.

The second strategy is to encourage the target entity to
use a session key that is known or computed by an
adversary.

The final strategy of the adversary is to try to distinguish
session keys from random strings using the data set. Thus,
if a key distribution protocol has semantic security, then
either the session key is not directly exchanged in the
protocol, or an entity accepts data including a session key.
Furthermore, the probability that an adversary can
distinguish a session key by using only communication
logs is negligible. First, the analyzer checks whether a
session key is included. If the session key is not included,
the analyzer checks the length of the corresponding data;
otherwise, the analyzer verifies that data including a
correct session key is indistinguishable from data that does
not include the session key.

3.3.2 Secure Against Unknown Key-Share Attacks

The essential data protecting UKSA is temporary data
with no alteration and it is secure against replay attacks. It
is used as input to a key distribution function that produces
a session key. If each entity verifies that its seed is securely
shared with other entities, then the adversary cannot alter
or replace the session key. Thus, the analyzer checks
whether temporary data included by the key distribution
function is only the temporary data that protected and the
protected function includes a challenge to protect against
replay attacks or the temporary data generated by the entity.
This rule is similar to the rule for mutual authentication: if
exchanged random values in a mutual authentication
protocol are used for the seed when generating a session
key, the protocol is secure against UKSA.

3.3.3 Secure against Known Key Attacks

A protocol is secure against KKA if it has semantic
security for a session key where the adversary knows
previous session keys. The current session key then has no
relation to a previous session key and the adversary cannot
force an entity to share a known session key by alteration
of communication data. The first condition is the same as
Semantic Security for the basic adversary model. The
second condition is security against a known-key sharing
attack (called KKSA).

This condition is clearly weaker than security against
UKSA. If a protocol is secure against UKSA, the protocol
is also secure against KKSA; for the UKSA condition, the

adversary attempts to persuade an entity to believe any
session key, but in KKSA, the adversary has to persuade an
entity to believe a specific session key which they want.

3.3.4 Forward Secrecy

Forward Secrecy means the adversary cannot compute a
session key if the adversary later obtains the LL-key of an
entity. In our analyzer, we additionally define the adversary
of the (lowest) Forward Secrecy level as unable to obtain
the communication logs of a key distribution protocol.
Thus, if a key generation function includes at least one
temporary chunk of data which has been exchanged in the
protocol, the protocol has forward secrecy. The analyzer
checks the above requirement.

3.3.5 Weak Forward Secrecy

An adversary of weak Forward Secrecy can obtain all
communication logs and an LL-key. In w-FS model, an
adversary can use Corrupt query after the protocol is
finished, and the adversary cannot conduct any active
attacks against the target pairs by using an LL-key.
However, the adversary can eavesdrop on data flows and
obtain data that is encrypted using the LL-key. Thus, the
adversary has an advantage over the adversary of KKA, in
that the adversary can decrypt data that has been encrypted
with the LL-key and distinguish session keys from random
strings; thus, the adversary can calculate the session key
from communication logs as well as the encrypted data.
To be secure against an adversary of w-FS, a session key
has to be calculated from secure data that the adversary
cannot obtain in this situation.
Two types of data that the adversary cannot obtain are

temporary data not exchanged in the protocol, and
temporary data which is encrypted under a temporary
public key and exchanged in the protocol. The temporary
public/private key pair is erased when an entity finishes to
calculating the session key. Thus, the encryption using a
temporary public key is secure against the adversary. The
former data implicitly indicates Diffie-Hellman key
exchange by temporary key pairs. The session key of DH
schemes is computed from a temporary private key that is
not exchanged on during the protocol.
Thus, the analyzer checks that the key generation

function of each entity for computing a session key
includes secure data that is Temporary and not Included, or
Temporary and Concealed using a temporary public key.

3.3.6 Strong Forward Secrecy

Strong Forward Secrecy has a more strict definition than
weak Forward Secrecy. The adversary can get an LL-key
and all internal state during a key distribution protocol by
using a Corrupt query, and therefore is able to obtain a
session key to corrupt a partner entity, when the session

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

81

key of the target entity is established but the key of the
partner entity is not yet established. The adversary can
obtain a temporary private key of the partner entity, that is,
the adversary can obtain all data which the partner entity
uses for computation of a session key. Thus, the adversary
can easily compute the session key that the target entity
has established.

The protocol requires a flow confirming that the session
key calculation is complete. Thus, a session key is
established when all entities finish computing the session
key.

Note that the above verification rule is faithful to
Bellare's model. We are currently studying a new definition
of forward secrecy, that can provide a stricter security
notion and can be imagined as an real-world adversary; we
plan to present these results in another paper.

4. Implementation

In this section, we explain our implementation of the
analyzer. Operations of existing analyzers are complicated,
so we designed our analyzer such that a user could operate
it easily without any special skills. A user can input and
display security protocols using a graphical user interface
(GUI). Our design criteria for implementation are as
follows.

- Cryptographic algorithms are expressed using a common
and simple description. A user can easily enter a
cryptographic function without inputting a complex
formula, since in our security protocol analysis, details of
cryptographic functions are not considered.
- Data that has no influence on analysis are expressed
using a uniform description. Security protocols are
simplified by merging redundant data.
- A key generation function can be defined for each entity.
A user can enter an asymmetric key distribution using the
GUI.
- A user can input flows of a protocol with the GUI such as
drawing tools.
- Trust is expressed as a property of an entity. A user
defines the entity as trusted or non-trusted. Trusted entity
need not to be authenticated by other entities.
- The analyzer saves the protocol and analysis results as
XML files. A user can check and modify the protocol
without the analyzer. Furthermore, the analysis is also
translated into HTML allowing the user to print the
analysis report using a web browser.
- The analyzer stores and shows known data, which
indicates an entity's received and previously known data.
This information helps a user to find security flaws.

Figure 3 shows the graphical user interface (GUI) of the
analyzer. The right side shows a protocol overview, logs of
received data and previously known data for each entity.

On the left, all data, entities, and flows are described. If a
user clicks on any category, the user can create new data,
flows, and entities using dialog boxes. The user enters a
type, a length, and also creates an entity, when the user
adds new data by the GUI.

Fig. 3 Analyzer GUI

When a user creates a new function, the user also inputs

its length, a key, an algorithm, and arguments. A sender, a
receiver, and transported data are required to add a new
flow. A user also enters a purpose of the protocol and the
security parameter using the GUI, before the verification.
Flows of a security protocol are divided into chunks of
data, and the chunks are managed as objects in the
program.
Our analyzer automatically makes a analysis report of the

security protocol. An example of the report is shown in
Figure 4.

Fig. 4 Example of Analysis Report

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

82

5. Evaluation Results

We implemented the security analyzer on a Pentium 4
3GHz PC. The total program size, including the XML
parser, is about 1.5 MB. We chose six typical authenticated
key distribution protocols with which to evaluate the
analyzer. The average transaction time to evaluate one
security protocol was less than 10 milliseconds (msec).
The evaluation results are shown in Table 2. The broken
protocols, Otway-Rees [51], Needham-Schroeder [52], and
ISO11770-2[53] protocols which have been broken (see
[54][55][56][1], respectively, for detailed attacks) were
correctly identified as broken.

The check mark in parentheses below indicates that ISO
11770-2, without the optional flows that are used for
mutual authentication and the flow leaks the session key,
satisfies Semantic Security (SS). AKEP1, and AKEP2 [36]
do not satisfy w-FS, nor s-FS. This result implies the
symmetric-key-based key exchange cannot intrinsically
satisfy those security notions either.

Password-based AKEP proposed by Bellare, Pointcheval,
and Rogaway [41] satisfies all the required criteria. The
result fits the results of their analysis in theoretical basis.

The evaluation shows that the analyzer can effectively
verify security protocols.

Comparisons of the processing time with that of other
analyzers are shown in Table 3. We calculated the average
processing time for verifying a security protocol by
referring to the papers in which the analyzers were
presented. This comparison is not based on exactly the
same conditions, because detailed information about each
evaluation was not described in each paper. However, the

evaluation result shows that our analyzer is not slower than
other analyzers.
Our analyzer also checks the security of protocols

progressively based on the adversary's ability in provable
security. For example, our analyzer checks the semantic
security of protocols according to four gradual notions,
Semantic Security (basic adversary), Semantic Security
(known key attack adversary), Semantic Security with
weak-Forward Secrecy, and Strong-Forward Secrecy. Thus,
a user can design and evaluate security protocols to use our
analyzer, according to the condition that the protocol will
be used.
Some existing analyzer requires generation of all possible

messages by an adversary; however, our analyzer needs no
generation of the massages. Algebraic approaches have a
similar property to it. The algebraic approaches focuses on
the protocol flow description, and our analyzer focuses on
data property included in the protocol. Our analyzer has a
fast verification process based on optimized rule sets.
Furthermore, no analyzer has user-friendly user interfaces.

Our analyzer has a sophisticated GUI to input security
protocols.

6. Considerations and Conclusion

In this paper, we presented a new security protocol
analyzer based on provable security concepts. We also
implemented the analyzer, and showed how the analyzer
may be used for analyzing authentication and key
distribution protocols.
The analyzer can progressively verify security of

authentication and key distribution protocols according to

Table 2: Evaluation Results
Protocol T(ms) MA SS UK KK FS wFS sFS Atk

Otway-Rees 10≤ X X X
Needham-Schroeder 10≤ X X

ISO 11770-2(Protocol 1) 10≤ (X) X X
AKEP1 10≤ X X X X X -
AKEP2 10≤ X X X X X -

Password-Based AKEP 10≤ X X X X X X X -
T: Transaction Time, MA: Secure Mutual Authentication, SS: Semantic Security on the Basic Model,
UK: Secure against Unknown Key Share Attacks, KK: Secure against Known key Attacks,
FS: Forward Secrecy, wFS: weak Forward Secrecy, sFS: strong Forward Secrecy, and Atk: Attacks have been
proposed.

Table 3: Comparison of Processing Time
Analyzer Year of Presentation Time(msec)

AUTLOG[16] 1996 7.8*105
Athena[26] 1999 160
OFMC[24] 2003 151

STA[25] 2005 55
TRUST[25] 2005 63

ASPASyA[25] 2005 750
Proposed 2004 Less than 10

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

83

security notions in provable security. Some situations do
not require a protocol to have the strongest security such as
w-FS and s-FS. A user can choose a suitable security
protocol for his/her security requirements and restrictions
by using our analyzer.

Translation from an analysis result to a proof is an open
issue. In our analyzer, all cryptographic functions are
simplified to a pseudorandom function. Gaps between
proofs and the results of our analyzer may exist because of
this simplification. Even under the assumption that all real
functions are ideally secure, the result of the analyzer is
feasible; more detailed analysis will be needed to eliminate
gaps between proofs and the analysis results.

Furthermore, the security notions of strong-Forward
Secrecy based on BR model should be reconsidered.
Related researches on provably-secure protocols have
discussed only weak-Forward Secrecy as a security notion.
It is an open problem whether s-FS is mandatory for a
perfect secure key exchange protocol. The verification of
our analyzer may be rather strict verification for security
protocols. We continue the evaluation for various security
protocols and will consider whether the verification rules
can be relaxed.

In our future research, we will continue to consider new
security notions for analysis rules and more detailed rules
that encode properties of cryptographic functions.

References
[1] D. E. Denning, G. M. Sacco, “ Timestamps in key

distribution protocols”, Communication of the ACM, 24(8),
pp. 533-536, 1981.

[2] R. Needham, M.Schroeder, “ Authentication Revisited,
ACM Operating Systems Review”, Vol.21, No.1, 1987.

[3] L. Gong, R. Needham, R. Yahalom, “Reasoning about
belief in cryptographic protocols”, Proc. of the IEEE
Computer Society Symposium on Research in Security and
Privacy, pages 234-248. 1990.

[4] C. Meadows, “Formal Verification of Cryptographic
Protocols: A Survey”, Proc of ASIACRYPT'95, LNCS,
Vol.917, pp.133-150, 1996.

[5] D. Delve and A. Yao, “On the Security of Public Key
Protocols”, IEEE Transactions on Information Theory,
Vol.29, No.2, pp.198-208, 1983.

[6] J. K. Millen, S. C. Clark, and S. B. Freedman, “The
Interrogator: Protocol Security Analysis”, IEEE
Transactions on Software Engineering, Se-13, No.2, 1987.

[7] D. Longley and S. Rigby, “An Automatic Search for
Security Flaws in Key Management Schemes”, Computers
and Security, Vol.11, No.1, pp.75-90, 1992.

[8] R. Kemmerer, C. Meadows, and J. Millen, “Three Systems
for Cryptographic Protocol Analysis”, Journal of Cryptology,
Vol.7, No.2, 1994.

[9] C. Meadows, “A system for the Specification and Analysis
of Key Management Protocols”, Proc. of the IEEE
Computer Society Symposium on Research in Security and
Privacy, pp. 182-195, 1991.

[10] C. Meadows, “Applying Formal Methods to the Analysis of
a Key management Protocol”, Journal of Computer Security,
Vol.1, pp.5-53, 1992.

[11] J. C. Mitchell, M. Mitchell, U. Stern, “Automated analysis
of cryptographic protocols using Murϕ ”, Proc. of the IEEE
Computer Society Symposium on Research in Security and
Privacy, pp.141-151, 1997.

[12] M. Burrows, M. Abadi, R. Needham, “A Logic of
Authentication”, ACM Transactions on Computer Systems,
Vol. 8, No. 1, 1990.

[13] D. M. Nessett, “A Critique of the Burrows, Abadi, and
Needham Logic”, Operating Systems Review, Vol.24, No.2,
pp. 35-38, 1990.

[14] L. Gong, R. Needham, and R. Yahalom, “Reasoning about
Belief in Cryptographic Protocols”, Proc. of the 1990 IEEE
Computer Society Symposium on Security and Privacy,
pp.234-248, 1990.

[15] P. F. Syverson, and P.C. van Oorschot, “On Unifying Some
Cryptographic Protocol Logics”, Proc of the 1994 IEEE
Computer Society Symposium on Security and Privacy,
pp.14-28, 1994.

[16] D. Kindred, J. M. Wing, “Fast Automatic Checking of
Security Protocols”, Proc. of the second USENIX Workshop
on Electronic Commerce, pp.41-52, 1996.

[17] A. Mathuria, R. Safavi-Naini, and P. Nickolas, “On the
Automation of GNY logic”, Proc. of the 1995 Australian
Computer Conference, pp.370-379, 1995.

[18] L. Paulson, “The inductive approach to verifying
cryptographic protocols”, Journal of Computer Security,
Vol.6, pp. 85-128, 1998.

[19] A. H. Dekker, “C3PO: A Tool for Automatic Sound
Cryptographic Protocol Analysis”v, Proc. of the 13th IEEE
Computer Security Foundations Workshop, pp.77-87, 2000.

[20] F. Javier Thayer Fabrega, J. C. Herzog, and J. D. Guttman,
“Strand space: Why is a security protocol correct? ”, Proc. of
the 1998 IEEE Computer Society Svmposium on Security
and Privacy, pp.160-171, 1998.

[21] D. Song, “Athena: a new efficient automatic checker for
security protocol analysis”, Proc. of the 20th IEEE
Computer Security Foundations Workshop, pp.192-202,
1999.

[22] M. Boreale, “Symbolic trace analysis of cryptographic
protocols”, Proc. of ICALP 2001, LNCS, Vol.2076,
pp.667-681, 2001.

[23] R. Amadio, D. Lugiez, and V. Vancackere, “On the
symbolic reduction of processes with cryptographic
functions”, Technical report, INRIA-Sophia, 2001.

[24] D. Basin, S. Modersheim, and L. Vigano, “Constraint
Differentiation: A New Reduction Technique for
Constraint-Based Analysis of Security Protocols”, Proc. of
the 2003 Workshop on Security Protocols Verification
(SPV'03), 2003.

[25] A. Bracciali, G. Baldi, G. Ferrari, and E. Tuosto, “A
Coordination-based Methodology for Security Protocol
Verification”, Proc. of 2nd International Workshop on
Security Issues with Petri Nets and other Computational
Models (WISP04), Elect. Notes in Theoret. Comp. Science
vol. 121, Elsevier Science, 2005.

[26] M. Toussaint, “Deriving the Complete Knowledge of
Participants in Cryptographic Protocols”, Proc. of
CRYPT'91, LNCS, Vol. 576, pp.24-43, 1992.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

84

[27] M. Toussaint, “Separating the Specification and
Implementation Phases in Cryptology”, Proc. of ESORIC'92,
LNCS, Vol. 638, pp. 77-102, 1992.

[28] C. Meadows, “Representing Partial Knowledge in an
Algebraic Security Model”, Proc of the IEEE Computer
Security Foundations Workshop III, PP. 23-31, 1990.

[29] A. W. Roscoe, J. C. P. Woodcock, L. Wulf,
“Non-interference through determinism”, Proc. of
ESORICS'94, LNCS, Vol.875, pp. 33-53, 1994.

[30] A. W. Roscoe, “CSP and determinism in security modeling”,
Proc of Proc. of the IEEE Computer Society Symposium on
Research in Security and Privacy, 1995.

[31] G. Lowe, “Casper: A Compiler for the Analysis of Security”,
Journal of Computer Security, Vol. 6, p.p. 53-84, 1998.

[32] A. W. Roscoe, “Modeling and verifying key-exchange
protocols using CSP and FDR”, Proc. of 8th IEEE Computer
Security Foundations Workshop, pp.98-107, 1995.

[33] J. K. Millen and G. Denker, “CAPSL and MuCAPSL”, J. of
Telecommunications and Information Technology, April,
2002.

[34] A. D. Gprdon, and M. Abadi, “A calculus for cryptographic
protocols: The spi calculus”, Information and Computation,
Vol.138, pp.1-70, Academic Press, 1999.

[35] V. Varadharajan, “Verification of Network Security
protocols”, Computers and Security, pp.693-708, 1989.

[36] M. Bellare, P. Rogaway, “Entity authentication and key
distribution”, Proc. of CRYPTO'93, LNCS, Vol.773, pp.
232-249, 1994.

[37] M. Bellare, P. Rogaway, “Provably secure session key
distribution: thethree party case”, Proc. of 27th Annual
Symposium on the Theoryof Computing, ACM, pp. 57-66,
1995.

[38] S. Blake-Wilson, D. Johnson, A. Menesez, “Key agreement
protocols and their security analysis”, Proc. of 6th IMA
International Conference on Cryptography and Coding,
LNCS, Vol. 1355, pp.30-45, 1997.

[39] S. Blake-Wilson, A. Menesez, “Entity authentication and
key transport protocols employing asymmetric techniques”,
Proc. of 5th International Workshop on Security Protocols,
LNCS, Vol.1361, pp. 137-158, 1997.

[40] S. Blake-Wilson, A. Menesez, “Authenticated
Diffie-Hellman Key Agreement Protocols”, Proc. of SAC'98
(Invited Talk), LNCS, Vol.1556, pp. 339-361, 1998.

[41] M. Bellare, D. Pointcheval, P. Rogaway, “Authenticated
Key ExchangeSecure Against Dictionary Attacks”, Proc. of
Eurocrypt'00, LNCS, Vol. 1807, pp. 139-155, 2000.

[42] V. Shoup, A. Rubin, “Session-key distribution using smart
cards”, Proc. of Eurocrypt'96, LNCS, Vol.1070, pp. 321-31,
1996.

[43] M. Bellare, R. Canetti, H. Krawczyk, “A Modular Approach
to the Design and Analysis of Authentication and Key
Exchange Protocols”, Proc. of the 30th Annual Symposium
on the Theory of Computing, pp.419-428, ACM, 1998.

[44] M. Backes, B. Pfitzmann, M. Waidner, “A Composable
Cryptographic Library with Nested Operations”, Proc. of
10th ACM Conference on Compuer and Communications
Security, pp.220-230, 2003.

[45] M. Backes, B. Pfitzmann, M. Waidner, “Symmetric
Authentication Within a Simulatable Cryptographic Library”,
Proc. of ESORIC'03, LNCS, Vol.2808, pp.271-290, 2003.

[46] M. Backes, “Unifying Simulatability Definitions in
Cryptographic Systems under Different Timing
Assumptions”, Proc. of CONCUR'03, LNCS, Vol.2761,
pp.350-365, 2003.

[47] M. Backes, B. Pfitzmann, “Symmetric Encryption in a
Simulatable Dolev-Yao Style Cryptographic Library”, 17th
IEEE Computer Security Foundations Workshop, 2004.

[48] V. Shoup, “On Formal Models for Secure Key Exchange”,
Theory of Cryptography Library Record 99-12, and invited
talk at ACM Computer and Communications Security
conference, 1999.

[49] R. Canetti, H. Krawczyk, “Analysis of Key-Exchange
Protocols and Their Use for Building Secure Channels”,
Proc. of Eurocrypt'01, LNCS, Vol.2045, pp. 453-474, 2001.

[50] S. Blake-Wilson, A. Menezes, “Unknown Key-Share
Attacks on the Station-to-Station (STS) Protocol”, Proc. of
PKC'99, LNCS, Vol.1560, pp.154-170, 1999.

[51] D. Otway, O. Rees, “Efficient and Timely Mutual
Authentication, Operating Systems Review”, Vol.21, No.1,
pp. 8-10, 1987.

[52] R. Needham, M. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers”,
Communications of the ACM, Vol.21, pp.393-399, 1978.

[53] ISO, “Information technology-security techniques-key
management-part 2:Mechanisms using symmetric
techniques”, ISO/IEC 11770-2, 1996.

[54] W. Mao, C. Boyd, “Development of Authentication
Protocols:Some Misconceptions and a New Approach”, Proc.
of 7th Computer Security Foundations Workshop, pp.
178-186, 1994.

[55] G. Wang, S. Qing, “Two New Attacks Against Otway-Rees
Protocol, In IFIP/SEC2000 Information Security”, 16th
World Computer Congress 2000, pp.137-139, 2000.

[56] Z. Cheng, R. Comley, “Attacks On An ISO/IEC 11770-2
Key Establishment Protocol”, IACR e-Print Archive, 2004.

Shinsaku Kiyomoto
received his B.E. in Engineering
Sciences, and M.E. in Materials
Science, from Tsukuba
University, Japan, in 1998 and
2000 respectively. He joined
KDD (now KDDI) and has been
engaged in the research on
stream cipher, cryptographic
protocol, and mobile security.

He is currently a researcher of the Information Security Lab. in
KDDI R & D Laboratories Inc. He received his doctorate of
engineering from Kyushu University in 2006. He received the
Young Engineer Award from IEICE in 2004. He is a member of
JPS, IEICE, and IPSJ.

Haruki Ota received the
B.E., Department of Computer
Science, and M.E., Department
of Communications and
Integrated Systems, from Tokyo
Institute of Technology, Japan,
in 2000 and 2002 respectively.
He joined KDDI and has been

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

85

engaged in research on cryptographic protocol, biometrics, and
information security. He is currently a research engineer of the
Information Security Lab. in KDDI R & D Laboratories Inc. He
is a member of IEICE and IPSJ.

Toshiaki Tanaka received
B.E. and M.E. degrees in
communication engineering from
Osaka University, Japan, in 1984
and 1986 respectively. He joined
KDD (now KDDI) and has been
engaged in the research on
cryptographic protocol, mobile
security, digital rights

management, and intrusion detection. He is currently a senior
manager of the Information Security Lab. in KDDI R & D
Laboratories Inc. He received his doctorate of engineering from
Kyushu University in 2007. He is a member of IEICE and IPSJ.

Appendix

A.1 AKEP1 and Our Analyzing Steps

In this section, we show an example of relation between
proofs and our analysis rules. First, we describe the
AKEP1 protocol proposed by Bellare and Rogaway and an
overview of its proof, and then we explain the steps of our
analyzer takes as compared to the proof.

Figure 5 shows the AKEP1 protocol, where A and B are
identifiers of Entity A and Entity B, RA and RB are random
numbers, s1 and s2 are pre-shared secret keys, Mac[X]k
indicates a message authentication code (MAC) of X using
a key k, and Enc[X]k indicates the encryption of X using a
key k. A session key is indicated by a. X.Y denotes the
concatenation of X and Y. This protocol is a typical 3-way
authenticated key exchange protocol.

Fig. 5 AKEP1 Protocol

We introduce an overview of the proof of AKEP1 for

secure mutual authentication. AKEP1 is a provably-secure
authentication protocol under a MAC function that is
assumed to be a secure pseudorandom function. An output
of a secure pseudorandom function is indistinguishable
from that of a truly random function. The proof reduces the
security of the authentication protocol to the security of the

pseudorandom function. That is, they prove a machine that
runs in polynomial time can be constructed by using an
adversarial machine that can break the AKEP1
authentication protocol using the pseudorandom function
(called a real experiment). The adversary can break in
polynomial time under the real experiment, but fails in a
random experiment in which a pseudorandom function
replaces to a truly random function.
This machine fails to distinguish the pseudorandom

function when the adversary can break the security
protocol using a truly random function.
Now, we discuss an adversary who spoofs the entity B in

AKEP1, when the MAC function replaces a truly random
function. The probability that the attack is successful is
separated into two cases;

(a) Successful forgery of
[[]]2 1.A BMac B A R R Enc a s s

This probability is expected to be 2-k, where k is
the length of the MAC.

(b) The adversary E previously obtains
[[]]2 1. . . .A BMac B A R R Enc a s s happening. In this

case, RA is included in a list that the adversary E
makes while recording communications between
entities. The probability is at most (TE(k)-1)･2-k,
where TE(k) denotes a polynomial bound on the
number of communications made by E.

The total probability that the adversary successfully

spoofs the entity B in AKEP1 is at most TE(k)･2-k. In
similar fashion, the probability that an adversary
successfully spoofs the entity A is at most TE(k)･2-k. Thus,
an adversary breaks AKEP1 with a truly random function.
This probability is included in the probability that the

machine trying to distinguish the pseudorandom function
from the truly random one failed, because the probability
means that the adversary breaks the protocols in the
random experiment.
Our analyzer calculates the probability as follows;

(1) The analyzer finds input data that changes the entity
to an accepting state and is protected; the data is

[[]]2 1. . . .A BMac B A R R Enc a s s and [] 1. BMac A R s
in AKEP1.

(2) The analyzer extracts the random numbers that are
sent by the entity in a previous flow; that is RA for

[[]]2 1. . . .A BMac B A R R Enc a s s and RB for

[] 1. BMac A R s . Then, the analyzer calculates the
length of the random numbers and compares with the
security parameter. This operation corresponds to
checking the event (b) in the proof.

(3) The analyzer checks the length of
[[]]2 1. . . .A BMac B A R R Enc a s s and [] 1. BMac A R s .

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

86

This operation corresponds to checking the event (a)
in the proof.

The analyzer checks the security of the protocol based on

the proof.

A.2 Detailed Algorithms of Verification

In this section, we describe detailed algorithms of protocol
verifications. All verifications are executed for each entity.
X ← Y indicates Y is inputted to X such as data, a flow,
and a result. flows(U,U') indicates the s-th flow from U to
U' in a protocol. The symbols, data, LLK, SK, TPK, and k
indicates data or a function, a LL-key, a session key, a
temporary public key, and a security parameter,
respectively. fx denotes a function and it is used to specify a
function. ResultU indicates the verification result of U.
The symbol ¬ means “not”; for example, included¬
means that data has a not included property.

A.2.1 Secure Mutual Authentication

We analyze Secure Mutual Authentication of
authentication protocols as follows. The description
“ΠU=accept by flows” means the flows change the entity
ΠU to the accepting state.

A.2.2 Semantic Security on the Basic Adversary
Model

We analyze Semantic Security of key distribution protocols
as follows.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

87

A.2.3 Secure against Unknown Key Share Attacks

Each entity is checked for security against UKSA. If all
entities are secure against UKSA, then the protocol is
secure against UKSA.

A.2.4 Secure against Known Key Attacks

The analyzer checks a protocol's security against KKA as
follows.

A.2.5 Forward Secrecy

The analyzer evaluates forward secrecy as follows.

A.2.6 weak Forward Secrecy

The analyzer checks the following steps.

A.2.7 strong Forward Secrecy

The analyzer evaluates strong Forward Secrecy as follows.

