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Summary 
In this paper, we present a efficient security protocol analyzer to 
verify cryptographic security protocols. Our analyzer verifies 
security protocols based on notions of provable security. The 
analyzer only checks whether the core properties of security 
protocols satisfy the notions, making it faster than previous tools. 
The analyzer automatically checks whether authentication and 
key distribution protocols satisfy definitions such as Secure 
Mutual Authentication, Semantic Security, and Forward Secrecy. 
A user can design and evaluate security protocols by using our 
analyzer, according to the condition that the protocol will be used. 
Furthermore, our analyzer has a sophisticated GUI to set security 
protocols to be evaluated. Thus, the analyzer is useful for 
constructing and checking security protocols for many services.  
Key words: 
Security Protocol, Automatic Verification, Provable Security 

1. Introduction 

Entity authentication protocols and key distribution 
protocols are core technologies for secure services in 
distributed systems. Unfortunately, cryptographic protocols 
are currently designed through a process of trial and error, 
and security flaws in a protocol are difficult to locate using 
only a designer's review. Thus, the history of security 
research has many examples of security protocols with 
security flaws. For example, Denning and Sacco found a 
security flaw in the Needham-Schroeder key distribution 
protocol, which allows an intruder to re-use a previous 
session key as a new session key [1].  
Needham et al. have emphasized the need for automatic 

verification methods for cryptographic protocols [2][3], 
accordingly, various security protocol analyzers have been 
proposed. Many protocol analyzers are based on formal 
methods, where the analyzer compares possible states of a 
security protocol with pre-defined states such as vulnerable 
states and states based on intruder models. Such analyzers 
usually take a long time to evaluate a security protocol. 
Furthermore, the computational cost and required memory 
space may grow in proportion to the number of protocol 
flows and the states. Therefore, the optimization of 
analyzer logic and protocol descriptions has been actively 
discussed by researchers in the area of logic-based 
automatic verification.  

Bellare et al. have proposed another method for proving 
protocol security. Their proof is based on provable security 
in cryptology; thus, if a protocol can be proven secure in a 
given model, then the protocol is guaranteed to have none 
of the security flaws addressed by that model. By using the 
essence of Bellare's proposal, we can describe efficient 
rules for automatic verification will be described. The 
essence of their work is also useful for constructing 
security protocol analyzers; the difficulty lies in translating 
their concepts into rules that can be interpreted by a 
computer.  
In this paper, we present a efficient security protocol 

analyzer that enables to verify cryptographic security 
protocols and describe implementation results of the 
analyzer. 

1.1 Related Work 

Protocol verification methods can be categorized into 
those based on formal verification (see[4] for a survey) and 
those based on provable security.  
 
1.1.1 Formal Verification 
 
As an example of the former, in the Dolev and Yao model 

[5] an intruder is a person with complete control over the 
communication channel: the intruder can eavesdrop on all 
traffic and can block or send messages to any entity. 
However, they did not consider the case where an intruder 
had knowledge of system secrets. Millen proposed a 
protocol verification system [6] based on the Dolev-Yao 
model, which uses an exhaustive search of the 
communication state space. This tool has never found an 
undefined attack on a cryptographic protocol. A similar 
tool was proposed by Longley and Rigby [7].  
The NRL Protocol Analyzer [8] is also based on the 

Dolev-Yao model, and uses a similar approach to Millen 
and Longley-Rigby tools. This analyzer verifies the ability 
to reach insecure states in a security protocol, and has been 
used to find security flaws [9][10]. However, the analyzer 
cannot fully prove security, although it can provide proof 
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of insecure states being reachable or not. Murϕ  is an 
automatic verification tools proposed by Mitchell et al. 
[11] . Murϕ  searches for insecure points within the state 
space using a model checker.  
A different approach, based on formal verification, is to 

use model logics, similar to the analysis of the evolution of 
knowledge and belief in distributed systems. The 
best-known example was developed by Burrows, Abadi, 
and Needham, and is commonly known as BAN logic [12]. 
In the analysis, an initial set of beliefs is adopted, and 
another set of beliefs is adopted when a message is 
received in a protocol. If the resulting set of beliefs is 
acceptable, then the protocol is declared to have been 
proven correct. The logic cannot be used to prove secrecy, 
only authenticity, because the logic does not attempt to 
model knowledge [13]. GNY [14] logic and SVO [15] 
logic are related to BAN logic and were constructed with 
automatic verification in mind.  
Kindred and Wing were the first to propose an automatic 

verification tool based on BAN logic [16]. Mathuria et al. 
proposed GNY-based automatic verification [17]. Paulson 
presented a verification tool [18] based on SVO logic. An 
automatic verification tool named C3PO also uses SVO 
logic [19] 
Improving the efficiency of logic-based automatic 

verification is still being studied; methods such as Strand 
Space [20], Athena [21], STA [22], TRUST [23], OFMC 
[24], and ASPASyA [25] are a few currently being 
developed.  
Yet another approach to applying formal methods is 

modeling a protocol as an algebraic system [26] 
[27].Toussaint proposed an algebraic model where the 
words describing a protocol are expressed by an 
isomorphism between a free algebra and a crypto-algebra. 
Meadows proposed an algebraic model to improve the 
NRL Protocol Analyzer [28]. 
Roscoe et al. proposed an approach based on the process 

algebra CSP [29][30]. A protocol translation tool was 
proposed to use a CSP description [31] and automatic 
verification tool [32] using a model checker FDR were 
proposed. CAPSL and MuCAPSL are automatic 
verification tools based on a intermediate language CIL 
[33].  
Gordon and Abadi proposed the S-π calculus [34], in 

which an intruder is not explicitly modeled; instead, an 
intruder is represented as an arbitrary S-π calculus process.  
LOTOS defined a protocol as a state diagram and 

investigated reachability analysis techniques [35]. 

1.2 Provable Security 

Moving to the latter category, notions of entity 
authentication and key distribution with provable security 
were initially proposed by Bellare and Rogaway. They 
proposed a two party case [36] as well as a three-party case 

[37] wherein a trusted third party distributes a session key 
to each entity. Their method of proving the security of 
protocols was based on the method used for proving 
semantic security of encryption.  
Their models (BR-models) were adapted to the public key 

setting by Blake-Wilson et al. [38][39][40]. Later, Bellare, 
Pointcheval, and Rogaway proposed the notion of security 
for password-based authentication and key distribution 
[41]. Shoup and Rubin [42] adapted a new security model 
to BR-models, which is used for smart-card-based 
protocols. Details of these models will be shown in later 
sections.  
Bellare, Canetti, and Krawczyk proposed a different 

approach to provable security for key-exchange protocols 
[43]. Their approach is based on theory from the area of 
multi-party computation. In this model, an idealized 
version of the protocol is defined, and it is proven that any 
real world adversary cannot be as powerful as an ideal 
adversary. This approach was subsequently generalized 
and applied to many cryptographic settings; this 
generalization is known as Universal Composability. M. 
Backes et al. have discussed how to apply the concept of 
proofs in Universal Composability to the Dolev-Yao model 
[44][45][46][47].  
Shoup presented a framework that follows the basic 

simulatability approach as in Bellare-Canetti-Krawczyk 
approach, but introduces significant modifications in order  
to be applicable to other cryptographic protocols [48].  
Canetti and Krawczyk presented a formalized model [49] 

for analyzing key exchange protocols that combine the BR 
models and the Bellare-Canetti-Krawczyk model.  
These approaches are still being studied. The BR models 

can separate security notions according to an adversary's 
ability (see 2.2), so we have chosen to adopt them. 

1.3 Our Contribution 

Despite all this research, no automatic verification tools 
based on notions of provable security have been proposed 
to date. Furthermore, the results of existing analyzers 
either do not directly correspond to security notions for 
security proofs, or no rules corresponding to security 
notions such as Weak Forward Secrecy exist on the 
analyzers.  
This paper proposes a verification tool based on security 

notions in BR models. The main difficulty in designing the 
verification tool was how to extract common verification 
rules from proofs of security protocols, since proofs 
traditionally have been customized for each protocol. The 
key materials for constructing proofs are features of data 
such that data used for authentication is probabilistically 
unforgeable by an adversary. We identify the essential 
parts of the proofs and construct verification rules based on 
the security notions; for example, in authentication 
protocols, input data which changes an oracle to an accept 
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state is considered essential. Bellare's proof verifies 
whether the data has sufficient randomness and security, so 
our verification rules also check the same properties.  
Some existing analyzers need to define methods of 

attacks for analysis; in constant, our analyzer models an 
adversary using queries that will be introduced later 
session, and needs no rules for specific attacks. Some 
existing analyzers check whether attacks are possible, but 
our analyzer checks whether a security protocol is secure 
under an adversarial model that includes any attacks.  
Previous analyzers incurred a heavy computational cost 

and large rule sets to complete verification of security 
protocols. Our analyzer only verifies that core properties of 
security protocols satisfy the conditions of the security 
proofs. Thus, computational costs such as transaction time 
and required memory size will be reduced.  
Furthermore, we designed our analyzer such that a user 

could operate it easily without any special skills. Our 
analyzer has a sophisticated GUI to input security 
protocols.  
We believe our analyzer is useful for constructing and 

checking security protocols for many services. 

1.4 Organization 

The rest of the paper is organized as follows. In Section 2, 
we introduce models of provable security and security 
notions. Section 3 describes the basic design of our 
analyzer. Section 4 provides details of implementation, and 
Section 5 shows our evaluation results. Finally, we present 
some considerations and conclude this paper in Section 6. 
 
2 Model of Provable Security for Security 

Protocols 

2.1 Adversary Model 

The communication model proposed by Bellare and 
Rogaway is independent of the specification of protocols, 
and the simulation of communication is constructed using 
oracles which are defined for each entity and each session.  
An adversary controls all communications and interaction 
between a set of oracles. An oracle of entity U in session i 
is defined as Πi

U. The following queries are available to 
the adversary in the Bellare-Rogaway model:  
 
- ( , , )Send U i M  
   This query allows the adversary to send message M to 

an oracle Πi
U. The oracle Πi

U returns the next message 
of the protocol and the result to the adversary. The 
result is one of three possible results, Accept, Halt, or *. 
Accept means that the authentication is successful 
and/or session key is successfully computed. Halt 
means that the authentication or computation of session 
key has failed and/or the message M is invalid, i.e. not 

defined as part of the protocol specification. The value 
* is supported to suggest, for message M, that the 
oracle outputs no result. 

- Re ( , )veal U i  
This query allows the adversary to obtain a session key 
without the target party. The oracle i

U∏  returns the 
accepted session key to the adversary. 

- ( , )Corrupt U K  
The adversary can know U’s current long-lived key 
(LL-key) of U; this key is also known as a permanent 
key of U, and change it to K. The adversary also 
obtains the internal state of U by using this query.  
After using a Corrupt query, the adversary cannot use 
any Send query to i

U
∏ and/or the partnering oracle. 

- ( ,  )Test U i  
   When an oracle Πi

U receives this query, the oracle flips 
a coin { }0,1 .b ∈  If 0b = , then the oracle returns a 
session key; otherwise, the oracle returns a random 
string that has the same length and the same 
distribution as the session key. 

2.2 Definition of Protocol Security 

In this subsection, we introduce security notions 
regarding authentication and key distribution protocols. 
The definition of secure authentication proposed by 
Bellare and Rogaway is as follows: 
 
Definition 1. Secure Mutual Authentication 
If oracles 

1

i

U
∏ and 

2

j

U
∏  accept in a Matching 

Conversation and the probability that one oracle (or both) 
accepts without another oracle engaged in a Matching 
Conversation is negligible, then the protocol is a secure 
mutual authentication protocol.  
A detailed definition of Matching Conversation may be 

found in Bellare's paper (see [36][38]).  
Under the Matching Conversation condition, the 

adversary transfers communication between the oracles 
honestly, without any interception and/or alteration. Thus, 
the adversary's strategy is either to guess  the correct 
authentication code or to divert an expired or fresh 
authentication code that is received from a non-partnering 
entity. The probability that an oracle accepts without a  
Matching Conversation is defined as 
P r N o M a tch in gS u cc −⎡ ⎤⎣ ⎦  .If Pr No MatchingSucc −⎡ ⎤⎣ ⎦ is negligible, 
the security of the protocol can be proven under the 
assumption that a primitive function is secure. 
 
Definition 2. Semantic Security of key distribution 
protocols  
If an adversary exists and is unable to distinguish the 

session key from an independent random value with 
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non-negligible probability, then the protocol satisfies 
semantic security as a key distribution protocol.  
 
Semantic security includes many security notions based on 
the adversary's ability, i.e. which queries an adversary can 
use. We define three security notions for the Semantic 
Security based on BR models. To separate models, the 
analyzer can verify each adversary's model and output 
whether a protocol is secure in that model. Consequently, 
we can verify that the protocol is secure in an environment 
assumed an adversary's ability. For example, if we assume 
that the LL-key is secure in a real environment, we need 
not to consider forward secrecy notions.  

The notion of security against known-key attack (KKA) 
assumes an adversary can obtain a previous session key or 
replace a known session key. An adversary of forward 
secrecy can also obtain an LL-key in addition.  

The notion of forward secrecy is separated into two 
notions, weak Forward Secrecy (w-FS), and strong 
Forward Secrecy (s-FS), based on whether an adversary 
can obtain the LL-key when a protocol has not yet finished. 
Definition 2.3.2 means that the adversary can steal an 
LL-key during the processing of the protocol.  A protocol 
that has s-FS is more secure than a protocol having w-FS. 

 
Definition 2.1.  Basic Adversary Model 

If an adversary that uses the target party as an 
uncorrupted party and other parties as uncorrupted oracles 
exists, and if the protocol satisfies semantic security 
against the adversary, then the protocol is secure against 
the basic adversary model. In this model, an adversary can 
use Send and Test queries, but cannot use Reveal and 
Corrupt queries. 

 
Definition 2.2.  Secure against Known-key Attacks 

If there exists an adversary that knows any expired 
session keys of the target party and any session keys of 
other parties, and if the protocol satisfies semantic security 
against the adversary, then the protocol is secure against 
known-key attacks. In this model, an adversary can use 
Send, Test, and Reveal queries, but cannot use the Corrupt 
query. 
 
Definition 2.3.1.  weak Forward Secrecy 

If there exists an adversary that knows any expired 
session keys of the target party and any session keys of 
other parties: if the adversary can know the LL-key after 
both entities are terminated; and if the protocol satisfies 
semantic security against the adversary, then the protocol 
has weak Forward Secrecy (w-FS). In this model, an 
adversary can use Send, Test, and Reveal queries. The 
adversary may also use a Corrupt query to the partner 
oracle of target oracle after both oracles are terminated.  
 
 

Definition 2.3.2.  strong Forward Secrecy 
If a protocol has forward secrecy against an adversary 

who can know a LL-key during the execution of a key 
exchange protocol, and get any expired session keys of the 
target party, and get any session keys of other parties, then 
the protocol has strong Forward Secrecy. In this model, an 
adversary can use all queries, and Corrupt query can be 
sent to the partner oracle of a target oracle before both 
entities are terminated. 
 
Furthermore, we define a security notion for key 

distribution protocols based on unknown key-share attacks, 
as proposed by S. Blake-Wilson et al.[50]. In this model, 
an adversary attempts to distribute different keys to each 
entity.  
 
Definition 3. Secure against Unknown Key-Share Attacks 
If the probability that oracles 

1

i

U∏  and 
2

j

U∏  accept and 
output different session key(s) is negligible, then the 
protocol is secure against unknown key-share attacks 
(UKSA). This includes the case where one entity outputs 
no session key.  
 
3 Design of Analysis Method 
 
Our analyzer checks authentication and key-distribution 
protocols based on rules that take into account provable 
security. Existing security analyzers have rules that define 
all secure/insecure conditions, and the analyzer has to 
verify that all flows and/or all possible states of the 
protocols are secure. Thus, optimization of rules and 
protocol descriptions is an important issue for these 
analyzers. Our analyzer, on the other hand, only checks 
essential transaction data, selected to satisfy provable 
security.  
An overview of the adversary of security protocols is 

shown in Figure 1. In a provably-secure protocol, two kind 
of adversaries are assumed. One adversary receives either 
a session key or a random string, and must distinguish the 
two. The other adversary aims to make the target entity 
accepted by a flow.  

 
Fig. 1 Adversary of Security Protocols 
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In the discussion of the latter adversary, we focus on the 
protocol flow sent just before the entity changes to an 
accepting state. The adversary can obtain a 
polynomial-bound data set to eavesdrop on protocol flows 
and send flows to any entity. The data set includes keys 
such as previous session keys and LL-keys depending on 
the adversary's models. The adversary also uses some 
cryptographic function f which also depends on the kind of 
adversary.  

Protocol specifications decide the data set that an 
adversary can obtain. Thus, the data set given to the 
adversary affects the probability that the adversary is 
successful. The analyzer first collects associated (essential) 
data from the protocol specification, and then computes the 
probability of a successful attack by the adversary.  

Firstly, our analyzer extracts from a security protocol the 
data sent in each flow, labels the data with some properties, 
then extracts the essential data and verifies it with the 
analysis rules. If the essential data satisfies the rules, the 
protocol is secure.  

The concept of checking essential data is based on proofs 
of security protocols. The security does not depend on 
other data or flows, only on the essential data. Thus, our 
analyzer is faster than previous analyzers.  

In addition, the analyzer calculates the probability of a 
successful attack, and compares this to a configured 
security parameter. Thus, the analyzer can verify that the 
lengths of the essential data and the LL-key are large 
enough.  

An overview of our analysis process follows: a user 
inputs a security protocol that consists of some flows, 
where each flow contains some data. The analyzer first 
extracts each chunk of data info and labels it with some 
properties, including the flow from which it originated, as 
shown in Figure 2. Then, the analyzer verifies the data 
according to the analysis rules.  

In this section, we present our analysis methods, which 
are defined using the security notions discussed in the 
previous section. 

3.1 Preliminary 

Before the discussion, we describe the basic component 
of analysis rules. 

3.1.1 Ideal Function f 

In our analyzer, an ideal function f is an important factor 
for protocol verification. To verify the protocol, we assume 
that a security protocol uses secure cryptographic 
algorithms, and transform the algorithms into a function f 
that is an ideal cryptographic algorithm. The function f is 
an ideal pseudorandom function which takes data and a 
key as input, and outputs a string. The output is uniformly 
selected from a domain, and the same input and key 
generate the same output by the function f.  

 
Fig. 2 Transformation from Specification to Analyzer’s Data Format 
 
For example, if all data has the same length, the 

adversary's job is to distinguish an output from a random 
string, and the adversary does not know the randomly 
selected input or a key, then output is indistinguishable 
from a random string.  
Provably-secure public-key cryptographic algorithms 

provide different outputs even though the input and the key 
is same. However, we treats all algorithms as though they 
were the ideal function f; that is, we describe all algorithms 
with a uniform function.  
We also model cryptographic functions as ideal functions 

where the function is nested. If a function is nested---that 
is, the function has the outputs of other functions as 
inputs---the analyzer roughly evaluates the function as a 
composite function. For example,  

{ } { }' '( ( )) ( ) : 0,1 0,1 , , ( )m nf f x f n x f x⋅ → ≥ ⋅ ≥  
is evaluated as  

{ } { }( ) ( ) : 0,1 0,1m nF x F ⋅ →  
where the analyzer calculates the probability of successful 
attacks. Thus, the analyzer cannot compute the exact 
advantage of adversary, but it is useful for addressing the 
correctness of the protocols on an abstract 
(protocol-specification-based) level. Furthermore, this 
ideal model assumes every function is a random function; 
thus, a gap between proofs of the protocol and analyzer's 
evaluation result may exist. We discuss this in Section 6.  
In our analyzer, a user defines a security parameter. The 

security parameter is defined based on the security 
requirements of the protocol. If the security parameter is k, 
the probability of a successful attack is at most ( ) 2 kp k −⋅ , 
where ( )p k  is a polynomial. The security parameter is 
compared to the bit length of X, essential data such as 
outputs of the function f, to verify that a protocol is 
computationally secure.  
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Table 1: Example of Transformation Table 
Symmetric ECC-based RSA,DSA 

56 112 512 
80 160 1024 

112 224 2048 
128 256 3072 
192 384 7680 
256 512 15360 

 
The length of a public/private key is mapped to the length 

of a secret key using a transformation table; see Table 1. 
The table may have to be changed as attacks on either class 
of primitives improve.  

3.1.2 Data Properties 

Data properties are used in analysis rules. We define 
some common data properties as follows: 
 
- Sent : the data was sent in a previous flow. 
- Included: the data is included in a flow; for example, as 
data, as a key, or as data input to a function. 
- Temporary: the data is created dynamically; for example, 
a random number or a temporary public-key pair. 
- Protected: the data is covered by the message 
authentication code or digital signature, the data is 
encrypted by a secret key, or the data that is inputted to a 
function which inputs are the data and data that is send 
with Protected and Concealed in a previous flow. It is 
computationally infeasible for an adversary to forge this 
data. 
- Concealed: the data is encrypted by a LL-key ( a secret 
key or a public key) and a random number that is sent with 
Protected and Concealed, and the data is not transmitted as 
plaintext. It is computationally infeasible for an adversary 
to obtain the data. 

3.1.3 Additional Rules 

Furthermore, the analyzer checks these additional rules as 
a basic verification:  
- a temporary public keys are Protected when they are sent. 
- all session keys are longer than the security parameter. 
- all LL-keys are longer than the security parameter. 

3.2 Verification of Authentication Protocols 

Generally speaking, “authentication” means verifying 
that data calculated using an LL-key or related key, such as 
an authentication code, is correct. An adversary's goal is to 
send a correct authentication code (AC) to a target entity, 
and change the entity to the accepting state. The 
adversary's strategy is either to guess the correct 
authentication code or to reuse another authentication code. 
Thereby, the adversary's data set is previous ACs. Reuse of 
an AC means the adversary previously obtained the AC, 
and this condition implies replay attacks.  

Now, we assume the authentication code is computed 
using the ideal function f. The probability that an adversary 
succeeds in guessing the correct authentication code 
depends on the length of LL-keys and the length of the 
authentication code. The probability that the reuse is 
successful depends on the randomness of the input data to 
the function f. If the input data is longer than the security 
parameter and is randomly selected, then the adversary 
cannot reuse because of the limitation on the adversary's 
memory. These two conditions imply that an output of the 
function f is indistinguishable from a random string.  
With regards to authentication, we add the condition that 

the random data have to be generated by a target entity, 
because the target entity can verify the data and AC.  
The analyzer evaluates the security of authentication 

protocols using the following steps. The analyzer selects a 
flow just before each entity changes to the accepting state, 
and then checks that the flow includes protected data for 
authentication such as a message authentication code, 
digital signature, and symmetric encryption. The analyzer 
also checks that the data is a random data generated by the 
target entity, and is longer than the security parameter. 

3.3 Verification of Key Distribution Protocols 

In this subsection, we propose analysis rules for key 
distribution protocols. Our analyzer separately checks six 
security notions: Semantic Security on the basic adversary 
model, Secure against UKSA, Secure against KKA, basic 
Forward Secrecy, weak Forward Secrecy, and strong 
Forward Secrecy.  
The basic Forward Secrecy checks a conventional 

security notion of forward secrecy, which is not a provable 
security model. We use an analysis rule of basic Forward 
Secrecy as a primitive for all forward secrecy rules. 

3.3.1 Semantic Security in the Basic Adversary 
Model 

Semantic Security means no information is leaked by a 
key distribution protocol. The adversary either cannot send 
data including a session key, or the adversary can send the 
data but cannot obtain any information, whether or not the 
data is accepted. In addition, it is computationally 
infeasible for the adversary to compute the correctness of a 
session key from the communication logs.  
The adversary's job is to distinguish whether a given 

string is a session key or not. The adversary can compute 
some data using functions. The adversary is also able to 
obtain responses to data sent to a target or its partner entity. 
Thus, the data set includes any results that can be obtained 
any data computed from a session key to target or partner 
entity; that is, the adversary cannot directly obtain a 
session key, but may be able to test whether the given 
string is a session key.  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 
 

 

80 

 

We discuss the adversary's potential strategies in this 
situation. If the data set only includes session key 
seeds---that is, the session key is not used on the key 
exchange protocol---the security of the protocol reduces to 
the security of the session-key generating function. We 
have only to check whether outputs of the key generation 
function are computationally indistinguishable from 
random strings.  

The second strategy is to encourage the target entity to 
use a session key that is known or computed by an 
adversary.  

The final strategy of the adversary is to try to distinguish 
session keys from random strings using the data set. Thus, 
if a key distribution protocol has semantic security, then 
either the session key is not directly exchanged in the 
protocol, or an entity accepts data including a session key. 
Furthermore, the probability that an adversary can 
distinguish a session key by using only communication 
logs is negligible. First, the analyzer checks whether a 
session key is included. If the session key is not included, 
the analyzer checks the length of the corresponding data; 
otherwise, the analyzer verifies that data including a 
correct session key is indistinguishable from data that does 
not include the session key. 

3.3.2 Secure Against Unknown Key-Share Attacks 

The essential data protecting UKSA is temporary data 
with no alteration and it is secure against replay attacks. It 
is used as input to a key distribution function that produces 
a session key. If each entity verifies that its seed is securely 
shared with other entities, then the adversary cannot alter 
or replace the session key. Thus, the analyzer checks 
whether temporary data included by the key distribution 
function is only the temporary data that protected and the 
protected function includes a challenge to protect against 
replay attacks or the temporary data generated by the entity. 
This rule is similar to the rule for mutual authentication: if 
exchanged random values in a mutual authentication 
protocol are used for the seed when generating a session 
key, the protocol is secure against UKSA.   

3.3.3 Secure against Known Key Attacks 

A protocol is secure against KKA if it has semantic 
security for a session key where the adversary knows 
previous session keys. The current session key then has no 
relation to a previous session key and the adversary cannot 
force an entity to share a known session key by alteration 
of communication data. The first condition is the same as 
Semantic Security for the basic adversary model. The 
second condition is security against a known-key sharing 
attack (called KKSA).  

This condition is clearly weaker than security against 
UKSA. If a protocol is secure against UKSA, the protocol 
is also secure against KKSA; for the UKSA condition, the 

adversary attempts to persuade an entity to believe any 
session key, but in KKSA, the adversary has to persuade an 
entity to believe a specific session key which they want.   

3.3.4 Forward Secrecy 

Forward Secrecy means the adversary cannot compute a 
session key if the adversary later obtains the LL-key of an 
entity. In our analyzer, we additionally define the adversary 
of the (lowest) Forward Secrecy level as unable to obtain 
the communication logs of a key distribution protocol. 
Thus, if a key generation function includes at least one 
temporary chunk of data which has been exchanged in the 
protocol, the protocol has forward secrecy. The analyzer 
checks the above requirement.  

3.3.5 Weak Forward Secrecy 

An adversary of weak Forward Secrecy can obtain all 
communication logs and an LL-key. In w-FS model, an 
adversary can use Corrupt query after the protocol is 
finished, and the adversary cannot conduct any active 
attacks against the target pairs by using an LL-key. 
However, the adversary can eavesdrop on data flows and 
obtain data that is encrypted using the LL-key. Thus, the 
adversary has an advantage over the adversary of KKA, in 
that the adversary can decrypt data that has been encrypted 
with the LL-key and distinguish session keys from random 
strings; thus, the adversary can calculate the session key 
from communication logs as well as the encrypted data.  
To be secure against an adversary of w-FS, a session key 
has to be calculated from secure data that the adversary 
cannot obtain in this situation.  
Two types of data that the adversary cannot obtain are 

temporary data not exchanged in the protocol, and 
temporary data which is encrypted under a temporary 
public key and exchanged in the protocol. The temporary 
public/private key pair is erased when an entity finishes to 
calculating the session key. Thus, the encryption using a 
temporary public key is secure against the adversary. The 
former data implicitly indicates Diffie-Hellman key 
exchange by temporary key pairs. The session key of DH 
schemes is computed from a temporary private key that is 
not exchanged on during the protocol.  
Thus, the analyzer checks that the key generation 

function of each entity for computing a session key 
includes secure data that is Temporary and not Included, or 
Temporary and Concealed using a temporary public key.  

3.3.6 Strong Forward Secrecy 

Strong Forward Secrecy has a more strict definition than 
weak Forward Secrecy. The adversary can get an LL-key 
and all internal state during a key distribution protocol by 
using a Corrupt query, and therefore is able to obtain a 
session key to corrupt a partner entity, when the session 
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key of the target entity is established but the key of the 
partner entity is not yet established. The adversary can 
obtain a temporary private key of the partner entity, that is, 
the adversary can obtain all data which the partner entity 
uses for computation of a session key. Thus, the adversary 
can easily compute the session key that the target entity 
has established.  

The protocol requires a flow confirming that the session 
key calculation is complete. Thus, a session key is 
established when all entities finish computing the session 
key.  

Note that the above verification rule is faithful to 
Bellare's model. We are currently studying a new definition 
of forward secrecy, that can provide a stricter security 
notion and can be imagined as an real-world adversary; we 
plan to present these results in another paper.  
 
4. Implementation 
 
In this section, we explain our implementation of the 
analyzer. Operations of existing analyzers are complicated, 
so we designed our analyzer such that a user could operate 
it easily without any special skills. A user can input and 
display security protocols using a graphical user interface 
(GUI). Our design criteria for implementation are as 
follows.  
 
- Cryptographic algorithms are expressed using a common 
and simple description. A user can easily enter a 
cryptographic function without inputting a complex 
formula, since in our security protocol analysis, details of 
cryptographic functions are not considered. 
- Data that has no influence on analysis are expressed 
using a uniform description. Security protocols are 
simplified by merging redundant data. 
- A key generation function can be defined for each entity. 
A user can enter an asymmetric key distribution using the 
GUI. 
- A user can input flows of a protocol with the GUI such as 
drawing tools. 
- Trust is expressed as a property of an entity. A user 
defines the entity as trusted or non-trusted. Trusted entity 
need not to be authenticated by other entities. 
- The analyzer saves the protocol and analysis results as 
XML files. A user can check and modify the protocol 
without the analyzer. Furthermore, the analysis is also 
translated into HTML allowing the user to print the 
analysis report using a web browser.  
- The analyzer stores and shows known data, which 
indicates an entity's received and previously known data. 
This information helps a user to find security flaws.  

Figure 3 shows the graphical user interface (GUI) of the 
analyzer. The right side shows a protocol overview, logs of 
received data and previously known data for each entity. 

On the left, all data, entities, and flows are described. If a 
user clicks on any category, the user can create new data, 
flows, and entities using dialog boxes. The user enters a 
type, a length, and also creates an entity, when the user 
adds new data by the GUI.  
 

 
Fig. 3 Analyzer GUI 

 
When a user creates a new function, the user also inputs 

its length, a key, an algorithm, and arguments. A sender, a 
receiver, and transported data are required to add a new 
flow. A user also enters a purpose of the protocol and the 
security parameter using the GUI, before the verification. 
Flows of a security protocol are divided into chunks of 
data, and the chunks are managed as objects in the 
program. 
Our analyzer automatically makes a analysis report of the 

security protocol. An example of the report is shown in 
Figure 4. 
 

 
Fig. 4 Example of Analysis Report 
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5. Evaluation Results 
 
We implemented the security analyzer on a Pentium 4 
3GHz PC. The total program size, including the XML 
parser, is about 1.5 MB. We chose six typical authenticated 
key distribution protocols with which to evaluate the 
analyzer. The average transaction time to evaluate one 
security protocol was less than 10 milliseconds (msec). 
The evaluation results are shown in Table 2. The broken 
protocols, Otway-Rees [51], Needham-Schroeder [52], and 
ISO11770-2[53] protocols which have been broken (see 
[54][55][56][1], respectively, for detailed attacks) were 
correctly identified as broken. 

The check mark in parentheses below indicates that ISO 
11770-2, without the optional flows that are used for 
mutual authentication and the flow leaks the session key, 
satisfies Semantic Security (SS). AKEP1, and AKEP2 [36] 
do not satisfy w-FS, nor s-FS. This result implies the 
symmetric-key-based key exchange cannot intrinsically 
satisfy those security notions either.  

Password-based AKEP proposed by Bellare, Pointcheval, 
and Rogaway [41] satisfies all the required criteria. The 
result fits the results of their analysis in theoretical basis.  

The evaluation shows that the analyzer can effectively 
verify security protocols. 

Comparisons of the processing time with that of other 
analyzers are shown in Table 3. We calculated the average 
processing time for verifying a security protocol by 
referring to the papers in which the analyzers were 
presented. This comparison is not based on exactly the 
same conditions, because detailed information about each 
evaluation was not described in each paper. However, the 

evaluation result shows that our analyzer is not slower than 
other analyzers.  
Our analyzer also checks the security of protocols 

progressively based on the adversary's ability in provable 
security. For example, our analyzer checks the semantic 
security of protocols according to four gradual notions, 
Semantic Security (basic adversary), Semantic Security 
(known key attack adversary), Semantic Security with 
weak-Forward Secrecy, and Strong-Forward Secrecy. Thus, 
a user can design and evaluate security protocols to use our 
analyzer, according to the condition that the protocol will 
be used.   
Some existing analyzer requires generation of all possible 

messages by an adversary; however, our analyzer needs no 
generation of the massages. Algebraic approaches have a 
similar property to it. The algebraic approaches focuses on 
the protocol flow description, and our analyzer focuses on 
data property included in the protocol. Our analyzer has a 
fast verification process based on optimized rule sets.  
Furthermore, no analyzer has user-friendly user interfaces. 

Our analyzer has a sophisticated GUI to input security 
protocols. 
 
6. Considerations and Conclusion 
 
In this paper, we presented a new security protocol 
analyzer based on provable security concepts. We also 
implemented the analyzer, and showed how the analyzer 
may be used for analyzing authentication and key 
distribution protocols.  
The analyzer can progressively verify security of 

authentication and key distribution protocols according to 

Table 2: Evaluation Results 
Protocol T(ms) MA SS UK KK FS wFS sFS Atk 

Otway-Rees 10≤   X   X   X 
Needham-Schroeder 10≤      X   X 

ISO 11770-2(Protocol 1) 10≤   (X)   X   X 
AKEP1 10≤  X X X X X   - 
AKEP2 10≤  X X X X X   - 

Password-Based AKEP 10≤  X X X X X X X - 
T: Transaction Time, MA: Secure Mutual Authentication, SS: Semantic Security on the Basic Model,  
UK: Secure against Unknown Key Share Attacks, KK: Secure against Known key Attacks,  
FS: Forward Secrecy, wFS: weak Forward Secrecy, sFS: strong Forward Secrecy, and Atk: Attacks have been 
proposed. 

 

Table 3: Comparison of Processing Time 
Analyzer Year of Presentation Time(msec) 

AUTLOG[16]  1996 7.8*105 
Athena[26]  1999 160 
OFMC[24]  2003 151 

STA[25]  2005 55 
TRUST[25]  2005 63 

ASPASyA[25]  2005 750 
Proposed 2004 Less than 10 
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security notions in provable security. Some situations do 
not require a protocol to have the strongest security such as 
w-FS and s-FS. A user can choose a suitable security 
protocol for his/her security requirements and restrictions 
by using our analyzer.  

Translation from an analysis result to a proof is an open 
issue. In our analyzer, all cryptographic functions are 
simplified to a pseudorandom function. Gaps between 
proofs and the results of our analyzer may exist because of 
this simplification. Even under the assumption that all real 
functions are ideally secure, the result of the analyzer is 
feasible; more detailed analysis will be needed to eliminate 
gaps between proofs and the analysis results.  

Furthermore, the security notions of strong-Forward 
Secrecy based on BR model should be reconsidered. 
Related researches on provably-secure protocols have 
discussed only weak-Forward Secrecy as a security notion. 
It is an open problem whether s-FS is mandatory for a 
perfect secure key exchange protocol. The verification of 
our analyzer may be rather strict verification for security 
protocols. We continue the evaluation for various security 
protocols and will consider whether the verification rules 
can be relaxed.  

In our future research, we will continue to consider new 
security notions for analysis rules and more detailed rules 
that encode properties of cryptographic functions.  
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Appendix 
 
A.1 AKEP1 and Our Analyzing Steps 
 

In this section, we show an example of relation between 
proofs and our analysis rules. First, we describe the 
AKEP1 protocol proposed by Bellare and Rogaway and an 
overview of its proof, and then we explain the steps of our 
analyzer takes as compared to the proof.  

Figure 5 shows the AKEP1 protocol, where A and B are 
identifiers of Entity A and Entity B, RA and RB are random 
numbers, s1 and s2 are pre-shared secret keys, Mac[X]k 
indicates a message authentication code (MAC) of X using 
a key k, and Enc[X]k indicates the encryption of X using a 
key k. A session key is indicated by a. X.Y denotes the 
concatenation of X and Y. This protocol is a typical 3-way 
authenticated key exchange protocol.   

 

 
 

Fig. 5 AKEP1 Protocol 
 
We introduce an overview of the proof of AKEP1 for 

secure mutual authentication. AKEP1 is a provably-secure 
authentication protocol under a MAC function that is 
assumed to be a secure pseudorandom function. An output 
of a secure pseudorandom function is indistinguishable 
from that of a truly random function. The proof reduces the 
security of the authentication protocol to the security of the 

pseudorandom function. That is, they prove a machine that 
runs in polynomial time can be constructed by using an 
adversarial machine that can break the AKEP1 
authentication protocol using the pseudorandom function 
(called a real experiment). The adversary can break in 
polynomial time under the real experiment, but fails in a 
random experiment in which a pseudorandom function 
replaces to a truly random function. 
This machine fails to distinguish the pseudorandom 

function when the adversary can break the security 
protocol using a truly random function.  
Now, we discuss an adversary who spoofs the entity B in 

AKEP1, when the MAC function replaces a truly random 
function. The probability that the attack is successful is 
separated into two cases; 

(a) Successful forgery of 
[ [ ] ]2 1. . . . .A BMac B A R R Enc a s s  

This probability is expected to be 2-k, where k is 
the length of the MAC. 

(b)   The adversary E previously obtains 
[ [ ] ]2 1. . . .A BMac B A R R Enc a s s happening. In this 

case, RA is included in a list that the adversary E 
makes while recording communications between 
entities. The probability is at most (TE(k)-1)･2-k, 
where TE(k) denotes a polynomial bound on the 
number of communications made by E. 

 
The total probability that the adversary successfully 

spoofs the entity B in AKEP1 is at most TE(k)･2-k. In 
similar fashion, the probability that an adversary 
successfully spoofs the entity A is at most TE(k)･2-k. Thus, 
an adversary breaks AKEP1 with a truly random function.  
This probability is included in the probability that the 

machine trying to distinguish the pseudorandom function 
from the truly random one failed, because the probability 
means that the adversary breaks the protocols in the 
random experiment. 
Our analyzer calculates the probability as follows; 

(1)  The analyzer finds input data that changes the entity 
to an accepting state and is protected; the data is 

[ [ ] ]2 1. . . .A BMac B A R R Enc a s s  and [ ] 1. BMac A R s  
in AKEP1. 

(2)  The analyzer extracts the random numbers that are 
sent by the entity in a previous flow; that is RA for 

[ [ ] ]2 1. . . .A BMac B A R R Enc a s s and RB for  

[ ] 1. BMac A R s . Then, the analyzer calculates the 
length of the random numbers and compares with the 
security parameter. This operation corresponds to 
checking the event (b) in the proof. 

(3)  The analyzer checks the length of  
[ [ ] ]2 1. . . .A BMac B A R R Enc a s s and [ ] 1. BMac A R s .  
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This operation corresponds to checking the event (a) 
in the proof. 

 
The analyzer checks the security of the protocol based on 

the proof. 
 
A.2 Detailed Algorithms of Verification 
 
In this section, we describe detailed algorithms of protocol 
verifications. All verifications are executed for each entity.  
X ← Y indicates Y is inputted to X such as data, a flow, 
and a result. flows(U,U') indicates the s-th flow from U to 
U' in a protocol. The symbols, data, LLK, SK, TPK, and k 
indicates data or a function, a LL-key, a session key, a 
temporary public key, and a security parameter, 
respectively. fx denotes a function and it is used to specify a 
function. ResultU indicates the verification result of U. 
The symbol ¬  means “not”; for example, included¬  
means that data has a not included property.   

A.2.1 Secure Mutual Authentication 

We analyze Secure Mutual Authentication of 
authentication protocols as follows. The description 
“ΠU=accept by flows” means the flows change the entity 
ΠU to the accepting state.  

 
 
 
 
 
 
 
 

A.2.2 Semantic Security on the Basic Adversary 
Model 

We analyze Semantic Security of key distribution protocols 
as follows. 
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A.2.3 Secure against Unknown Key Share Attacks 

Each entity is checked for security against UKSA. If all 
entities are secure against UKSA, then the protocol is 
secure against UKSA.  

 

A.2.4 Secure against Known Key Attacks 

The analyzer checks a protocol's security against KKA as 
follows.  

 
 
 
 
 
 
 
 
 
 

A.2.5 Forward Secrecy 

The analyzer evaluates forward secrecy as follows.  

 

A.2.6 weak Forward Secrecy 

The analyzer checks the following steps. 

 

A.2.7 strong Forward Secrecy 

The analyzer evaluates strong Forward Secrecy as follows. 

 


