
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

99

Manuscript received  June 5, 2007 

Manuscript revised  June 20, 2007 

On Tolerating Failures of Mobile Hosts and Mobile Support 
Stations  

JinHo Ahn 
  

Dept. of Computer Science, Kyonggi University, Suwon Gyeonggi-do, Republic of Korea 

 
Summary 
In this paper, we present two fault-tolerant protocols for 
mobile computing systems; a causal message logging 
protocol and a receiver-based pessimistic message logging 
protocol for tolerating failures of mobile hosts (MHs) and 
mobile support stations (MSSs) respectively. The systems 
raise several constraints such as limited life of battery 
power, mobility and disconnection of hosts and lack of 
stable storage. Existing causal message logging protocols 
in distributed systems can efficiently handle some among 
the constraints. However, they are unable to handle the 
other constraints such as mobility and disconnection of 
MHs, and lack of stable storage. Our causal logging 
protocol can handle all the constraints efficiently and 
improve asynchrony during recovery. Moreover, it 
maintains only one checkpoint for each MH. Our receiver-
based pessimistic logging protocol reduces the failure-free 
overhead and improves scalability to a large number of 
MHs managed by each MSS compared with existing 
replication-based protocols. 
Key words: 
Distributed and mobile computing system, Fault-tolerance, 
Asynchronous checkpointing, Message logging, Recovery 

1. Introduction 

A mobile computing system extends a distributed 
computing system to support mobility of hosts by 
providing MHs with continuous network connections. In 
other words, it consists of MHs, MSSs that are fixed hosts 
and act as access points for MHs by wireless links, and 
other fixed hosts [1]. MHs have the following new 
features [1, 12, 21] that make them different from fixed 
hosts. 

 
• Changes in MHs’ locations: When an MH h1 sends 
messages to an MH h2, the messages may have to be 
rerouted if h2 moves from one cell to another. Searching 
an MH generally increases the delay and message 
complexity. 
 

• Limited battery life each MH has: Each MH is 
occasionally powered by batteries. To minimize power 
consumption, it can power down important sources of 
power consumption such as network transmissions and 
disk accesses. 
 
• Disconnection: A disconnected MH is unreachable from 
the rest of the network. While disconnected, the MH can 
not send or receive any message to or from other hosts. 
 
• Vulnerability of MHs to failures: MHs can fail more 
often and concurrently than fixed hosts because the battery 
is discharged and contents in memory are lost, or the 
operating system crashes. Thus the MH’s disk is not stable. 
 

As mobile computing systems scale up, their failure rate 
may also be higher. Thus, they require the techniques to 
support fault-tolerance for MHs and MSSs respectively. 
Log-based rollback recovery is among the techniques, and 
requires that each process periodically saves its local state 
and logs the messages it received after having saved the 
state. Message logging protocols are classified into 
pessimistic [10, 20], optimistic [7, 11, 18], and causal [2, 3, 
4, 6]. In this paper, we present a causal message logging 
protocol and a receiver-based pessimistic message logging 
protocol for tolerating failures of MHs and MSSs 
respectively. Although pessimistic logging protocols 
provide fast recovery, they require a process to save 
synchronously every received message on stable storage 
before it delivers the message to the application. Thus, 
they may be unsuitable for minimizing power 
consumption of MHs during failure-free execution. 
Although optimistic logging protocols result in low 
failure-free overhead compared with pessimistic logging 
ones, they may cause live processes to rollback to their 
previous globally consistent set of states because failed 
processes lose their volatile logs. Thus, they may be 
unprofitable for minimizing power consumption of MHs 
during recovery. Causal logging protocols used in 
distributed systems require each process to save received 
messages in its volatile memory during failure-free 
execution and restrict the rollback of any failed process to 
the most recent checkpoint on stable storage even in 
concurrent failures. Their features may be profitable for 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

100 

minimizing power consumption of MHs during failure-
free execution and recovery. However, they require the 
mechanisms for handling the constraints such as mobility 
and disconnection of MHs, and lack of stable storage. 
Furthermore, these constraints make other recovery 
algorithms, based on the causal logging protocols in 
distributed systems, unsuitable for mobile computing. For 
examples, some recovery algorithms [2, 3, 6] prevent live 
processes from continuing executing during recovery and 
require some synchronous logging to stable storage while 
recovery is ongoing. Although Elnozahy’s recovery 
algorithm [4] solves the problems, it requires a central 
recovery leader, which may be a performance bottleneck. 
Moreover, it results in nontrivial election overhead and if 
the leader fails continuously before it completes its 
recovery procedure, the other recovering processes should 
continue being blocked. Additionally, if it were integrated 
with asynchronous checkpointing, it could result in 
inconsistency problems in case of concurrent failures. Our 
causal message logging protocol can handle all the 
constraints of MHs efficiently and solve all the stated 
problems of Elnozahy’s recovery algorithm because each 
recovering process is responsible for only its recovery. 

As mobile computing is increasingly gaining popularity, 
MSSs should manage a large number of mobile hosts. 
Thus, they may be single points of failure and potential 
performance bottlenecks. Especially if a home agent in 
Mobile IP [16] fails, all the MHs managed by it can not 
communicate with other hosts. The problems can be 
solved allowing multiple MSSs to be assigned to a 
network. Existing fault-tolerant protocols to mask failures 
of MSSs have used replication techniques [8]. In the 
protocols, all multiple MSSs on a network must always 
maintain the location information about every MH 
registering with the network respectively. Thus, the 
protocols result in high synchronization overhead among 
replicas and are not scalable. Our receiver-based 
pessimistic logging protocol reduces the failure-free 
overhead and improves scalability to a large number of 
MHs managed by each MSS compared with the 
replication-based protocols. 

The rest of the paper is structured as follows. In section 
2, we explain the distributed and mobile computing system 
model assumed in this paper. Sections 3 and 4 propose 
efficient protocols for tolerating failures of MHs and 
MSSs respectively, and then section 5 compares our work 
with related works. Finally, we conclude this paper in 
section 6. 

2. System Model 

We assume the mobile computing system like in figure 
1. It consists of a set of MHs and a set of fixed hosts and is 
asynchronous: there is no global clock and no limits of the 

relative speeds of processors. A fixed host may be a 
regular host (FH) or a MSS. A MSS is connected by a 
fixed wired network, which provides reliable FIFO 
delivery of messages. A cell is a geographical area in 
which a MSS supports MHs. Each MH can directly 
communicate with a MSS by a reliable FIFO wireless 
network only if the MH is in the cell covered by the MSS. 
Hosts in the system communicate with each other only 
through messages. To manage a large number of MHs in a 
network, multiple MSSs, not one may be assigned to the 
network like in figure 1 [8]. The execution of each process 
on each host is piecewise deterministic [5]. We assume 
that hosts fail, in which case they lose contents in their 
volatile memories and stop their executions, according to 
the fail stop model [5]. Events of processes in a failure-
free execution are ordered using Lamport’s happened 
before relation [13].  
 

Wired Network

MSSBi

MSSA1
MH1 MHi

FH2FH1

MSSB1

MSSAk

cell

wireless link

Network A

Network B

 

Fig. 1.  Mobile Computing System Model 

3. The Protocol for tolerating failures of MHs 

3.1 Traditional causal message logging protocols 

Traditional causal logging protocols used in distributed 
systems have the advantages inherited from pessimistic 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

101

and optimistic logging protocols [3]. First, each process 
piggybacks determinants in its volatile memory on every 
message to be sent to each other in order to prevent orphan 
processes like in pessimistic logging protocols. The 
determinant of a message includes the identifiers of the 
sender process (SID) and the receiver process (RID), the 
send sequence number assigned to the message by the 
sender (SSN), and the receive sequence number assigned 
to it by the receiver (RSN). Therefore this advantage is 
profitable for minimizing the number of local checkpoints 
maintained for each MH’s recovery because the protocols 
may restrict the rollback of any failed process to the most 
recent checkpoint on stable storage even in concurrent 
failures. Second, each process logs all determinants 
piggybacked on each received message in its volatile 
memory like in optimistic logging protocols. This 
advantage is profitable for minimizing the number of 
network transmissions of MHs during failure-free 
execution. However, they can not handle mobility and 
disconnection of MHs, and lack of stable storage.  

Some recovery algorithms [2, 3, 6] of the protocols 
prevent live processes from continuing executing during 
recovery, which may reduce the speed of the computation 
of the entire system. Elnozahy’s recovery algorithm [4] 
solves the problem. However, it requires a central 
recovery leader, which may be a performance bottleneck. 
Moreover, it results in nontrivial election overhead and if 
the leader fails continuously before it completes its 
recovery procedure, the other recovering processes should 
continue being blocked. Additionally, if it were integrated 
with asynchronous checkpointing, it could results in 
inconsistency problems in case of concurrent failures like 
in figure 2. For example, we assume that p2 sends m3 to 
p3 and fails after it has received m1 and m2 from p1 and p3 
respectively. In Elnozahy’s algorithm, p2 restores its latest 
checkpoint and then sends p1 and p3 recovery messages to 
know whether p1 and p3 are recovering or live processes. 
If p3 receives the recovery message from p2 after p3 has 
received m3 from p2, taken its local checkpoint, failed and 
been repaired, it notifies p2 that it is a recovering process. 
Receiving the recovery message from p2, p1 notifies p2 
that it is a live process. Then, p2 and p3 elect a recovery 
leader. If p2 is the recovery leader, it sends a recovery 
message to p3 for obtaining p3’s incarnation number. 
Receiving p3’s response, it collects determinants for p2 
and p3 from only all the live process, in this case, p1. 
However, it is unable to know the RSN of m1 and m2 
because p3 has the determinant of m1 and m2, but is a 
recovering process, not a live process. 
Thus, p2 may not replay m3 if it receives m2 and then m1 
in order and p3, be an orphan process because p3 restarts 
from the checkpoint after p3 has received m3 from p2. 

3.2 Basic Idea 

3.2.1 Handling constraints in mobile computing systems 
This section describes how to handle the following 

constraints in our causal logging protocol. 
 

p1

p2

p3

m
1

time

m
2

Failure

Checkpoint

m
3

 

Fig. 2.  An execution of three processes with two process failures 

• Lack of stable storage: To save its local checkpoint, each 
MH requires stable storage, However, it is vulnerable to a 
total catastrophic failure. Thus the MH’s disk is not stable. 
Therefore, each MH uses the stable storage of its local 
MSS, which the MH currently registers with, for saving its 
local checkpoint in our protocol. 
 
• Changes in MHs’ locations: This constraint complicates 
the routing of messages. There are many routing protocols 
for the network layer to handle this constraint [9]. In our 
protocol, if a MH intends to take a local checkpoint, it 
sends its local state, the determinants in its volatile 
memory, its incarnation number and etc. to its local MSS. 
Incarnation number of each MH is incremented by one 
whenever the MH fails and starts to recover [18]. When 
the MSS receives them, it saves them on stable storage and 
if there was the old checkpoint of the MH, it sends a 
message for deleting the checkpoint to MSSold, which has 
saved the checkpoint. The reason is that each MH requires 
only the latest checkpoint of the MH during recovery in 
our causal logging protocol and multiple number of 
checkpoints of the MH need not be saved at MSSs. If a 
MH enters into a new cell covered by MSSnew, the local 
MSS sends MSSnew the identifier of the MSS saving the 
latest checkpoint of the MH. This approach eliminates the 
overhead for moving the checkpoint to MSSnew whenever 
the MH enters into MSSnew. 
 
• Disconnection: Before disconnecting from its local MSS, 
MHp takes a local checkpoint and sends the local MSS its 
checkpoint and the determinants needed for recoveries of 
other MHs. Receiving them, the MSS save the checkpoint 
of the MHp on stable storage and the determinants in its 
volatile memory. During the disconnect interval, 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

102 

application messages destined to the MHp are buffered at 
the MSS until the end of the interval. Even if other MHs 
fail during the disconnect interval, the MSS can provide 
them the determinants related to them on behalf of the 
MHp. When the MHp reconnects to the local MSS, the 
MSS sends the buffered messages to the MHp. Receiving 
them, the MHp logs the messages in its volatile memory 
and delivers them to the application in order. If the MHp 
enters into a new cell covered by MSSnew during the 
disconnect interval, MSSnew receives the buffered 
messages from the old MSS and sends them to the MHp. 
   
3.2.2 Recovery Algorithm 

To solve the problems of Elnozahy’s recovery 
algorithm stated in section 3.1, we propose an efficient 
recovery algorithm as follows: If processes fail, each 
process requires its last checkpoint and determinants from 
its local MSS. After having received and restored them, it 
sends the other processes a recovery message including its 
incarnation number and state flag respectively for 
obtaining their incarnation numbers and state flags. The 
state flag of a recovering process denotes ‘R’, and that of a 
live process denotes ‘L’. If each process receives the 
recovery message from a recovering process, it sends its 
state flag and incarnation number to the recovering 
process. After each recovering process has received the 
state flags and incarnation numbers of the other processes, 
it sends the other processes a recovery message with a 
vector, whose element consists of the state flag and 
incarnation number of every process, for requiring the 
determinants related to only itself. Receiving the recovery 
message from the recovering process, each (live or 
recovering) process sends the recovering process the 
determinants related to only it. If any among live 
processes fails and sends each recovering process a 
recovery message for obtaining its state flag and 
incarnation number, the recovering process discards all the 
determinants collected so far, and restarts collecting the 
determinants related to only itself from the other processes 
again. This step ensures that the state of every recovering 
process is consistent with that of any process even 
although live processes fail concurrently during recovery. 
After each recovering process has received the requested 
determinants from all the other processes, it replays all the 
received messages in a failure-free execution, completes 
its recovery, and executes as a live process. Therefore, 
each recovering process can recover to a consistent state 
by using its determinants without the stated recovery 
leader problems and improve asynchrony among 
recovering processes. Additionally, our algorithm keeps 
executing live processes in concurrent failures because 
each live process can immediately decide whether 
received messages must be discarded or delivered by using 

its vector including the state flags and incarnation number 
of every process. 

Moreover, our protocol can recover each recovering 
process to its consistent state if it is integrated with 
asynchronous checkpointing. To illustrate this fact, 
consider the example shown in figure 2. In this case, p2 
restores its latest checkpoint and then sends p1 and p3 a 
recovery message for obtaining p1’s and p3’s incarnation 
number and state flag in our protocol. After p3 has 
received m3 from p2, taken its local checkpoint, failed, 
been repaired and received the recovery message, it sends 
p2 a response including its incarnation number and ‘R’. 
Receiving the recovery message, p1 sends p2 a response 
including its incarnation number and ‘L’. Then, p2 
receives from p1 and p3 their incarnations and flags, and 
sends p1 and p3 a recovery message with p1’s and p3’s 
incarnation number and state flag for collecting its 
determinants respectively. Receiving the message, p3 can 
provide p2 with determinants of m1 and m2 including their 
RSNs. Thus, p2 can replay m3 and recover to a consistent 
state after it delivers m1 and then m2 to the application by 
using their RSNs. 

4. The Protocol for tolerating failures of 
MSSs 

4.1 Basic Idea 

To solve the stated problems of the existing replication-
based protocols in this paper, we present a receiver-based 
pessimistic message logging protocol with checkpointing. 
For example, suppose MH1 currently obtains a care-of 
address from MSSA1 on network A in figure 1. In this case, 
MH1 must send a registration request message to MSSA1. 
Receiving the message like in figure 3, MSSA1 saves the 
recovery information of the message in the stable storage 
and then, updates the location information of MH1 using 
the message. Then, it sends MH1 a request reply message. 
This step ensures that one among other MSSs on the 
network, named MSSAk, can restore the location 
information of all the MHs registering with MSSA1 by 
restoring the messages from the stable storage and 
replaying them even if MSSA1 fails. Moreover, each MSS 
should save the location information of all the MHs 
registering with it in the stable storage periodically and 
remove all the logged messages beyond the previous 
checkpoint from the stable storage. Therefore, this 
protocol can reduce the failure-free overhead compared 
with the existing protocols because it needs not forward 
each registration request message to the other MSSs and 
wait for each acknowledge message from them. 
Furthermore, it improves the scalability to a large number 
of MHs registering with each network compared with the 
previous protocols because each MSS has only to maintain 
the location information about the MHs registering with it. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

103

 In mobile computing systems, each MSS broadcasts its 
advertisement message via its wired or wireless network 
interface every few seconds. Therefore, each MSS can 
detect if other MSSs fail or not by monitoring their 
advertisement messages. For example, if MSSA1 on 
network A fails in figure 1, live redundant MSSs on the 
network can detect MSSA1’s failure because they may 
receive no advertisement message from it. Each MSS has 
a vector saving a timer of each MSS on the same network. 
Whenever ADVERTISING_INTERVAL (2~3) seconds 
has elapsed, it decrements the timer for each MSS by one. 
 

①

②

③

④

⑤

Network A

Registration Request MSG and its RSN

Stable 
Storage

RSN1

Bindings1

Timers1

RSN1

Bindings1

Timers1

Save {RSN1, RR msg}

MSSA1
MSSA2 MSSA3

Registration Request Message

Update the binding of a MH

Acknowledgement Message

 

Fig. 3.  Message logging procedure 

 If some MSSs detect MSSA1’s failure, one among them, 
for example, MSSA2 in figure 4 which currently has the 
minimum number of its managed MHs, takes over MSSA1. 
This step ensures that the protocol is scalable even during 
recovery compared with the existing protocols. MSSA2 
restores the location information about all the MHs 
registering with MSSA1 and obtains the logged messages 
for MSSA1 from the stable storage. Then, it can recover the 
latest location information about all the MHs, which 
MSSA1 managed before it failed, by replaying the messages 
in receipt sequence order. After that, MSSA2 performs a 
gratuitous ARP binding MSSA1’s IP address to MSSA2’s 
hardware address to take over MSSA1 [17]. Therefore, the 
protocol provides the MHs with the transparency of their 
MSSs’ failures and replacement.  
 

Network A

Stable 
Storage

①

Require MSS1’s location 
information

{RSN1, Bindings1, Log1}
Update Bindings1 

by replaying Log1

Perform a Gratuitous ARP④

②

③

MSSA2
MSSA3MSSA1

 

Fig. 4.  Takeover procedure 

If a failed MSS MSSA1 is repaired like in figure 5, it should 
monitor any advertisement message, including its IP 
address, for a few seconds and perform a gratuitous ARP 
mapping its IP address to its hardware address. If no other 
MSS took over it, it should restore the location 
information about all the MHs registering with it and 
obtain the logged messages for it from the stable storage. 
Then, it can recover the latest location information about 
the MHs before it failed by replaying the messages in 
receipt sequence order. If it receives an advertisement 
message including its IP address from a live MSS MSSA2 
in figure 5, it should require from MSSA2 the location 
information of all the MHs registering with it. If MSSA2 
fails during its recovery, the recovering MSS MSSA1 can 
recover the latest location information about all the MHs 
registering with it by using its checkpoint and logged 
messages on the stable storage. 
 

MSSA1

Network A

Stable 
Storage

{RSN1, Bindings1}

Perform a Gratuitous ARP

Require MSS1’s 
location information①

②

③

Repaired MSS

MSSA2 MSSA3

 

Fig. 5.  Recovery procedure 

5. Discussion 

The asynchronous checkpointing algorithm proposed by 
Achrarya et al. [1] requires each process to take a 
checkpoint whenever a message transmission precedes a 
message reception. This approach might force each 
process to take as many checkpoints as the number of 
messages if the message reception and transmission are 
interleaved. It may results in high failure-free overhead. 
Although some checkpointing algorithms [14, 19, 21, 22] 
reduce the number of checkpoints to be saved on stable 
storage, to ensure correctness, each process still needs to 
take forced checkpoints when required and keep much 
more checkpoints in them than in our checkpointing 
algorithm. Our causal logging protocol never requires 
each process to take the forced checkpoints. The adaptive 
checkpointing protocol proposed by Neves and Fuchs [15] 
uses time to indirectly coordinate the creation of 
recoverable consistent checkpoints. It requires that 
checkpoints be sent back only to Home Agents. However, 
our protocol has not the limitation because each process 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

104 

takes its local checkpoint on the stable storage of its 
current local MSS in the protocol. Yao et al. [20] propose 
a receiver-based pessimistic message logging protocol for 
tolerating failures of MHs. It allows failed processes to 
recover fast and asynchronously. However, it has the 
common disadvantages of pessimistic logging protocols. 
Thus, it may result in high failure-free overhead. Although 
our protocol may recover failed processes slower than that 
of Yao et al., it results in lower failure-free overhead than 
that of Yao et al. Next, we will compare our protocol with 
other causal logging protocols. FBL protocols [2, 3] block 
the execution of live processes during recovey because 
they should prevent the live processes from becoming 
orphan processes. Manetho protocol [6] can recover 
concurrently failed processes but it requires live processes 
to refrain from accepting certain application messages 
during recovery and some synchronous logging to stable 
storage while recovery is ongoing. Elnozahy’s recovery 
algorithm [4] can recover concurrently failed processes 
and it continues executing live processes during recovery. 
However, it requires a central recovery leader, which may 
be a performance bottleneck. Moreover, it results in 
nontrivial election overhead and if the leader fails 
continuously before it completes its recovery procedure, 
the other recovering processes should continue being 
blocked. Additionally, if it were integrated with 
asynchronous checkpointing, it could results in 
inconsistency problems in case of concurrent failures like 
in figure 2. Our protocol solves Elnozahy’s problems and 
improves asynchrony among recovering processes because 
each recovering process is responsible for only its 
recovery.  

In next part, we intend to compare our receiver-based 
pessimistic logging protocol (denoted by ORPP) with the 
protocol presented in [8] (denoted by FTMIPS) briefly. 
Generally, performance indices used for evaluation of 
scalability of FTMIPS and ORPP are the number of MHs 
whose location information is managed by each MSS on a 
network (denoted by NOMHMSS) and the latency time for 
its processing a registration request message from each 
MH (denoted by LTRR). Table 1 shows the parameters, 
which NOMHMSS depends on, and their meanings. For 
simplicity, we suppose that the same number of MHs 
registers with each MSS on a network. It means that if 
NOMH is n and NOMSS is m, the number of MHs 
registering with each MSS is (n / m). 

Table 1. Parameters and their meanings 

 
First, we evaluate scalability provided by ORPP and 

FTMIPS with respect to NOMHMSS during failure-free 

operation. If NOMHMSS of the two protocols are 
calculated using the parameters respectively, that of ORPP 
is (NOMH / NOMSS) whereas that of FTMIPS is NOMH 
during failure-free operation. The reason for these results 
is that each MSS on a network must maintain the location 
information about the MHs registering with all the 
redundant MSSs on the same network in FTMIPS whereas 
each MSS has only to maintain the MHs registering with it 
in ORPP. Therefore, we can see that ORPP improves 
scalability to a large number of MHs managed by each 
MSS compared with FTMIPS during failure-free operation. 
Next, we evaluate scalability provided by ORPP and 
FTMIPS with respect to LTRR during failure-free 
operation. If each MSS receives a registration request 
message from a mobile host in FTMIPS, it should process 
the message and forward the message to its peers and wait 
for receiving all the acknowledgement messages from 
them. Thus, the total number of messages generated per 
registration request message in FTMIPS is (2 × NOMSS) 
and the number of messages on the critical path is 
(NOMSS + 1). However, in ORPP, it should process the 
message and send a stable storage server a message for 
saving the recovery information of the message to stable 
storage and wait for receiving an acknowledgement 
message from it. Thus, the total number of messages 
generated per registration request message in ORPP is 2 
and the number of messages on the critical path is 2. 

Next, we evaluate the overhead of the two protocols for 
taking over or recovering failed MSSs. In FTMIPS, a live 
MSS can recover failed MSSs fast because it always 
maintains the location information about all the MHs 
registering with not only itself but also its peers. The 
takeover time of ORPP may be longer than that of 
FTMIPS because each live MSS has only to maintain the 
location information about the MHs registering with it and 
should recover the location information of failed MSSs 
from the stable storage. 

If there are live MSSs on a network, the recovery time 
of failed and repaired MSSs are the same in the two 
protocols because they can recover their location 
information from the live MSSs in both. However, if not 
so, each failed MSS can recover its location information 
from the stable storage in ORPP whereas it can not 
recover anywhere in FTMIPS. 

6. Conclusion 

In this paper, we first identified the limitations raised 
when traditional causal message logging protocols are 
applied to mobile computing systems and their problems 
such as blocking the execution of live processes during 
recovery, requiring a central recovery leader among 
recovering processes and making inconsistency if 

NOMH Number of MHs registering with a 
network 

NOMSS Number of redundant MSSs on a network 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

105

Elnozahy’s protocol were integrated with asynchronous 
checkpointing. Then, we presented a causal message 
logging protocol for tolerating failures of MHs. It can 
efficiently handle all the stated constraints in mobile 
computing systems and allow processes to make 
consistency with each other even in concurrent failures 
when it is integrated with asynchronous checkpointing. 
Moreover, it enables live processes to execute their 
computation even in concurrent failures and improves 
asynchrony among recovering processes because each 
recovering process is responsible for only its recovery 
using its vector consisting of incarnation number and state 
flag of every process. 
  Second, the existing replication-based protocols for 
tolerating failures of MSSs result in high synchronization 
overhead among replicas and are not scalable. Therefore, 
we presented a receiver-based pessimistic message 
logging protocol for solving the problems of the existing 
protocols. We showed that it reduces the failure-free 
overhead and improves scalability to a large number of 
MHs registering with each network compared with the 
existing protocols in section 5. Additionally, we can see 
that even if all the MSSs on a network fail, they can 
recover all the related information of the MHs registering 
with the network after they have been repaired and 
executed our protocol. 

 
References 
 

[1] A. Acharya and B. R. Badrinath. “Checkpointing 
Distributed Applications on Mobile Computers,” 
Proc. the 3rd Int’l Conf. On Parallel and Distributed 
Information Systems, Sep. 1994. 

[2] L. Alvisi, B. Hoppe, and K. Marzullo. “Nonblocking 
and Orphan-Free Message Logging Protocols,” Proc. 
the 23rd Fault-Tolerant Computing Symposium, pp. 
145-154, June 1993. 

[3] L. Alvisi and K. Marzullo. “Message Logging: 
Pessimistic, Optimistic, Causal and Optimal,” IEEE 
Transactions on Software Engineering, 24(2): pp. 
149-159, Feb. 1998. 

[4] E. N. Elnozahy. “On the relevance of 
Communication Costs of Rollback Recovery 
Protocols,” Proc. the 15th ACM Symposium on 
Principles of Distributed Computing, pp. 74-79, 
1995. 

[5] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B. 
Johnson, “A Survey of Rollback-Recovery Protocols 
in Message-Passing Systems,” ACM Computing 
Surveys, 34(3), pp. 375-408, 2002. 

[6] E. N. Elnozahy and W. Zwaenepoel. “Manetho: 
Transparent rollback-recovery with low overhead, 
limited rollback and fast output commit,” IEEE 
Transactions on Computers, 41(5): pp. 526-531, 
May 1992. 

[7] O. P. Damani and V. K. Garg. “How to Recover 
Efficiently and Asynchronously when Optimism 
Fails,” Proc. the 16th International Conference on 
Distributed Computing Systems, pp. 108-115, 1996. 

[8] R. Ghosh and G. Varghese. Fault-Tolerant Mobile IP. 
Technical Report WUCS-98-11, Washington 
University, April 1998. 

[9] J. Ioannidis, D. Duchamp, and G.Q. Maguire. “Ip-
based Protocols for Mobile Internetworking,” Proc. 
Of ACM SIGCOMM Symp. on Communication, 
Architectures and Protocols, pp. 235-245, Sep. 1991. 

[10] D. B. Johnson and W. Zwaenpoel. “Sender-Based 
Message Logging,” In Digest of Papers: 17 Annual 
IEEE International Symposium on Fault-Tolerant 
Computing, pp. 14-19, June 1987. 

[11] D. B. Johnson and W. Zwaenepoel. “Recovery in 
distributed systems using optimistic message 
logging and checkpointing,” Proc. the 7th Annual 
ACM Symposium on Principles of Distributed 
Computing, pp. 171-181, August 1988. 

[12] P. Krishna, N. H. Vaidya, and D. K. Pradhan. 
“Recovery in Distributed Mobile Environments,” 
IEEE Workshop on Advances in Parallel and 
Distributed System, Oct. 1993. 

[13] L. Lamport. “Time, Clocks, and the Ordering of 
Events in a Distributed System,” Communications 
of the ACM, 21(7), pp. 558-565, 1978. 

[14] D. Manivannan and Mukesh Singhal. “A Low-
Overhead Recovery Technique Using Quasi-
Synchronous Checkpointing,” Proc. the 16th 
International Conference on Distributed Computing 
Systems, pp. 100-107, 1996. 

[15] N. Neves and W. K. Fuchs. “Adaptive Recovery for 
Mobile Environments,” Communications of the 
ACM, 40(1): pp. 68-74, Jan. 1997 

[16] C. Perkins. IP Mobility Support. RFC 2002, October 
1996. 

[17] D. C. Plummer. An Ethernet Address Resolution 
Protocol - or – Converting Network Protocol 
Address to 48 bit Ethernet Address for Transmission 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

106 

on Ethernet Hardware. STD 37, RFC 826, 
November 1982. 

[18] R. B. Strom and S. Yemeni. “Optimistic recovery in 
distributed systems,” ACM Transactions on 
Computer Systems, 3(3): pp. 204-226, Apr. 1985. 

[19] Y. Wang and W. K. Fuchs. “Lazy Checkpoint 
Coordination for Bounding Rollback Propagation,” 
Proc. the 12th Symposium on Reliable Distributed 
Systems, pp. 78-85, 1993 

[20] B. Yao, K. –F. Ssu and W. K. Fuchs. “Message 
Logging in Mobile Computing,” Proc. 29th Annual 
IEEE International Symposium on Fault-Tolerant 
Computing, pp. 14-19, Oct. 1999. 

[21] G. Cao, M. Singhal, “Checkpointing with mutable 
checkpoints”, Theoretical Computer Science, Vol. 
290, pp. 1127-1148, 2003 

[22] M. Chaoguang, W. Dongsheng and Z. Yunlong, 
“An Efficient Computing-Checkpoint Based 
Coordinated Checkpoint Algorithm”, Lecture Note 
In Computer Science, Vol. 4096, pp. 99-109, 2006. 

 
 

JinHo Ahn received his 

B.S., M.S. and Ph.D. degrees in 

Computer Science and 

Engineering from Korea University, 

Korea, in 1997, 1999 and 2003, 

respectively. He has been an 

Assistant Professor in department 

of Computer Science, Kyonggi 

University. His research interests 

include distributed computing, 

fault-tolerance, mobile computing 

systems, mobile agent systems 

and sensor networks. 

 


