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Summary 
Parameterization of a 3D mesh is a fundamental problem 
in a variety of applications such as shoe CAD system and 
geometric modeling. There are two major paradigms in 
mesh parameterization: energy functional minimization 
and the convex combination approach. In general, the 
convex combination approach is widely used because of 
simple concept and fast computation. However, the 
approach has some problems such as fixed boundary and 
high distortion near the boundary.  In this paper, we 
present an extension of the approach based on the 
geodesic-fan representation and mean value coordinates, 
which resolves the drawbacks of the convex combination 
approach. Moreover, we apply our result to a 3D shoe 
CAD system in order to resolve the practical problems of 
industry. 
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1. Introduction 

Parameterization of a 3D triangular mesh is a fundamental 
problem in various applications of computer graphics and 
computer animation. Mesh parameterization of 3D surface 
is a one-to-one mapping without any fold-over. This 
special property provides an elegant and robust solution to 
various problems in geometric modeling and computer 
graphics, such as texture mapping, mesh morphing, and 
smooth surface fitting [1-8]. In general, the mesh cannot 
be flattened over a plane without distortion. The main 
purpose of research on mesh parameterization is to 
minimize distortion. Especially, such distortion 
minimization is very important problem in the practical 
applications such as shoe cad system [9,10].  
 
There exist two major approaches in mesh 
parameterization. One is energy functional minimization 
and the other is convex combination approach. For the 
first approach, several methods have been developed to 
define and minimize an energy functional that measures 
distortion in the embedded mesh. Maillot et al. proposed a 
method to minimize a norm of the Green–Lagrange 
deformation tensor based on elasticity theory [5]. Eck et al. 

minimized the metric dispersion of harmonic imbedding 
instead of [1]. A non-deformation criterion (i.e., Dirichlet 
energy per parameter area) is introduced in [11] with 
extrapolating capabilities.  One of the most widespread 
methods for parameterization of 3D mesh surface with the 
topology of a disk is proposed by Floater [12]. In general, 
this approach is called as convex combination approach 
because it is based on the convex combination of 
neighborhood vertices. The convex combination approach 
is an extension of the barycentric mapping approach 
proposed by Tutte [13]. This approach obtains 
parameterization by fixing the boundary vertices of a 3D 
mesh onto a 2D convex polygon and solving a linear 
system to determine the 2D embedded positions of the 
interior vertices. The linear system is constructed by 
representing each interior vertex as a convex combination 
of its neighborhood. In this approach, the major problem 
concerns how to determine the coefficients of the convex 
combination for each interior vertex. Floater proposed 
shape preserving parameterization, where the coefficients 
are determined by using conformal mapping and 
barycentric coordinates [12]. The harmonic embedding [1] 
is also a special case of this approach, except that the 
coefficients may be negative. 
 
 

 
 

Fig.1. Shoe CAD system: (a) 3D shoe last  
(b) 2D parameterization of the last 
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There are several constraints in practical applications of 
parameterization such as 3D shoe cad systems. The 
famous shoe design systems are Crispin Dynamics, Shoe-
master, Dimensions, and etc. Crispin is a CAD system 
focusing on the shoe styling for shoe-masters [9,10].  
Shoe-master designed by CSM3D Ltd shows a great 
advantage in the field of shoe’s heel and sole design. 
Figure 1 shows a 3D shoe last and the result of 
parameterization satisfying the constraints of 3D shoe cad 
system. The surface of the last in the left part of Figure 1 
consists of two regions: exterior region and interior region 
divided by blue lines. The exterior and the interior regions 
are positioned in the left and the right parts of the 3D last, 
respectively. The right part of Figure 1 is the result of our 
method, which consists of two parameterizations. In 
general, there are two constraints of mesh 
parameterization in 3D shoe system. One is to preserve the 
length of special curves on the boundary between the 
exterior and the interior regions The lengths of toe, heel, 
and instep have to be preserved under parameterization. 
The other is that the difference between the areas of the 
last’s surface and the result of parameterization has to be 
minimized as much as possible.  
 
In this paper, we present a new method of mesh 
parameterization based on geodesic-fan representation and 
mean value coordinates so that it satisfies the shoe cad 
constraints. We exploit geodesic-fan representation and 
edge tweaking method in order to satisfy the practical 
constraints, and mean value coordinates and convex 
combination approach to speed up the process of 
parameterization. 
 
The remainder of the paper is as follows. In Section 2 we 
review the existing convex combination approach. In 
Section 3, we explain our algorithm that is called as 
geodesic-fan based approach. First, we introduce the 
concepts of geodesic-fan representation and mean value 
coordinates. We explain the edge tweaking method so that 
the result resembles the shape of the boundary of the mesh 
and satisfies the length constraints. The experimental 
results in shoe cad system are shown in Section 4. Section 
5 provides a summary and discusses some future work. 

2. Convex Combination Approach 

First of all, we introduce a pioneer method of the convex 
combination approach to mesh parameterization, which 
was developed by Floater [12]. Let Nuu ,,1 L  be the 2D 
embedded positions of 3D vertices, Nvv ,,1 L , where 

nvv ,,1 L  and Nn vv ,,1 L+  are the interior and the 
boundary vertices of a mesh, respectively. The convex 

combination approach determines the values of 

Nn uu ,,1 L+  by mapping the 3D boundary onto a given 
convex polygon in a 2D parameter space. To obtain the 
values of nuu ,,1 L  the approach represents iu as a 

convex combination of ju , where jv are the one-ring 

neighborhood vertices of iv . In other words, 
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Here, E  is the edge set of the mesh. We can compute the 
values of nuu ,,1 L by solving the linear system in Eq. (2), 
which is derived from Eq. (1): 
 

,
1

,
1

, j

N

nj
jij

n

j
jii uuu ∑∑

+==

=− λλ      ni ,,1L= .    (2) 

 
The right hand of the equation is already known value 
because the position of the boundary vertices is 
determined by the mapping. So, Eq. (2) becomes the 
following matrix equation 
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Floater proved that a unique solution of the linear system 
in Eq. (2) always exists. He also proved that if mapping 
between the 3D boundary and the 2D convex polygon is 
one-to-one, mapping for the interior vertices becomes an 
embedding without overlaps. The shape of the embedding 
depends on the coefficients ji,λ of the convex 

combination. Floater proposed three methods to obtain the 
coefficients: uniform parameterization, chord length 
parameterization, and shape-preserving parameterization. 
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Among them, the last method best reflects the shape of a 
mesh since the method has the affine invariant property 
 
We ascertain a drawback with the convex combination 
approach: high distortion occurs near the boundary. We 
guess that the fixed boundary causes such a high distortion. 
So we propose an extension of this convex combination 
approach with floating boundary and mean value 
coordinates. The floating boundary is obtained by one-
layer virtual boundary vertices and edge tweaking method. 
The mean value coordinates are based on geodesic-fan 
representation.  We call our method as geodesic-fan based 
parameterization. 

3. Geodesic-Fan Based Approach 

The major problem of parameterization of a 3D triangular 
mesh concerns how to embed a mesh onto a 2D parameter 
space so that the shapes of triangles can be well preserved. 
In the convex combination approach, fixing the boundary 
of a mesh onto a convex polygon highly deforms the 
triangles near the boundary in 2D parameter space. In 
contrast, if boundary vertices can move to reflect the 3D 
boundary shape of a mesh, we can decrease distortion near 
the boundary of an embedding. Hence, our basic idea 
starts from how to make vertices on the boundary move to 
reflect the 3D boundary shape of a mesh in 2D parameter 
space. To freely move boundary vertices, we apply edge 
tweaking method to the boundary. And then we adopt the 
geodesic-fan representation in order to efficiently 
represent the relationship between vertices on the mesh 
surface [14]. Based on this representation, we compute the 
barycentric coordinates ji,λ of an inner vertex iu  with 

mean value coordinates. Lastly, we rescale the 
parameterization in order to apply a 3D shoe cad system as 
shown in Figure 2. 
 
 
 

Mean Value Coordinates Computation
(Geodesic-Fan Representation)

Floating Boundary Computation
(Edge Tweaking Method)

Linear System Solving
(Gauss Elimination)

Rescaling
(Shoe CAD Condition )

Parameterization Center Computation
(Average Geodesic Distance Function)

Mean Value Coordinates Computation
(Geodesic-Fan Representation)

Floating Boundary Computation
(Edge Tweaking Method)

Linear System Solving
(Gauss Elimination)

Rescaling
(Shoe CAD Condition )

Parameterization Center Computation
(Average Geodesic Distance Function)

 
 

Fig. 2 Geodesic-Fan Parameterization Process 

3.1 Geodesic-Fan Representation  
We use the geodesic polar parameterization of a point to 
establish sample positions on mesh surfaces. If one 
arbitrary geodesic passing through p  is designated a 
polar base, every other geodesic passing through p may 
be parameterized by its angle θ  with respect to the polar 
base in the conformal plane at p . Any point q on the 
mesh surface may be parameterized with respect to p as 

),( rθ , where θ  identifies a geodesic through  both 
p and  q , and r the length on this geodesic of q  Note 

that these coordinates may not be unique for a given point, 
but any particular set of coordinates identifies a unique 
point on the surface. The pair ),( rθ are called the geodesic 
polar coordinates of q with respect to p . For a given 
contour containing the point p , we may construct a 
geodesic–fan with respect to p  by connecting the point 
p and each vertex on the contour.  

 
The average geodesic distance function was introduced by 
Hilaga et al. for the purpose of shape matching [**]. This 
is a function )( pA that takes on a scalar value at each 
point p on the surface S . Let ),( gpg be the geodesic 
distance between two points p and q on S . The average 
geodesic distance of p is defined as follows: 
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When the number n increases to the infinity,  
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which measures the maximal distance between p and any 
point on S . 
 

3.2 Mean Value Coordinates 
We introduce a generalization of barycentric coordinates 
proposed by Floater, which allows a vertex in a planar 
triangulation to be expressed as a convex combination of 
its neighboring vertices [15]. The coordinates are 
motivated by the Mean Value Theorem for harmonic 
functions and can be used to simplify and improve 
methods for parameterization and morphing.  
 
 

 
 

Fig. 3 Star-Shaped Polygon and its angles 

 
Let nvvv ,,, 10 L be points around 0v in the plane with 

,1v  ,L nv arranged in an counter-clockwise order, as 

shown in Figure 3. The points nvv ,,1 L form a star-

shaped polygon with 0v in its kernel. The aim of 
barycentric coordinates systems is to study the sets of 
weights nλλλ ,,, 21 L  such that  
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Equation (3) expresses 0v as a convex combination of the 

neighboring points nvv ,,1 L  In the simplest case 3=n , 

the weights 321 ,, λλλ are uniquely determined by Eq. (3). 
All of the weights are positive. In general, we call the 
weights as barycentric coordinates of 0v  with respect to  

321 ,, vvv . 
 
There has long been an interest in generating barycentric 
coordinates to k -sided polygons. For a convex polygon, 
Wachspress [2] found a solution, in which the coordinates 
can be expressed in terms of rational polynomials, 
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where ),,( cbaA is the signed area of triangle ],,[ cba  

and 1−iγ and iβ are the angles shown in Figure 3. The 
latter formulation in terms of angles is due to Meyer et al. 
[3]. This coordinates do not work for a star shaped 
polygon.  
 
Floater proposed a new coordinate system called as mean 
value coordinates, which well work for a star-shaped 
polygon [***]. The coordinates are defined by  
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3.3 Floating Boundary: Edge tweaking  
To obtain a bounding convex polygon that resembles the 
3D boundary, we first derive a 2D polygon that preserves 
the adjacent angles and lengths of 3D boundary edges. In 
general, such a 2D polygon may not exist when the 3D 
boundary is non-planar. Sederberg et al. considered a 
similar problem for 2D shape blending and proposed the 
edge tweaking method [16]. In the edge tweaking, the 
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changes of edge lengths are minimized while the angles 
between edges are preserved. In this paper, we adopt the 
edge tweaking method to obtain a 2D polygon from the 
3D boundary. The bounding convex polygon is 
determined as the convex hull of the 2D polygon. Now we 
explain how the edge tweaking method is used in this 
paper. For the edge tweaking method, we represent the 
original edge lengths, the amounts of length adjustment, 
and the adjacent angles between edges as ii , is , and iθ , 

respectively, for Nnni ,,2,1 L++=  Fig. 2(a) shows 

an illustration. The problem is to find the values of is  that 
minimize the objective function  

∑
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subject to the equality constraints: 
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Here, nN − is the number of the boundary edges, T is 
the set of boundary edges the length of which have to be 
preserved, and iα is the angle between the x-axis and the 

directed edge from 1+iu  to 2+iu . The two equality 
constraints mean that the 2D polygonal curve with the 
edge lengths of ii sl +  is a closed polygon. The solution 

for the values of is  can be obtained by using Lagrange 
multipliers.  
 

 
 

 
 

Fig.4. Edge tweaking for the bounding convex polygon: 
(a) 3D mesh boundary (b) 2D polygon. 
 
 Let iv  and iu  for Nnni ,,2,1 L++= , denote 
vertices on the 3D mesh boundary and the corresponding 
vertices on the 2D polygon, respectively. To obtain iu  

from iv  by using the edge tweaking method, we must 

determine the original lengths il  and the angles iθ  For the 

lengths il , we can simply set il  as the length of the 3D 

boundary edge between iv  and  1+iv . In the case of the 

angles iθ , we compute iθ  from the angles ji,β around 

iv of the boundary triangles adjacent to vi as follows (see 
Fig. 4(b)). 
 
A simple way to compute iθ  is to sum the angles ji,β  

However, the angles ji,β may be changed when the 

boundary triangles are embedded onto a 2D polygon, and 
the sum of ji,β in 3D may be improper for iθ  To estimate 

the values of angles ji,β in the final embedding of the 3D 

mesh, we compute the averaged conformal angles ji,γ  Let 

iV be the set of vertices of the 3D mesh which are 

adjacent to the boundary vertex iv  The set iV is divided 

to two subsets; a boundary vertex set ),{ ,1, cii vv and an 

interior vertex set ),,{ 1,2, −cii vv L where 

11, −= ii vv and 1, += ici vv , and c is the number of vertices 

in iV . See Fig. 2(b) for an illustration. When we apply 
conformal mapping to the one-ring neighborhood of an 
interior vertex jiv , , we obtain 2

1, −jiβ and 1
, jiβ for the 

(a) 

(b)
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angles 1, −jiβ and ji,β , respectively. We define the 

averaged conformal angles ji,γ by  
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for .2,,2 −= cj L  Finally, we determine the angle iθ  

as the sum of the averaged conformal angles ji,γ ; 
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In Fig. 5, the bounding convex polygon is the convex hull 
of the 2D polygon generated by the edge tweaking method. 
The embedding result is better than those in Fig. 6 because 
the bounding polygon reflects the 3D boundary of the 
mesh. Fig. 9 shows an example of parameterizing a mesh 
with a more complicated boundary.  
 

 
 
Fig.5 Embedding result with the bounding polygon that 
resembles the 3D boundary: (a) 3D mesh; (b) bounding 
polygon from edge tweaking. 

3.4 Linear System with constraints 
Now, we are ready to solve the linear system of mesh 
parameterization in 3D shoe cad systems. Our algorithm is 
an extension of the convex combination approach 
proposed by Floater [12].  First of all, we compute the 
center of parameterization in order to apply the geodesic-
fan based representation. The problem is formally set by 
the following minimization: 
 

),(maxmin):( 1
* qvgBvA iBq

n
i ∈=∞ = , 

 
where B is the set of boundary vertices.  

 
We apply the edge tweaking method in order to get the 2D 
convex boundary of the mesh parameterization. The 
boundary edges belonging to the front and back constraint 
sets preserve their length and the shape of the boundary 
well resembles that of 3D mesh. 
  
The linear system in Eq. (2) needs to get the convex 
combination of interior vertices with respect to their one-
ring neighborhoods. We adopt the mean value coordinates 
so that the local shape may be well preserved under the 
linear system. The linear system may be efficiently solved 
by Gauss-elimination method. 
 

4. Experimental Results 

Figure 6 shows a 3D shoe mesh and the result of a 
parameterization without shoe’s constraints. The yellow 
region is the exterior part of a 3D shoe last, the white 
region is the interior part.  The right of Figure 6 has two 
parts: one is the parameterization for the interior part (blue 
color), the other is for the exterior part (black color). In 
general, the most of shoe cad systems need the optimal 
layout of two parameterizations because of efficient 
productivity. Hence, the right part of Figure 6 should be 
changed to that of Figure 1. Moreover, the lengths of the 
front instep lines and the back heel lines are the same as 
those of the other part’s parameterization. 
 

 
 

Fig.6. Shoe’s parameterization with two regions 
 
 
Table 1 shows the comparison of distortion measurements 
for the face model with three algorithms: (a) shape 
preserving algorithm proposed by Floater [12], (b) virtual 
boundary algorithm proposed by Lee et al., [17] (c) Our 
algorithm which is based on geodesic-fan and mean value 
coordinates. We use the texture stretch metric 2L  and ∞L  
defined in [**] as the measures for comparison. The 2L  
norm corresponds to the mean stretch over all directions, 
and the worst-case norm ∞L  relates to the greatest stretch.  
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Table 1.Comparison of distortion measurements 

Algorithm 2L -norm ∞L -norm
Square (Floater) 1.246 5.236 

Virtual Boundary (Lee)  1.221 4.968 
Geodesic-Fan (Kim) 1.131 4.659 

 
From Table 1, we observe that the distortion measurement 
changes according to the shape of the bounding polygon, 
and the value decreases as bounding polygon is closer to 
the shape of the 3D boundary. Hence, the embedding with 
the edge tweaking method has a better result than the 
others. The use of mean value coordinates is the main 
difference between Lee’s algorithm and ours. The mean 
value coordinates well resemble the shape of one-ring 
neighborhoods so that our algorithm should have less 
distortion.   
 
Table 2 shows the computation time required to 
parameterize the models shown in this paper with Lee’s 
and our algorithms. In the current implementation, we use 
the Gauss–Seidel method to solve the linear system from 
the convex combinations. Our algorithm is faster than 
Lee’s. The time complexity to obtain the convex 
combination of shape preserving method is )( 2mO , where 
m  is the number of one-ring neighborhood vertices.  On 
the other hand, the process of the mean value coordinates 
needs  )(mO  time complexity.  
 
Table 2.Computation time  
Model No. of 

Vertices 
No. of 
Boundary 
Vertices 

Time(ms) 
(Lee) 

Time(ms) 
(Kim) 

Face 1607 68 471 367 
Shoe 195 52 16 9 

 
Figure 7 shows a function of 3D shoe cad system related 
with mesh parameterization. Shoe designer traditionally 
draws patterns only on 2D parameter space without exact 
3D geometric information on the last. If we have 3D shoe 
cad system, we may directly design the 3D pattern on the 
last. So this function is very useful to design  a variety of 
patterns intuitively.   
 
 
 
 
 
 
 
 
 

 

 
Fig.7. Pattern design on the shoe cad system 

 

5. Concluding Remarks 

The contribution of this paper is to present an efficient 
method to compute mesh parameterizations in shoe cad 
system. Our method is an extension of the convex 
combination approach proposed by Floater. Our algorithm 
uses geodesic-fan based representation and edge tweaking 
method in order to decrease distortion of boundary regions. 
Moreover, we adopt the mean value coordinates to 
compute the one-ring neighborhood’s relationship 
efficiently. The process to obtain the mean value 
coordinates is faster than Lee’s, and our algorithm well 
resembles the local shapes of mesh parameterization In 
future, we will develop a mesh parameterization with 
holes and seams.  
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