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Summary 
This paper proposes markovian models in portfolio theory and 
risk management. At first, we describe discrete time optimal 
allocation models. Then, we examine the investor’s optimal 
choices either when the returns are uniquely determined by their 
mean and variance or when they are modeled by a Markov chain. 
We subject these models to back-testing on out-of-sample data, 
in order to assess their forecasting ability. Finally, we propose 
some models to compute VaR and CVaR when the returns are 
modeled by a Markov chain. 
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1. Introduction 

In this paper, we pursue two objectives: the first one is to 
propose different markovian models that may be used to 
determine optimal portfolio strategies and to value 
opportunely the risk of a given portfolio; the second one is 
to compare portfolio selection strategies obtained either by 
modelling the return distributions by a Markov chain or by 
using a mean-variance analysis  
Semi-Markov processes and hidden Markov models have 
been widely studied in financial literature to capture the 
dynamics of asset prices (see among  others, Limnios and 
Oprisan (2001), Elliott and Van der Hoek (1997), Bahr 
and Hamori (2004)). Many of these approaches are 
parametric. Here, we propose a non-parametric markovian 
approach to model asset returns. Following the 
methodology proposed by Christoffersen (1998), it is 
possible to test the null hypothesis that the intervals of the 
distributional support of a given portfolio are independent 
against the hypothesis that the intervals follow a Markov 
chain. Several empirical works, carried out by considering 
both different distributional hypotheses for many return 
portfolios (Gaussian, Stable Paretian, Student's t, and 
semi-parametric) and different percentiles θ , have shown 
that we cannot reject the markovian hypothesis. Therefore, 
a Markov chain could be a good model to describe the 
evolution of the distributional support of a given portfolio 
(see also Lamantia et al. (2006), Iaquinta et al (2006)). 
This is the main reason according to which we propose an 
analysis of the impact of the markovian behavior of asset 
returns on the investor's choices. In what follows, we 
assume that the interval dependence of portfolios can be 

characterized by a Markov chain so that we can describe 
different portfolio selections, VaR and CVaR models. As a 
matter of fact, given a portfolio of gross returns, we divide 
the support of the portfolio into N intervals each of which 
is assumed to be a state of a Markov chain. Following this 
procedure, we build up the transition matrix. Then, we 
maximize the expected logarithmic utility function by 
assuming that in each interval the return is given by the 
geometric average of the interval extremes. It is worth 
mentioning that the problem becomes computationally too 
complex when we consider large portfolios. Furthermore, 
the transition matrix depends on the portfolio composition 
and the algorithm provides only a local optimum. In order 
to obtain a global optimum for the portfolio selection 
problem, we use a Simulated Annealing type algorithm 
(see among others Aarts and Korst (1989)). In our 
empirical comparison we find that the final wealth 
associated with the markovian portfolio choice is bigger 
than the common mean-variance one. The main 
contribution of this paper is the presentation of a general 
theory and a unifying framework for: 1) examining the 
portfolio selection problem when the return portfolio 
evolves along time following a Markov chain; 2) assessing 
the presented portfolio selection model and the mean-
variance one; 3) studying and understanding VaR and 
CVaR markovian models. The rest of the paper is 
organized as follows: in Section 2, we formalize the 
portfolio selection with Markov chains. Section 3 
introduces an empirical comparison between the 
Markovian portfolio selection model and the mean-
variance one. Section 4 presents the approaches to 
compute VaR and CVaR when the portfolio follows a 
Markov chain. Finally, we briefly summarize the paper. 
 
2. Portfolio selection with homogeneous 
Markov chains 
In this section, we propose a non-parametric distributional 
analysis of the optimal portfolio choice problem by 
describing the behavior of portfolios through a 
homogeneous Markov chain. Let us consider  n+1 assets: 
n of these assets are risky assets with gross returns 

1 1, 1 , 1[ , , ]t t n tz z z+ + + ′= K   and the  n+1-th one is a risk-free 
asset with gross return  0, 1tz + . Generally, we assume the 
standard definition of i-th gross return in the temporal 
interval [t, 1t + ], , 1 ,[ , 1]

,, 1
i t i t t

i t

P d
i t Pz + ++

+ =  , where ,i tP  is the price 
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of the i-th asset at time t and  ,[ , 1]i t td +   is the total amount 
of cash dividends paid by the asset between  t  and t+1. 
We distinguish the definition of gross return from the 
definition of return, i.e., 1iz −  (or the alternative 
definition of return continuously compounded logi ir z= ). 
If we denote by 0x  the weight of the risk-less asset and by  

1[ , , ]nx x x ′= K   the vector of the positions taken in the n 
risky assets, then the return portfolio during the period  
[ , 1]t t +  is given by  

( ), 1 , 1 0 0, 1
1

.
n

x t i i t t
i

z x z x z+ + +
=

= +∑  

Let us assume that the portfolio of gross returns has 
support on the interval ( ), ( ),(min ;max )k x k k x kz z  , where 

( ),x kz  is the k -th past observation of the portfolio ( )xz . At 
first, we divide the portfolio support  

( ), ( ),(min ;max )k x k k x kz z   in N intervals  ( ), ( ), 1( ; )x i x ia a +   

where  ( )( ),

( ),

/max
( ), ( ),min mink x k

k x k

i Nz
x i k x kza z=  , 0,1, ,i N= K  . For 

simplicity, we assume that the state of the return on the 
interval  ( ), ( ), 1( ; )x i x ia a +   is given by the geometric average 

of the extremes  ( )
( ) ( ), ( ), 1:i
x x i x iz a a +=  . Moreover, we add 

an additional state,  ( 1)
( ) 0:N
xz z+ =  , since we assume a fixed 

riskless return. Secondly, we build the transition matrix  
, ; 1 ,[ ]t i j t i j NP p ≤ ≤=   valued at time t where the probability  

, ;i j tp   points out the probability (valued at time t) of a 

process transition between the state ( )
( )
i
xz   and the state  

( )
( )

j
xz  . Note also that when the portfolio is reduced at only 

the riskless asset, tP  is a matrix with 1 in the position on 
the diagonal corresponding to the riskless state and 0 in all 
the other positions. This fact is consistent with the 
definition of a constant variable. On the other hand, if we 
consider a homogeneous Markov chain, the transition 
matrix is independent of time and it can be simply denoted 
by P . We also observe that the transition probability 
matrix associated with the Markov chain is usually sparse. 
It means that many elements of this matrix are numerically 
negligible. This property is important because it deeply 
reduces the computational cost of the algorithm (see 
Zlatev (1991), Broyden and Vespucci (2004)). 
In constructing the approximating Markov chain, we need 
to choose the length of a time step and the number of 
states of the process. Generally, for different financial 
models, the transition matrix has to be differently 
characterized. In portfolio selection problems, we assume 
daily steps with the convention that the Markov chain is 
computed on the returns valued with respect to investor's 
temporal horizon T. For instance, if the investor 
recalibrates the portfolio every month ( 20T =   working 

days), we consider monthly gross returns with daily 
frequency. Using the same notation as gross returns, this 
means simply  , 20 ,[ , 20]

,,[ , 20]
i t i t t

i t

P d
i t t Pz + ++

+ = . Then, we compute 

on the portfolio series the relative transition matrix. In this 
way, we consider the effect of the aggregated risk having 
an important impact on the investors' choices (see 
Lamantia et al. (2006), Rachev et al (2007)). We suggest 
to use a limited number of states in the portfolio selection 
problem. The reason of this choice is related to the fact 
that the transition matrix is strictly dependent on the 
portfolio composition that is the variable of the 
optimization problem. Consequently, the problem 
becomes computationally unmanageable when the number 
of states increases. On the other hand, as we can see in the 
following analysis, the goodness of the investors' choices 
is not excessively compromised if a limited number of 
states is considered. Under these assumptions, the final 
wealth (after T periods (days)) obtained by investing  0W   
in the portfolio with composition  0( , )x x   is simply given 
by:  

( )
( )
( )1

1
( )

( ), 0 ( )
1

T s
t ii

N
s

x t T x
s

S W z
ν +=

+

+
=

∑= ∏  

where  

( )
( )

1 if at ( )-th period the portfolio return is 
in the -th state .

0 otherwise

s
t i

t i
sν +

+⎧
⎪= ⎨
⎪
⎩

 

Moreover, if at the t -th time step the portfolio is in the m  
-th state, then the expected value of the logarithm of the 
final wealth is given by :  

( )( ) ( ) ( )
1

( ) ( )
( ), 0 , ( )

1 1

log log log
N T

i s
m x t T m s x

s i

E S W p z
+

+
= =

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ ∑  

where ( )
,

i
m sp   is the element in position  ( , )m s   of the i-th 

power of the transition matrix, iP . This is a logical 
consequence of the Chapman-Kolmogorov equations (see, 
among  others, Seneta (1981)). The expected value of the 
logarithm of the final wealth is  

( )( ) ( ) ( )
1 1

( ) ( )
( ), 0 , ( )

1 1 1

log log log
N N T

i s
x t T m m s x

m s i

E S W p p z
+ +

+
= = =

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ ∑ ∑ (1) 

where mp  is the probability of being in the state m. When 
no short sales are allowed ( 0ix ≥  ), an investor with 
logarithmic utility function and temporal horizon T tries to 
solve the following optimization problem  

( )( )( ),

10

max log

subject to
1; 0; 0,1, ,

x t Tx

n
i i i

E S

x x x i n

+

=+ = ≥ =∑ K

             (2) 

in order to maximize his expected utility. In the case we 
consider investors with different utility functions, we can 
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get the portfolio distribution in a reasonable time using the 
algorithm proposed by Iaquinta and Ortobelli (2006). In 
this case, even if the computational complexity to compute 

( ( ' ))E u x z is of the same order, we are not able to express 
in a close formula the expected utility as for logarithmic 
utility function (1). Since each row of the transition matrix 
gives the corresponding distribution of the relative state 
with respect to the other states, when we solve the above 
optimization problem, we determine those portfolios 
whose sample path dominates the other ones. The 
maximization of the expected log-utility function has to 
give a unique global maximum as a consequence of the 
monotony of the integral, but the problem (2) generally 
admits many local maxima. Consequently, the 
optimization problem appears computationally complex. 
This fact is a consequence of the discretization process 
that we adopt when we build up the approximating 
transition matrix. As a matter of fact, the methodology 
presented here is non parametric so that, practically, we 
approximate the distribution of any portfolio. On the other 
hand, the sensitivity of the expected utility with respect to 
the portfolio composition is a well known problem in 
portfolio theory (see, among  others, Ziemba and Mulvey 
(1999), Bertocchi et al. (2005)). In order to approximate 
the optimal solution in problem (2), we consider two 
procedures: 
1) finding the local optimum near a potential optimal 

point; 
2) using a simulated annealing-type procedure in order 

to obtain the global maximum. 
Procedure 1 
The first methodology gives us only a local solution, and 
what we consider to be the optimum may not be the global 
optimum. In this case, we can also use a large portfolio 
and many states for the transition matrix since this 
procedure is computationally not very complex. Then, we 
compare the performance of a markovian portfolio 
strategy with the performance of a portfolio obtained 
maximizing the expected utility in a mean-variance 
framework. It is worth mentioning that we choose the 
optimal portfolio provided by the mean-variance analysis 
as the starting point for the markovian analysis. 
Procedure 2 
The first methodology is applicable in many real cases 
when large portfolios are considered since it is 
computationally convenient but it is incomplete in the 
sense that it could potentially return a local optimum and 
not a global optimum for any instance of the optimization 
problem. This is the reason why we propose to use a 
Simulated Annealing type algorithm (see Kirkpatrick et al. 
(1983)). The problem, in this case, is that the 
computational complexity increases sensibly and, 
consequently, we suggest this approach only when the 
number of assets and states is small. However, we try to 

simplify the computation using one of the most recent 
version of simulated annealing-type programs (see 
Bartholomew Biggs (2004) and LGO software package; 
Pinter (1996); Ben Hamida and Cont (2005)). 
 
3. A first empirical comparison between 
portfolio selection strategies 
In this section, we evaluate the impact of the previous two 
procedures on the portfolio choice by proposing a 
comparison between the markovian model and the mean-
variance one. We propose two different comparisons: the 
first one with procedure 1 and the second one with 
procedure 2. In the first empirical comparison, we 
consider the optimal allocation among 24 assets, 23 of 
which are risky and the 24-th is risk-free with annual rate 
6%. In the second empirical comparison, we draw our 
attention on 10 assets in the US market: 9 of these assets 
are risky and the 10-th is the 3 months Treasury Bill. In 
order to compare ex-post the mean-variance model with 
the markovian one, we use the same algorithm proposed 
by Giacometti and Ortobelli (2004). At each step we 
recalibrate the portfolio and distinguish the two analysis: 
1) in the markovian case, we solve the optimization 

problem (2) and then we capitalize the wealth with the 
ex-post observed returns; 

2) in the mean-variance framework, we first maximize 
the Sharpe ratio in order to find the market portfolio. 
The convex combination of the market portfolio and 
of the riskless asset provides the analytical 
formulation of the efficient frontier. Then, we select 
the portfolio on the efficient frontier maximizing the 
expected log-utility function. Finally, we capitalize 
the wealth with the ex-post observed returns. 

Empirical comparison with Procedure 1 
In this comparison, we use monthly gross returns (20 
working days) with daily frequency taken from 23 
international risky indexes valued in USD and quoted 
from January 1993 to January 1998. By assuming that 
short selling is not allowed, we examine optimal allocation 
among the riskless return 6% p.a. and 23 index returns: 
DAX 30, DAX 100 Performance, CAC 40, FTSE all share, 
FTSE 100, FTSE actuaries 350, Reuters Commodities, 
Nikkei 225 Simple average, Nikkei 300 weighted stock 
average, Nikkei 300 simple stock average, Nikkei 500, 
Nikkei 225 stock average, Nikkei 300, Brent Crude 
Physical, Brent current month, Corn No.2 Yellow cents, 
Coffee Brazilian, Dow Jones Futures, Dow Jones 
Commodities, Dow Jones Industrials, Fuel Oil No.2, 
Goldman Sachs Commodity, S&P 500. In order to assess 
the reliability of the models proposed here, we split the 
historical data into two parts: 
1) the first part is used to estimate the transition matrix 

(in the markovian case) or the mean and the variance 
covariance matrix (in the mean-variance analysis); 
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2) the second part of the data-set is used to calculate the 
ex-post sample path of the final wealth, using the 
optimal portfolios computed at the beginning of each 
period for the two different models. It is worth 
mentioning that we fix the memory of the underlying 
process and use the last 500 observations (a little bit 
less than two years of daily observations, since we 
have observed a sufficient stability of the results with 
this number of observations).  

We consider an initial wealth  0 1W =  and in the ex-post 
analysis we calibrate the portfolio 27 times. After k 
periods, the main steps to compute the ex-post final wealth 
in the mean-variance context are the following: 
Step 1 At the k-th period ( 0,1, , 26k = K  ) we determine 
the market portfolio ( )k

Mx   that maximizes the Sharpe ratio, 
i.e., it is the solution of the following optimization 
problem:  

( )

( )

( )

( )
0

( ) ( )
0

( )

( )

max

s.t.

1,

0; 1, , .

k

k kx z z

E x z z

x

k

k
i

x e

x i n

σ

′

′
−

⎛ ⎞−⎜ ⎟
⎝ ⎠

′
=

≥ = K

 

Step 2 We maximize the expected log-utility of the 
convex combination of the riskless and of the market 
portfolio, i.e.:  

( )( )( )( )

499 20
( ) ( ) ( ) ( ) ( )

0
20

( )

max log 1

s.t.
0 1,

k

k
k i k k i

M
i k

k

z x z
λ

λ λ

λ

+ ′

=
∑ + −

≤ ≤
 

where  ( )
0
iz   is the  i -th observation of the riskless (that in 

this first empirical analysis is assumed to be constant at 
6% p.a.). Then, after  k  periods, the optimal investment in 
the riskless is  ( )kλ   while, in the risky assets, it is given 
by  ( )( ) ( )1 k k

Mxλ− .  

Step 3 The ex-post final wealth at the k-th period is given 
by:  

( )( )( )( ) (20 ) ( ) ( ) (20 )
1 0 1 .k k k k k

k k MW W z x zλ λ
′+ +

−= + −  

On the other hand, we consider a Markov chain with 26 
states; 25 of them to describe the behavior of the return 
portfolio and the last one for the riskless return. For every 
portfolio  ( )xz  , we compute the  26 26×   transition matrix 

and its first 20 powers  2 20, , ,P P PK . The logarithm of 
the expected return after one month (i.e., 20 working days) 
is given by:  

( )( ) ( )
20

( ) ( )
( ), 20 , ( )

1 1 1

log log .
N N

i s
x t m m s x

m s i

E S p p z+
= = =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

Therefore, starting from the mean-variance optimal 

solution, after k periods we obtain the first local maximum 
solution of the optimization problem (2). Then, we repeat 
step 3 in order to compute the ex-post final wealth at the  
k-th period. 
From this first comparison it appears clear (see Figure 1) 
that the final wealth increases significantly with the 
markovian approach, in particular when we do not 
consider transaction costs. As a matter of fact, the 
markovian approach presents a final wealth that is greater 
(75% of the initial one) than the classic mean-variance one 
even during the crisis of the Asian market (September 
1997-January 1998). A possible explanation is that the 
proposed markovian approach requires more time to 
capture the new volatility regime identified by crisis times, 
because of the finite memory property of Markov chains. 
The validity of these results is confirmed by the fact that 
we considered for our analysis the principal international 
indexes. Moreover, the optimal allocation of the portfolio 
corresponding to different time periods (available from the 
authors upon request) shows that, mainly, American 
indexes, and in particular Dow Jones Industrials and S&P 
500, are chosen. Intuition suggests that in the period 
analyzed the US market presented a greater efficiency than 
the other ones. Furthermore, the flexibility of the 
markovian approach during the crisis of the Asian markets 
should encourage fund managers to pursue international 
diversification using this non parametric approach. The 
previous results are substantially confirmed even when we 
consider the impact of constant transaction costs of 0.5% 
(using the same algorithm proposed in Giacometti and 
Ortobelli (2004)). In this case, we observe that transaction 
costs have a higher impact on the markovian approach that, 
after two years, presents a greater final wealth (68% of the 
initial wealth) than the classic mean-variance one (see 
Figure 2). On the other hand, it is well known that the 
sensitivity of the expected utility to the little changes in 
the weights represents a big problem in the portfolio 
theory. As a matter of fact, optimal mean-variance 
portfolio weights are often quite extreme and change 
frequently. In order to value the volatility of the optimal 
portfolio compositions, we have to look at the portfolio 
weights under both the mean-variance and the markovian 
set up. In particular, we have computed the average of the 
absolute differences between optimal portfolio weights 
obtained during the period of analysis. This simple 
computation is given by:  

(
26

( ) ( 1)
1

1

1
26

k k

k

λ λ −

=

= − +∑Portdiff  

( ) ( )
23

( ) ( ) ( 1) ( 1)
, ,

1

1 1k k k k
M j M j

j

x xλ λ − −

=

⎞
+ − − − ⎟

⎠
∑ . 

With the markovian approach, we observe values of  
1Portdiff   equal to  46%   and to 38% without and 

with transaction costs, respectively. With the mean-
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variance approach, the differences in the portfolio 
compositions are respectively equal to  43%   and to 40% 
(without and with transaction costs). Thus, there is no 
evidence that weights are either less extreme or less 
volatile with the markovian approach than the mean-
variance one. 

 
 F Fig. 1. Ex-post sample path of the final wealth (with procedure 1 and 

without considering transaction costs) 

 
 F Fig. 2. Ex-post sample path of the final wealth (with procedure 1 

considering transaction costs) 
 
Empirical comparison with Procedure 2 
In this comparison, we use six-month returns (123 
working days) with daily frequency taken from 9 risky 
assets in the Dow Jones Industrial index quoted from 
January 1995 to April 2005. At first, assuming that short 
selling is not allowed, we examine the optimal allocation 
among the Treasury Bill three month return and 9 asset 
returns: Altria, Boeing, Citigroup, Coca Cola, Intel, 
Johnson, Microsoft, Procter & Gamble, Pfizer. The main 
reason of this choice for procedure 2 is that this procedure 
is computationally more complex than procedure 1 so that 
the computational complexity of procedure 2 using the 
same set of assets of procedure 1 would be unmanageable. 
Furthermore, the choice of this set of assets is related to 
the fact that our aim is also to show the impact of an 
international diversification of the assets in portfolio. 
Since in the previous analysis we have considered a set of 
international assets, here we consider only assets from the 
US market in order to make a comparison.  

Similarly as before, also in this empirical analysis we split 
the historical data into two parts and consider an initial 
wealth  0 1W = . In the ex-post analysis, we calibrate the 
portfolio 17 times and the main steps to compute the ex-
post final wealth are exactly the same of the previous 
analysis. We consider a Markov chain with 6 opportune 
states, that is we divide the portfolio support in the 
following way: 5 intervals take into account the dynamics 
of the risky portfolio and the 6-th interval takes into 
account the riskless rate. For every portfolio ( )xz , we 
compute the  6 6×   transition matrix and its first 123 
powers. Then, with formula (1) we can compute the 
expected log final wealth after 123 working days. After k 
periods, we obtain the global maximum solution of the 
optimization problem (2) by using a simulated annealing-
type algorithm with 100 iterations at each period. Then, 
we compute the ex-post final wealth at the k -th period, as 
in Step 3 of the previous algorithm. This comparison 
shows (see Figure 3) that the markovian approach 
significantly increases the final wealth on these 10 assets 
until September 11-th 2001. As a matter of fact, the better 
performance of the markovian approach is maintained 
even during the high volatility period of the late 1990's 
(Asian and Russian crises). Before September the 11-th, 
the markovian approach presented a greater wealth (115% 
of the initial wealth) than the mean-variance one while, in 
December 2001, there is a dramatic loss of value of both 
portfolios. From December 2001 to the end of the 
observation period (April 2005) both strategies maintained 
a stationary behavior, presenting almost the same final 
wealth. Consequently, the markovian approach presents no 
better performance than the mean-variance one when we 
consider a portfolio without international diversification. It 
is worth mentioning that, by using a partial data-set from 
that one used in procedure 1 (i.e., 2 US assets, 2 European 
assets, 2 Asian assets), the analysis confirms that the 
markovian approach performs better than the mean-
variance one. On the contrary, as proved in procedure 1, 
an international diversification of the set of assets makes 
the markovian approach more suitable since it provides a 
greater wealth both with and without transaction costs. As 
in the previous analysis, we want to value the average of 
the absolute differences between optimal portfolio weights 
obtained during the period of analysis, i.e.,  

(
16

2

1

1 ( ) ( 1)
16

k

k kλ λ
=

−= ∑ − +Portdiff  

( ) ( )
9

( ) ( ) ( 1) ( 1)
, ,

1
1 1k k k k

M j M j
j

x xλ λ − −

=

⎞
+ − − − ⎟

⎠
∑ . 

With the markovian approach, we observe values of  
2Portdiff   equal respectively to 76%  and to 70% 
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without and with constant transaction costs of 0.5%. With 
the mean-variance approach the differences in the 
portfolio compositions are respectively equal to 63%  and 
to 58% (without and with transaction costs). Consequently, 
in this case, the portfolio weights obtained with the 
markovian approach are more volatile than those obtained 
with the mean-variance one. In particular, although the 
markovian approach shows good performances (also when 
we do not use many states for the transition matrix), it 
appears to be more effective when we adopt international 
diversification strategies. On the other hand, the mean-
variance approach appears more conservative than the 
markovian one when we use US stock assets. 

 
 F F Fig. 3. Ex-post sample path of the final wealth (with procedure 2 

without considering transaction costs) 
 
4. VaR and CVaR models with Markov 
Chains 
In this section, we propose some alternative models to 
compute Value at Risk (VaR) and Conditional Value at 
Risk (CVaR) with a homogeneous Markov chain. In 
financial literature, the most used VaR model (see 
Longerstaey and Zangari (1996)) assumes that the 
conditional distribution of the continuously compounded 
returns obeys to a Gaussian law. However, it is well 
known that asset returns are not conditionally normally 
distributed (see, among  others, Rachev and Mittnik 
(2000)). Next, we show that using our approach it is 
possible to explain the stylized features of observed 
portfolio returns. In particular, our approach is able to 
capture heavy tails better than VaR models commonly 
used by practitioners. Recall that the VaR is the minimum 
loss among the worst  (1 )θ−   cases that could occur in a 
given temporal horizon. If we denote by  τ   the investor's 
temporal horizon, by  t tW Wτ+ −   the profit/loss realized in 
the interval  [ , ]t t τ+   and by θ  the level of confidence, 
then VaR is given by the loss such that,  

{ }, ( ) inf | Pr( ) 1 .t t t t tW W q W W qθ τ τ τ θ+ + +− = − ≤ > −VaR  
Hence, the VaR is the percentile at the level (1 )θ−   of the 
profit/loss distribution in the interval  [ , ]t t τ+  . The 

temporal horizon τ  and the level of confidence θ  are 
chosen by the investor. The choice of τ  depends upon the 
frequency the investor wishes to control his/her 
investment. Unfortunately, θVaR  is not a coherent risk 
measure and it cannot offer exhaustive information about 
the expected future losses. In financial literature, we can 
find different definitions of VaR and CVaR that change 
slightly with respect to the use of the risk measure. For 
example, in portfolio theory it is generally used a positive 
risk measure thus, typically, the above definitions change 
in the sign of VaR and CVaR functions. Alternatively to 
VaR, Artzner et al. (1999), and Szegö (2004) proposed the 
CVaR to evaluate the exposure to market risks. The CVaR 
is a coherent risk measure, i.e., it is a positively 
homogeneous, translation invariant, subadditive and 
monotone risk measure. The CVaR measures the expected 
value of profit/loss given that the VaR has not been 
exceeded, that is  

1

, ,0

1( ) ( )
1t t t q t t tW W W W dq

θ

θ τ τ τ τθ
−

+ + + +− = −
− ∫CVaR VaR   

and if we assume a continuous distribution for the 
profit/loss distribution, we obtain that 

( ), ( ) |t t t t t t tW W E W W W W qθ τ τ τ τ+ + + +− = − − ≤CVaR . 
Let us consider  n assets with vector of log returns  

1[ , , ]nr r r ′= K , where logi ir z= . The portfolio of log 
returns is given by  

( )
1

,
n

x i i
i

r x r
=

= ∑  

where 1[ , , ]nx x x ′= K  is the vector of the positions taken 
in the n assets forming the portfolio. Let us assume that 
the portfolio of log returns has support on the interval  

( )( ), ( ),min , maxx k x kk k
r r , where ( ),x kr  is the k-th past 

observation of the portfolio r(x) . Since it makes sense to 
consider only the left tail of the portfolio distribution and 
we are generally interested in confidence levels  95%θ ≥ , 
we assume that an opportune return portfolio left tail 

corresponding to ( )( ), ( ),max min

( ), ( ), 12min ,min 5 x k x kkk
r r

x k x kk k
r r

−
+  

follows a homogeneous Markov chain of 1N +  states. The 
choice of the opportune return portfolio left tail is strictly 
dependent on the level of confidence  θ . In particular, we 
have observed that, for percentiles equal or lower than 5%, 
it makes sense to consider 5/12 of the portfolio support. 
Then, we divide the return portfolio left tail in N  additive 
intervals  ( )( ), ( ), 1,x i x ia a +  that represent the first  N  states, 

where: ( ), ( ),min 0, ,x i x kk
a r i i N= + = KSTEP ,  

( ), ( ),max min

125 x k x kkk
r r

N

−
=STEP   and  ( ), 1 ( ),maxx N x kk

a r+ = .  

For simplicity, we assume that on the interval  
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( )( ), ( ), 1,x i x ia a +   the state of the return is given by the 

average of the extremes  ( ), ( ), 1( )
( ) 2: , 0, ,x i x ia ai
xr i N++= = K  , 

and that the last state of the portfolio return is  
( ), ( ),max min( 1)

( ) 2: x k x kkk
r rN

xr
++ =  . The last interval is the portfolio 

return right tail and it is identified by  
( ), ( ),

( ),

max 7 min
, max .

12
x k x kkk

x kk

r r
r

+⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Once we have build up the transition matrix  

, 1 , 1i j i j N
P p

≤ ≤ +
⎡ ⎤= ⎣ ⎦   of the portfolio, we need to consider in 

which state we have observed the portfolio. Let m be the 
starting state of the portfolio ( )xr . Then, in the markovian 
case, VaR and CVaR with confidence level ( 95%)θ ≥   
are given by  

( )
1

( )
( ) ( ) , ,

1 1

(1 ); (1 )
s s

s
x x m i m i

i i

r r p pθ θ θ
−

= =

⎧ ⎫
= < − ≥ −⎨ ⎬
⎩ ⎭

∑ ∑VaR ,   (3) 

( )
( )

( )

( )
( ) ( ) ,

:

1 .
1 i

x

i
x x m i

i r

r r p
θ

θ θ ≤

=
− ∑

VaR

CVaR           (4) 

In order to understand if the markovian approach 
approximates the tail behavior of the portfolio returns, we 
propose a basic empirical comparison with the 
RiskMetrics EWMA Gaussian approach (see Longerstaey 
and Zangari (1996)). We consider 100 random portfolios 
of the previous 23 international indexes from January 
1993 to January 1998. For each of them we consider the 
starting state m  and a  50 50×   transition matrix. Then, 
we compute VaR and CVaR with formulas (3) and (4) for 
different percentiles and we compare these values with the 
VaR and CVaR values computed with the empirical 
distribution (denoted with  θVaR EMP   and  θCVaR EMP  ) 
and with the RiskMetrics model (denoted with  

θVaR GAUSS   and  θCVaR GAUSS  ). For  99%θ =  , we 
observe that in the 81% of the cases  

θ θ

θ θ

− <

< −

VaR EMP VaR Markov

VaR EMP VaR GAUSS
 

and in the 96% of the cases  

.
θ θ

θ θ

− <

< −

CVaR EMP CVaR Markov

CVaR EMP CVaR GAUSS
 

On the other hand, we do not have strong differences in 
the performance when we consider percentiles equal or 
greater than 97%. According to this simple analysis, we 
can observe that the markovian hypothesis considers the 
heavy tails generally presented by the portfolio returns. 
Moreover, we observe that we can easily predict the losses 
at a given future date using formulas similar to (3) and (4). 
In particular, some recent studies (see Iaquinta, and 
Ortobelli (2006)) have shown that the assumption of a 

Markovian behavior of daily returns permits to 
approximate the monthly and yearly return tail 
distributions much better than the classic RiskMetrics 
approach. This is confirmed by simple statistical tests 
(Kolmogorov-Smirnov (K-S) test and Anderson-Darling 
(A-D) test) valued on the ex-post return distributions 
forecasted after 60 days of some US indexes (S&P 500, 
Nasdaq, and Dow Jones Industrial) quoted from January 
1995 to January 2006. In particular, Table 1 considers the 
Kolmogorov-Smirnov (K-S) test 

sup ( ) ( )EK S F x F x− = −  
and the Anderson-Darling (A-D) statistic test 

( ) ( )
sup

( )(1 ( ))
EF x F x

A D
F x F x

−
− =

−
 

where ( )EF x  is the empirical cumulative distribution and 
F(x) is the theoretical one.  

Table 1 shows that the Markovian approach takes into 
account much better the aggregated 60 days risk than the 
RiskMetrics one. Consequently, we have to expect that the 
losses forecasted with this model are more realistic than 
those predicted under the most used approaches.  
 
5. Concluding Remarks 
This paper proposes alternative models for the portfolio 
selection and the VaR and CVaR calculation. In the first 
part, we describe a portfolio selection model that uses a 
Markov chain to capture the behavior and the evolution of 
portfolio returns. The ex-post empirical comparison 
between the mean-variance approach and the markovian 
one shows that this last approach performs better in the 
sense that it provides greater increments in the final wealth, 
especially when the market is growing. In the second part, 
we present some alternative markovian VaR and CVaR 
models. Also in this case, a first empirical analysis shows 
that the markovian approach describes accurately the tail 
behavior of portfolio returns, in particular when the 
Gaussian hypothesis of the conditional return distribution 

Table 1: This table summarizes Kolmogorov-Smirnov test 
(K-S) and Anderson-Darling test (A-D) for S&P500, 
Nasdaq, and Dow Jones Industrials 60 days return series 
(quoted from January 1995 to January 2006) whose 
distributions are forecasted either with the markovian 
approach or assuming the RiskMetrics model. 

60 days returns 
RiskMetric

s Markovian
K-S 0,0545 0,0692 

S&P500 A-D 32.011 28.138 
K-S 0.0413 0,0396 

Nasdaq A-D 41.357 30.71 
K-S 0.0498 0.0461 DowJones 

Industrials A-D 41 492 27 018



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

122 

determines intervals of confidence whose forecast ability 
is low. Furthermore, we believe that markovian and semi-
markovian approaches to value the expected risk exposure 
of portfolios can be easily expressed using some recently 
studied methodologies either based on the approximation 
of more or less complex diffusion processes and capturing 
their markovianity with a Markov chain (see, among 
others, Duan et al (2003)) or using semi-markovian 
approaches (see Limnios and Oprisan (2001)). 
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