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Summary 
As a novel optimization technique, chaos has gained much 
attention and some applications during the past decade. For a 
given energy or cost function, by following chaotic ergodic 
orbits, a chaotic dynamic system may eventually reach the global 
optimum or its good approximation with high probability. To 
enhance the performance of the pattern search method (PS), 
which is a derivative-free direct search algorithm, hybrid pattern 
search method is proposed by incorporating chaos. Furthermore, 
an annealing strategy is also utilized to eliminate the fluctuation 
of the chaos in the latter phrase of the process. We test this 
algorithm on several benchmark problems, such as exclusive-or 
(XOR) problem, parity problem and Arabic numerals recognition. 
Simulation results show that the systems can be trained 
efficiently by our method for all problems. 
Key words: 
multi-layer neural network, pattern search method, annealing, 
chaotic dynamic, direct search 

1. Introduction 

It is well known that the training of multi-layer feed-
forward neural networks [1],[2] can be viewed as the 
optimization of a criterion function from a set of input-
output pairs with respect to a set of parameters-the weights 
and thresholds [3]. In other words, it is a kind of 
multidimensional minimization of the error measure 
function. Minimizing the multi-layer neural network error 
measure function in realistic problems is a difficult task 
since many layers, the multitude of training patterns and 
the variety of categories cast a very complex landscape 
with wide plateaus and narrow valleys [4].  
 
In Recent years several gradient descent based algorithms 
[2],[5],[6] and global optimization techniques (such as 
genetic algorithm [7] and simulated annealing 
[8],[9],[10],[11] have been present to train the multi-layer 
feed-forward neural networks. Although global 
optimization techniques provide an alternative method to 
problems that are different to solve with traditional 
optimization algorithms, they suffer from poor 
convergence properties and difficulties to reach high 
quality solutions when the structure of neural networks 
becomes complex and there are large training samples [12].  
Furthermore, as a first-order gradient based non-linear 

optimization method, the back-propagation (BP) algorithm 
is most widely used and an effective algorithm for training 
multi-layer feed-forward neural networks [2]. It iteratively 
adjusts the network parameters (all weights and thresholds) 
to minimize the error measure function using a gradient 
descent technique. Most recently, to improve the 
performance of the original BP algorithm, researchers 
have concentrated on the following factors: selection of 
better energy function [13],[14] and selection of dynamic 
learning rate and momentum [15],[16],[17]. Moreover, 
some second-order gradient based methods such as the 
conjugate gradient algorithm [5] and the Levenberg-
Marquardt based method [6] have also been proposed. 
Generally speaking, the methods that use derivatives are 
efficient. However some problems correspond to the error 
measure functions that by nature are non-differentiable or 
difficult to compute. Furthermore, they are usually 
different for hardware implementations for they need 
analog multipliers and other analog computations. Hence 
these methods will not work in hardware manner [18]. In 
addition, due to the highly nonlinear modeling power of 
such networks, the learned function may oscillate abruptly 
between carious training data. This is clearly undesirable 
for function approximation [19]. A metaheuristic [20], 
such as direct search [21] may provide a good solution to 
this problem. The authors have therefore proposed a 
learning method for multi-layer feed-forward neural 
networks using a pattern search method [22]. The pattern 
search based training algorithm, which does not require 
derivative information and indeed is one of the 
“derivative-free” direct search methods [23], can render 
the procedure efficient and robust and provided a very 
simple and effective means of searching the minima of 
objective function directly without any oscillation between 
training data.  
 
However, due to their inherent local minimum problems, 
all these learning algorithms, either the BP based 
algorithms or the direct search based algorithms often 
converge to a local minimum solution that is far from the 
optimal solution. In this paper, we propose an annealing 
chaotic dynamic pattern search method (ACPS) for 
learning multi-layer feed-forward neural networks. The 
proposed algorithm maintains some trend of quick descent 
to local minimum, and at the same time has some chance 
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of escaping from them by exploiting the landscape in an 
ergodic manner. We apply the algorithm to a diverse set of 
problems, including exclusive-or (XOR) problem, parity 
problems and Arabic numerals recognition. Simulation 
results show that our method can train multi-layer 
networks effectively and improve the pattern search 
method much. 

2. Pattern Search Method for Multi-layer 
Feed-forward Neural Networks (MFNNs) 

A multi-layer feed-forward neural network consists of 
three layers: an input layer, and output layer, and one or 
more hidden layers. Each layer is composed of a 
predefined number of neurons and each neuron has a 
threshold. It is usually assumed that each layer is fully 
connected with an adjacent layer without direct 
connections between layers that are not consecutive. Each 
connection has a weight. Fig.1 illustrates the structure of a 
typical three-layer feed-forward neural network.  
 
The neurons in the input layer only act as buffers for 
distributing the input signals ix )N,...,2,1i( =  to neurons 
in the hidden layer. The input of each neuron in a layer 
(except input layer) is given by 

∑
i

jpijipj θownet +=                                           (1) 

where pjnet  is the net input to neuron j  produced by the 

presentation of pattern p , jiw  is the weight from neuron 

i  to neuron j , θ  is a threshold of the neuron j  and pio  is 

the output value of neuron i  for pattern p . The output of 
neuron j  for pattern p  is specified by  

)net(fo pjjpj =                                                        (2) 

where )x(f  is a semilinear activation function that is 
differentiable and nondecreasing and usually a sigmoidal 
or hyperbolic tangent function. Training a network can be 
performed by adjusting its weights and thresholds using a 
training algorithm. The training algorithms adopted in this 
paper optimize the weights and thresholds by attempting 
to minimize an over error measure E  which is the total 
sum of squared differences between the desired and actual 
values of the output neurons for all patterns, namely:     

∑
p

p )Θ,W(EE =                                                   (3) 

,...)w...,w,w(W ij1211=                        (4) 

,...)θ...,θ,θ(Θ i21=                                             (5) 
where p  indexes over all the patterns in the training set. 

pE is defined by 

 
2

j
pjpjp )ot(

2
1E ∑ −=                                     (6) 

where pjt  is the target value (desired output) of the j -th 

output neuron for pattern p , and pjo  is the actual output 
value of the j -th neuron produced by the presentation of 
input pattern p , and j  indexes over the output neurons. 
 
The pattern search method is a class of direct search 
methods for nonlinear optimization proposed by Hooke 
and Jeeves [21]. Since the introduction of the original 
pattern search method, it has remained popular with users 
due to its simplicity and the fact that it works well in 
practice on a variety of problems [24]. Recently, the 
analysis of convergence of the pattern search method has 
been present in [24],[25]. The basic idea of the pattern 
search method is that it first uses inexpensive surrogate 
objective and constraints to predict points that constitute 
improvements to the real problem and then make a local 
exploration near the current iteration whose properties 
enable the theory to guarantee convergence [26],[27],[28].  
 
In a multi-layer feed-forward neural network, the variable 
space consists of the weights between all layers and 
thresholds of every neuron. So in order to minimize the 
sum of squared residuals, we consider adjusting a vector 
V  whose elements include all the parameters in the 
variable space: 
      T

i21ij1211 ,...]θ,...,θ,θ,...,w,...,w,w[V =               (7) 

Then the error function E  in Eq.(3) can be expressed as: 
)V(EE =                                                              (8) 

Then, we can iteratively adjust V  to minimize the error 
function )V(E . First, the search starts at an initial point 

0V  and moves along one of n  directions. n  denotes the 
number of elements of the vector V . Then the l -th 
direction vector l

ke  at iteration k  can be defined as: 

T
l

l
k )0,...,0,1,0,...,0(e =                                            (9) 

A sequence of iterations ,...V,...,V,V k10  can be produced 
as follows. For 0k ≥ , iteration k  is initiated with kV , 

then find a new point along direction l
ke , n,...,2,1l = , 

such that  
)V(E)eΔV(E k

l
kkk <+                                        (10)  

Or   )V(E)eΔV(E k
l
kkk <−                                         (11) 

n,...,2,1l = , where kΔ  is a positive step size parameter.  
 
If such a point is found, then the iteration is declared 
successful, and the next iteration becomes  

l
kkk1k eΔVV +=+                                                (12) 
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Or    l
kkk1k eΔVV −=+                                                (13) 

where n,...,2,1l = . 
 
If no such point is found, then the iteration is declared 
unsuccessful, and the algorithm will make a local 
exploration near the current iteration. That is to say, the 
next iteration is initiated at the same point k1k VV =+ , and 
the step size parameter 1kΔ +  is reduced to kΔη , where 

1η0 <<  is a constant over all iterations. And the initial 
vector 0V  and the step size 0Δ  are given in advance.  
As can be seen, the pattern search method performs the 
local search iteratively and minimizes the error function 
along with the set of decent direction directly. It finally 
lead the network to the local minimum of E , and hence, to 
a solution of the problem. Namely the error function E  is 
always decreased by any parameters change produced in 
the method.  

3. Annealing Chaotic Pattern Search Method 
for MFNNs 

Both the back-propagation-based learning algorithm (BP) 
and the pattern search-based learning algorithm (PS) have 
gained much attention and widespread applications in 
different fields. However, the performance of the BP 
algorithm and PS algorithm greatly depend on their initial 
values, and they often suffer the problem of being trapped 
in local optima so as to prematurely converge. In order to 
avoid these disadvantages, we propose a hybrid pattern 
search method of solving the local minimum problem by 
incorporating chaos and applied to MVL network learning.  
 
As a kind of characteristic of nonlinear systems, chaos is a 
bounded unstable dynamic behavior that exhibits sensitive 
dependence on initial conditions and infinite unstable 
periodic motions. Although it appears to be stochastic, it 
occurs in a deterministic nonlinear system under 
deterministic conditions. In recently years, growing 
interests from physics, chemistry,  biology and 
engineering have stimulated the studies of chaos for 
control [29], synchroniazation [30] and optimization [31]. 
One of the famous chaos system, Logistic equation, is 
introduced in  the process of chaotic dynamic local 
search method defined by the following equation: 

))k(λ1)(k(αλ)1k(λ iii −=+                                (14) 
where iλ  denotes the i -th chaotic variable and k  
represents the iteration number. When 4α = , this system 
reveals chaotic phenomena. Obviously, )k(λ i  is 
distributed in the interval (0,1) under the conditions that  
the initial )1,0()0(λ i ∈  and that }75.0,5.0,25.0{)0(λ i ∉ .  

 
In the original pattern search method, a combination of 
exploratory move and pattern move is made iteratively to 
search out the optimum solution for the problem. As 
described above, an exploratory move is performed in the 
vicinity of the current point systematically to find the best 
point around the current point. Namely, a positive 
perturbation )eΔV( l

kkk +  or a negative perturbation 

)eΔV( l
kkk − . Then by incorporating the chaotic dynamics, 

we expand the exploratory move to be 
 l

kkk eΔ)k(λV ±                                              (15) 
where the chaotic factor is given in Eq.(14). Furthermore, 
in order to eliminate the fluctuation of the chaos in the latter 
phrase of the process, an annealing strategy is also utilized. In 
this condition, )k(λ in Eq.(15) can be expressed as: 

 ))k(λ1)(k(λ)k(α)1k(λ ''' −=+                            (16) 

 )β1)(k(α)1k(α −=+                                          (17) 

 )k(λ21)k(λ '−=                                                  (18) 

where β is a damping factor for the epoch-dependent 
)k(α  )1β0( ≤≤ and Fig.1 shows its chaotic dynamic 

where 1.0)0(α = . 
 

 

Fig.1 The dynamics of Logistic Map 

By combining the chaotic dynamics into the pattern search 
method, the ACPS method has more elaborate dynamics. 
In the earlier phase of the approach the algorithm taking 
full advantages of the ergodic and stochastic properties of 
chaotic variables exploit the local solution space, and the 
motion of the chaotic variables in their ergodic space is 
used to explore the whole solution space. Moreover, with 
the iteration going, the fluctuation caused by chaotic system 
has less and less power on the algorithm and finally it 
comes to only have the trend of descent just the same with 
the original pattern search method. Obviously, the 
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convergence of the proposed algorithm can also be 
guaranteed [24],[25]. Furthermore, neither explicit 
estimate of the derivative nor anything like a Taylor's 
series appears in the proposed algorithm. This makes the 
algorithm useful in situations where derivatives are not 
available or difficult to get. Moreover, as the learning is 
performed by simply changing vector by a small positive 
or negative constant and it relies exclusively on values of 
the objective function, the algorithm is extremely simple 
to be specified and be implemented in hardware 
applications. 
 
Generally, the proposed algorithm (ACPS) can be 
described as follows: 
 
Step 1. Initialize the vector V and other parameters; 

Generate a vector 0V  (the weight and threshold vector) 
randomly. Set the maximum epoch )Epoch_Max( , the 
initial chaotic variable )0(λ  and the damping factor β , 
a step reduction factor η  )1η0( << , a error criterion 
ξ  and a termination parameter which usually is a small 
positive constant ε .  
Set 0Δδ,...,δ,δ,δ,...,δ,δ 0Rn2R1RLn2L1L >= , where 
δ  is the update step associated with each weight and 
threshold and here the subscripts L and R indicate the 
negative and positive move respectively. 

Step 2. Set epoch counter 0k = . Let 0
c

1 VV =  and 1l = . 

Here c
1V  is a copy of vector 0V  and c

n
c
2

c
1 V,...,V,V  

construct an epoch which searches a better solution in 
the variable space for all weights and thresholds (It 
should be noted that n iterations ( c

n
c
2

c
1 V,...,V,V ) 

construct an epoch in our algorithm. 
Step 3. For 1l =  to n  (that is for all weights and 

thresholds), carry out: 
 If )V(E)eδV(E c

l
l
kRl

c
l <+ , 

 Then: l
kRl

c
l

c
1l eδ)k(λVV +=+ , 

 Else { 
  RlRl ηδδ = , 

  If )V(E)eδV(E c
l

l
kRl

c
l <−  

     Then: l
kRl

c
l

c
1l eδ)k(λVV −=+  

 Else: { LlLl
c
l

c
1l ηδδ,VV ==+ .} 

} 
Step 4. Adapt the vector V (weights and thresholds); 
    If )V(E)V(E k

c
n <  (That is to say, there is an 

improvement after an epoch), 
Then { 

 Set the new vector ,VV c
n1k =+  

 ),VV(ψVV k1k1k
c

1 −+= ++  
 .1l,1kk =+=  
 } 
    Else { 
 Set the new vector ,VV k1k =+  

 ,VV k
c

1 =  
 .1l,1kk =+=  
 } 

where the user-defined parameter ψ  (usually, 1ψ ≥ ) is 
used to enlarge the search space of the current point 
and thus improve the search efficiency [22]. 

Step 5. Estimate stop conditions: 
      If ξ)V(E 1k <+  (where ξ  is a preselect error criterion), 
      Then { 

Stop the pattern search at point 1kV +  and the 
training is considered to be successful. 
} 

Else{ 
If all ε)δ,...,δ(δ Rn1L < , or the number of 
iteration reach )Epoch_Max( , 

Then: stop search at point kV and the training is 
considered to be unsuccessful. 
Else: go to Step 2. 
} 

4. Simulation Results 

In this section, we will demonstrate the effectiveness and 
robustness of ACPS method by applying it to several 
benchmark problems, such as exclusive-or (XOR) problem, 
parity problem and Arabic numerals recognition and then 
compare the simulation results with those of the traditional 
gradient descent method, backpropagation algorithm [16], 
the simulated annealing algorithm [9] and the original 
pattern search method [22].In our simulations, the weight 
update rule used in the backpropagation algorithm is given 
by: 

)n(wΔμ
w
E

ν)1n(wΔ jip
ji

p
jip +

∂

∂
−=+                   (19) 

where ν  is the learning rate, μ  is the momentum term 
that determines the effect of past weights changes on the 
current weight changes. Moreover, ν was set to be 1.0 
andμ  was set to be 0.8 for all trials. The parameters used 
in the simulated annealing and original pattern search 
methods were the same with those in [9] and [22] 
respectively. In the ACPS method, some parameters were 
set as follows: 
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0.1ψ,1.0Δ,01.0ε,99.0η,009.0β,1.0)0(λ 0 ======  

It should be noted that although there may be more 
suitable values of these parameters for the problems, it is 
difficult to set them theoretically. Furthermore, in order to 
make the proposed algorithm be a general method, these 
parameters should not be affected by individual problem 
too much. Thus, we remained them the same values during 
all the simulations. 

4.1 Exclusive-or (XOR) Problem 

The exclusive-or problem which is a classic problem 
requiring hidden units and involved as a subproblem in 
many other different problems [2] is usually used as a 
basis for illustrating the limitations of the computational 
power of MFNNs. A simple architecture (2-2-1 network) 
with one hidden layer containing two hidden unites was 
employed to solve the exclusive-or problem, where the 
activation function was the sigmoid function. 

In order to see the effect of the annealing chaotic dynamic 
to the training process, we compared the learning curves 
of the original pattern search method and the proposed one 
and illustrated them in Fig.2. As both of the methods were 
sensitive to the initial settings, especially the initial 
weights and thresholds 0V  of the network, we used the 
same randomly initialized vector 0V  in the training 
process to make a fair comparison. The maximum epoch 
was set as 5000 to give enough time for training and the 
error criteria was 0.01 in both cases. In Fig.2, the 
horizontal axis denoted the iterations of the algorithm 
(actually, 45253 and 2485 iterations for the original 
pattern search method and the ACPS method, 
respectively) and it was in a logarithmic scale. The vertical 
axis denoted the error (in Eq.(3)) and was in a linear scale. 
Form Fig.2, we can find that the pattern search method 
had a fast convergence speed at first and at about 700 
iteration it fell into a local minimum and could not 
improve its performance further. However the proposed 
algorithm performed a fluctuant curve in the earlier phrase 
of learning. Then with the iteration going, it had a quick 
descent and finally led the network to a global minimum. 
Moreover, we illustrated the value of the annealing 
parameter )k(λ versus the epoch of the process in Fig.3 
whose horizontal axis denoted the epoch that is a cycle of 
iterations. If the value of )k(λ is smaller than 0, the 
sequence of iterations will be the contrary direction of the 
original pattern search method and the vale of the error 
function will ascend; if the value of )k(λ  is equal to 0, the 
selected sequence will stay at the original value and the 
value of the error function will be unchanged; if the value 
of )k(λ is larger than 0, the selected sequence will  

 

Fig. 2 The comparison of learning curve between the proposed algorithm 
and the original pattern search method for XOR problem 

 

Fig. 3 The annealing parameter versus the epoch of the process. 

search the landscape in the same direction with a different 
velocity, and in the case of 1)k(λ = , the algorithm is just 
the same as the original one. Then from Fig.3, we can find 
that in the early phrase the system reveals chaotic 
phenomena which caused the fluctuant of the learning, and 
in this period, the system exploited the landscape in an 
ergodic manner. Then the periodic value of )k(λ  which 
mostly is smaller than 0 caused the drastically increment 
and in this condition the system has powerful ability of 
escaping of the local minimum. Then when  )k(λ  is equal 
to 1, the system has a direct descent and finally lead the 
system to the optimal solution. By comparing the learning 
performance between the original pattern search method 
and the proposed algorithm, we found that the proposed 
algorithm (ACPS) can search the landscape in an ergodic 
manner by introducing the annealing chaotic dynamic into 
the pattern search method and thus resulting in escape 
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from local minima and possible convergence to global 
minimum or a better solution. 

Furthermore, for the purpose of evaluating the sensitivity 
of the proposed algorithm to the initial setting, we 
generated initial weights and thresholds vectors randomly 
for the XOR problem in (-1,+1), (-2,+2),...,(-10,+10) 
respectively and compared to the backpropagation 
algorithm and the original pattern search method. We 
implemented the simulation 100 times to make a statistical 
comparison. We illustrated the comparison results in terms 
of the success rate and the average computation time in 
Fig.4 and Fig.5 respectively. From Fig.4 we found that 
although the success rates of the BP algorithm were high 
at small initial settings, they became 

 

Fig.4 Comparison of networks with various initial settings: Success rate 
versus Range initial setting 

 

Fig.5 Comparison of networks with various initial settings: Average 
Time versus Range initial setting. 

worse as the range of initial vectors grew larger. 
Compared to the backpropagation algorithm, both the 
original pattern search method and the proposed algorithm 
performed smoother success rate. This is because the 
pattern search method based algorithms do not require 
numerical function values which are affected by the initial 
settings significantly. The relative rank of objective values 
is sufficient and they can accept new iterates that produce 
simple decrease in the objective. Moreover, the proposed 
algorithm outperformed the original one inmost range of 
initial settings. Besides, Fig.5 revealed the average 
computation time (where the symbol ``ms." denoted 
``millisecond'') consumed for successful runs by the 
algorithms. It is obvious that the training time cost by the 
backpropagation algorithm increased drastically while that 
of the pattern search based algorithms did not change 
manifestly and remained low. Consequently, the proposed 
algorithm is more robust and efficient than both the 
backpropagation and patter search algorithms. 

4.2 Parity Problem 

The parity problem is one of the more widely used 
problems for testing neural network training algorithms. 
This problem is a mapping problem where the domain set 
consists of all distinct N -bit binary vectors and the result 
of the mapping is 0 if the number of ones in the vector if 
even, and 1 otherwise. The problem is considered to be 
very hard since the output changes whenever any single 
bit in the input changes. The case 2N =  is the well-
known exclusive-or problem. An 1MN −−  ( N -input, 
M -hidden neurons and 1-output) architecture was used  

Table 1: Simulation results for the parity problems 
N -bit Network Algorithm S.R. A. Time 

BP 88% 7754 
SA 97% 293965 
PS 62% 676 4-bit 4-6-1 

ACPS 78% 689 
BP 74% 53704 
SA 95% 2862956 
PS 83% 4909 5-bit 5-10-1 

ACPS 95% 5123 
BP 10% 27555 
SA 100% 30105990 
PS 64% 14904 6-bit 6-12-1 

ACPS 85% 15321 
BP 3% 1058061 
SA 0%  
PS 42% 121779 7-bit 7-14-1 

ACPS 73% 123520 
 

for the parity problem and the number of hidden neurons 
were selected from.  
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Then we applied the proposed algorithm to learn a number 
of parity problems with input patterns ranging from size 
four to seven and compared the simulation results to those 
of the backpropagation algorithm (BP), simulated 
annealing (SA) and original pattern search (PS) methods. 
The maximum learning epoch was set as 30000 for all 
algorithms. Since the initial values of weights and 
thresholds affect the convergence of a learning algorithm, 
it is reasonable to judge each algorithm by the statistics 
obtained from multiple runs. In our experiments, for each 
simulation of the four algorithms, 100 sets of different 
initial weights and thresholds were randomly generated 
from -1 to 1 to be used for training. Table 1 showed the 
comparison results of these algorithms where “S.R.” 
denotes the success rate of the algorithms and “A. Time” 
denotes the average CPU time (millisecond) consumed by 
the algorithms. It should be noted that the average times 
were obtained by averaging the computation times of the 
successful runs. Obviously, the backpropagation algorithm 
had a rapidly degressive success rate when the problem 
became larger. Although the simulated annealing method 
could learn the networks with very high success rate, it 
consumed too much computation time, and thus in the 7-
bit parity problem the network could not convergence to a 
global minimum in reasonable times (30000 epoch). 
Compared to the backpropagation and simulated annealing 
methods, both the original pattern search method and the 
proposed method could lead the networks to a local or 
global minimum in a relative short time even for the large 
problems. Meanwhile, the proposed algorithm had a 
higher success rate than the  
 

 

Fig. 6 Input patterns of Arabic numerals recognition 

10 output units

4 hidden units

8 x 8 Input units

 

Fig. 7 The architecture of the network to solve the Arabic numerals 
recognition problem 

Table 2: Simulation results for the Arabic numerals recognition problem 
Algorithm Success Rate Average Time 

BP 90% 28493 
SA 0%  
PS 96% 17078 

ACPS 99% 17536 
 
original one because of its powerful ability of escaping 
from local minima. 

4.3 Arabic numerals recognition 

Furthermore, for the purpose of evaluating the 
effectiveness of our proposed algorithm for some high-
dimensional and practical problems, we applied our 
algorithm to a larger network that is set up for a more 
artificial task, Arabic numerals recognition. This task is a 
classical pattern classification problem. Our simulation 
involved recognition Arabic numerals 0-9 in an 8 by 8 
pixel input field (Fig.6). In order to solve this problem, a 
relatively complex architecture was employed. Fig.7 
shows the basic structure of the network we employed. 
Input layer consisted of 64 units that were conceptualized 
as two-dimensional patterns corresponding to 8 by 8 pixel 
numeral array. Hidden layer had 4 units, each of which 
was fully connected to all output units. The number of the 
output units was set to 10. Therefore, each of the 10 output 
units corresponded to one of these characters. 

We illustrated the simulation results in Table 2. The error 
criteria used for the algorithms was 0.01 and all weights 
and thresholds were also initialized from the range 

)0.1,0.1( +− . The statistics in this table were based on 100 
trials of simulations. It can be seen form the table that the 
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proposed algorithm significantly outperformed the 
backpropagation algorithm, the simulated annealing 
algorithm and the original pattern search method in terms 
of both the global optimization and convergence speed. 

4. Conclusions 

We proposed a pattern search method with an annealing 
chaotic dynamic for learning multi-layer artificial neural 
networks. The proposed approach was designed as a 
simple direct search method and thus it could be applied in 
hardware implementations easily. Furthermore, due to the 
introduction of chaotic dynamics, the proposed algorithm 
exploited the landscape in an ergodic manner so that it had 
ability to escape from local minima and eventually reached 
the global minimum state or its best approximation with 
very high probability. We tested this algorithm on several 
benchmark problems and the simulation results showed 
that the systems could be trained efficiently by our method 
for all problems.  
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