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Summary 
One of the significant issues that hinder the performance of Java 
program execution is dynamic memory usage.  Some researchers 
stated that in executing Java programs, 15.58% of the CPU time 
is used in handling memory allocation requests and 28.08% of 
the CPU time in garbage collection.  A statistical study on the 
dynamic memory usage behavior of both desktops and servers, 
Java applications show similar locality, and that memory 
allocation requests are concentrated on small block sizes (< 1K 
bytes), and blocks allocated usually have short life times.  Based 
on these findings, we proposed a hardware/software approach in 
handling memory allocation and deallocation requests that gives 
a 17% overall performance gain in Java program execution. 
Key words: 
Java, dynamic memory management, memory allocation, 
memory deallocation. 

Introduction 

In the technology world, there are motivations and reasons 
for designs and implementations.  When time passes and 
the technology evolves, many reasons that support old 
designs and implementations may no longer be valid, but 
new designs and implementations may still follow old 
reasons to develop without asking why.  The evolution in 
microprocessor architecture design is under this situation.  
During the last few decades, although the computer 
architecture design evolved from CISC to RISC and 
VLIW, the basic model is still von Neumann, which was 
developed based on procedural programming model.  
When the mainstream programming model in software 
development moved from procedural paradigm to object-
oriented paradigm, many of the old reasons to support the 
von Neumann model are no longer valid.  There are new 
reasons established in control flow, protection and 
memory management of the object-oriented paradigm.  It 
comes to a point that we have to rethink how the computer 
architecture should be developed based on these new 
scenarios. 

Among these new reasons, memory management plays an 
important part, because [2] and [3] stated that a C++ 
program performs an order of magnitude more memory 
allocations than comparable C program.   For  Java 
program, the situation is even worse that the amount of 
memory allocation requests is much more than a C++ 
program, and the allocated objects need to be collected 
automatically by the runtime environment, [1] stated that 
15.58% of CPU time is used in handling memory 
allocation requests and 28.08% of the CPU time is used in 
garbage collection.  If the memory management can be 
handled by hardware in an effective way, the performance 
of Java execution can be greatly enhanced. 

2. Dynamic Memory Usage in Java 

In order to obtain the statistics on the memory allocation 
and deallocation behavior of Java programs, a tracing tool 
was developed to collect memory allocation and 
deallocation events during Java program execution for 
further analysis.  This tracing tool is a profiler agent 
developed according to the specification of the Java 
Virtual Machine Profiler Interface (JVMPI).  When 
executing a Java program using an instance of the Java 
Virtual Machine (JVM) with the profiler agent installed, 
all the memory allocation and deallocation events can be 
captured for further analysis. 

The choice of the Java applications under test should 
covered different areas including desktop applications and 
server applications, therefore the applications shown in 
Table 1 are chosen for the evaluation. 

Table 1  Java Applications chosen for Evaluation 
Java Application Description 

SPEC JVM98 benchmark Standard benchmark suite 

Java2D demo Typical desktop Java application 
(single-user, multi-threads) 

Pet Store 
Typical enterprise Java 
application 
(multi-users, multi-threads) 
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By executing and profiling these applications, the memory 
allocation and deallocation events were obtained and 
passed to an analyzer to analyze the data in two different 
dimensions: 

1. Size of block requested 

2. Life time of a block 

Fig. 1 to 4 show the 3-dimensional plots of the distribution 
of blocks requested against the block size and block life.  
All 3 tested applications show similar distribution in the 
plots that memory blocks requested by the applications 
concentrate on small sizes and short life times.  This 
locality finding is a good seed for developing an efficient 
memory management system for Java. 

3. Hardware Support of Memory 
Management for Java 

3.1 Description of Prior Art 

In order to improve the overall performance of object-
oriented program execution, a sensible approach is to 
improve the efficiency of the memory management system 
of the execution environment.  Many researchers had 
proposed many hardware approaches to improve the 
efficiency of Java memory management system [4] [5] [6] 
[7] [8] [9].  These approaches all uses tree based 
combinational logic to locate free memory blocks and to 
mark blocks used/freed.  Chang and Srisa belongs to the 
same research team and proposed an modified buddy 
system as the core of their solution; while Cam utilizes the 
basic idea of Chang’s suggestion and proposes another 
structure which can generate less fragmentation than 
Chang’s method, but it requires much more logic gates to 
implement. 

Both methods can do memory allocation and deallocation 
requests in a single-cycle, but they can only detect free 
blocks with sizes in the power of 2.  In addition, the trees 
will become too complex to implement if the total number 
of memory units is large.  For example, if the basic unit 
for allocation is 16 bytes and the total memory is 128MB, 
the size of the bit-vector is 8M bits.  To implement such a 
system using Chang’s design requires a tree with (28M)/2 
nodes.  If Cam’s design is applied, even more nodes are 
needed.  Apparently it is impractical to implement such a 
design in a chip when the number of nodes is this much. 
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Fig. 1  Dynamic Memory Usage Characteristics of JVM-98 Benchmarks 
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Fig. 2  Dynamic Memory Usage Characteristics of Java2D Demo 
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Fig. 3  Dynamic Memory Usage Characteristics of J2EE PetStore Demo 
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Fig. 4  Dynamic Memory Usage Characteristics of All Applications 

To overcome this problem, larger units may be used to 
reduce the total number of blocks, but this will lead to 
greater internal fragmentation.  Another approach is to 
partition the memory into many regions so that the 
hardware tree is used for managing only one region and 
the operating system is responsible to switch the active 
region for the hardware to work on from time to time.  
This method ruins the performance of the hardware 
approaches, as a lot of software overhead is required in 
augmenting the hardware. 

3.2 Hardware/Software Memory Management 
System 

3.2.1 Locality Characteristics that Driven the Design 

Based on our study on the dynamic memory usage 
behavior in Java programs, we have concluded three 
locality characteristics: 

1. Dynamic memory allocations are heavily used by 
Java programs. A simple Othello game applet 
generates about 600K memory allocation requests 
for one game play [10]. 

2. Dynamic allocation requests are concentrate on 
small block sizes.  Around 90% of the total 
allocation requests are with block sizes less than 256 
bytes and around 99.5% of the total allocation 
requests are with block sizes less than 1K bytes. 

3. Most of the blocks allocated have short lifetime, and 
blocks with small sizes have a higher probability in 
having short lifetime as well. 

These three characteristics conclude that the memory 
allocation and deallocation behavior of Java programs 
have certain localities.  These localities focus on small 
sized memory allocations/deallocation requests.  Therefore 
to improve the efficiency of memory 
allocation/deallocation request handling for Java runtime 
environment, a hardware/software co-design can be 
applied.  For small block sizes, a relatively simple 
hardware can be used to gain better performance; while 
for larger block sizes, a traditional malloc-like software 
method can be used.  This approach can facilitate the 
memory allocations and deallocations to be efficiently 
done and the performance can be greatly enhanced. 

3.2.2 Detailed Description of the Design 

Allocation requests are first classified into small size and 
large size types.  This process is implemented by a 
combinational logic to detect which range is the size 
resides in and triggers appropriate process.  If an 
allocation request belongs to small size type, the block 
size will be passed to the small size allocation hardware 
and generate a block reference.  If an allocation request 
belongs to large size, a software trap will occur and the 
control will be passed to the appropriate software routine 
to handle the request depends on which type the request 
belongs to.  Based on the statistical results, the threshold 
to divide small size requests from large size is 1K bytes.  
Deallocation requests use the same type information 
assigned during the allocation process and use the same 
components to do a reverse operation to free up the 
memory units. 

To provide effective memory management in hardware, 
the main memory is divided into fixed sized regions, so 
that the memory address is divided into a region address 
and a region offset, see Fig 5.  The region address is used 
to identify a specific region, while the region offset is used 
to address data values within a region. 

 
Memory Address 

Region Address Region Offset 

Fig. 5  Region Addressing 

The Small Object Heap (SOH), which is a collection of 
regions partitioned from the main memory, and serves the 
purpose of allocating small blocks.  It does not require to 
be contiguous, but it is built up by many fragments such 
that each fragment is a contiguous set of regions, see Fig 6.  
This heap is maintained by the operating system and the 
overall size can be enlarged or shrunk according to the 
demands of small size allocation requests. 
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Fig. 6  Small Object Heap Fragments 

Each region in the Small Object Heap (SOH) has a bit-
vector, which records the used/freed information of each 
memory units within a region.  Each unit is the minimum 
distinctive entity for memory management.  The size of a 
memory unit should be somewhat smaller than the size of 
a region, but it cannot be too small (e.g. 1 byte) otherwise 
the memory management will not be effective as the bit-
vector for a region will be too long.  In this way, the 
region offset is divided into a unit address and a unit offset, 
see Fig 7.  The unit address is used to address each unit 
within a region; while the unit offset is used to address 
each byte of data values within a memory unit.  The size 
of the bit-vector associated with a region is governed by 
the following formula: 

 
bit-vector length = 2length of unit address bits 

 
When a small size allocation request arrives, the size of 
the request is quantized into number of memory units.  
Then a suitable region in the Small Object Heap (SOH) is 
selected for handling this request and a search is 
conducted on the bit-vector associated to this region to 
find out the first contiguous block of units with the 
quantized size.  The unit address of the block is generated 
and combined with the region address to form the memory 
address.  The memory address of the block is then 
returned to fulfill the request and the allocated units are 
marked as used in the bit-vector.  When a small size 
deallocation request arrives, the process is reversed.  First 
the block address is sliced to produce a region address and 
a unit address.  Then the region address is used to find out 
which region the block resides in.  Using the unit address 

and the quantized size of the block, deallocated units are 
marked as freed in the bit-vector. 

 
Region Offset 

Unit Address Unit Offset 

Fig. 7  Unit Addressing 

To speed up this algorithm, a hardware structure named 
Memory Management Cache (MMC) is used so that an 
allocation or deallocation request takes only 1 cycle or a 
few pipeline stages to process.  The Memory Management 
Cache (MMC) is a fast storage that holds the information 
of a subset of regions within the Small Object Heap 
(SOH).  See Fig 8. 
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Fig. 8  Memory Management Cache 

Each cache line represents a region and consists of three 
parts: Region Address, Bit-vector, and a status bit.  The 
region address defines which region this cache line is 
representing and uses to match with the region address 
provided by a deallocation request to select appropriate 
cache line for deallocation.  The bit-vector stores the 
used/freed information associated with the region.  The 
status bits store information that helps to select appropriate 
region for handling an allocation request.  It consists of the 
Most Recently De-allocated (MRD) information, the Most 
Recently Allocated (MRA) information and the 
information whether the region has any free blocks of each 
of the detectable sizes given by the allocation/deallocation 
decision tree. 

The Decision Logic is used to select which region for 
allocation.  It uses the information provided by the status 
bits of all cache lines and the block size of the allocation 
request to make the decision.  The allocation/deallocation 
decision tree is responsible for locating free blocks, 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 
 

 

150 

marking the bit vector, generating the region offset and 
updating the status bits.  To make a better search of free 
blocks, we proposed a design that is capable to detect free 
blocks with more discrete sizes and not restricted to sizes 
of power of 2.  The way to do this is to group multiple bits 
in the size to address the level of the decision tree.  If we 
group 2 bits at a time, we can detect the following discrete 
units: 

 
1, 2, 3, 4, 8, 12, 16, 32, 48, 64 

 
An implementation of the prefix circuit based on grouping 
2 bits is shown in Fig 9. 

Size (Units)

8 001000

4 000100

3 000011

2 000010

1 000001  

Fig. 9  Multi-bit Prefix Circuit 

When a small size allocation request arrives, the block size 
will be quantized into 2 different sizes using the 
quantization logic: the detection block size and the 
allocation block size.  The detection block size is used by 
the detection logic for cache line selection and the 
allocation/deallocation decision tree for free block lookup; 
while the allocation block size is used by the encoding 
logic and the allocation/deallocation decision tree for 
marking bit-vector.  The allocation block size is generated 
by quantizing the block size in terms of memory units, 
while the block detection size is generated by quantizing 
the block allocation size into one of the detectable sizes of 
the allocation/deallocation decision tree. 

After quantization of sizes, the detection block size will be 
passed in the decision logic, and it will suggest a region 
for handling the allocation request using the status bits of 
all cache lines.  As the status bits already contain 
information if any free blocks can be detected with a given 
detection block size, the region selected guarantees a free 
block with the given size can be detected. 

After a cache line is selected, the bit-vector will be passed 
to the allocation/deallocation decision tree along with the 
detection block size and allocation block size.  The 
decision tree will locate the free block and generates its 
unit address, which is then combined with a unit offset 
with zero value to produce the region offset.  Then the 
units allocated are marked used by consulting the unit 

address and the allocation block size.  In addition, a new 
copy of status bits will be generated by the decision tree 
and updates the old copy in the cache line. 

Finally the allocation block size is encoded into a size info 
and combined with the region address, the unit address 
and the zeroed unit offset to form a block reference, see 
Fig 10.  If a region cannot be found in the very beginning 
for allocation, the control will be passed to the operating 
system to kick out some cache lines and bring in some 
new lines. 

 
Block Reference 

Size Info. Memory Address 

Fig. 10  Block Reference 

When a small size deallocation request arrives, the block 
reference will be decomposed into a size info, a region 
address, an unit address, and a zeroed unit offset.  Then, 
the size info will be passed into the decoding logic and 
produce the allocation block size.  The region address will 
be used to match all the region addresses of the cache lines.  
If a miss occurs, the control will be passed to the operating 
system and kick out a cache line and bring in the required 
line.  If a hit occurs, the deallocation process continues.  
First the hit cache line is enabled and the bit-vector will be 
passed to the allocation/deallocation decision tree.  With 
the bit-vector, the allocation block size, and the unit 
address, the decision tree will mark the units de-allocated 
as freed in the bit vector.  Also, a new copy of status bits 
will be generated by the decision tree and updates the old 
copy in the cache line. 

4. Performance Evaluation of the Hardware 
Support 

4.1 The Experiment 

In order to evaluate the performance of the proposed 
hardware/software approach in handling memory 
allocation and deallocation requests of Java programs.  A 
high level behavioral model was built for evaluation by 
injecting events of memory allocation/deallocation when 
executing benchmark programs into the model.  The 
benchmark programs chosen are the same used for 
obtaining the statistical behavior.  The model was setup 
with the hardware proposed and a simple LRU 
replacement algorithm for handling the memory 
management cache miss.  The hardware parameters 
chosen in the simulation is shown in Table 2. 
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Table 2  Optimized Configurable Parameters 
Parameter Value 
No. of bits grouped in multi-bit prefix circuit 2 
No. of bits of the unit offset 3 
No. of bits on the region offset 16 
Maximum allocatable size 1K bytes 
No. of cache lines 16 
 

In this simulation, the events captured in the previous 
experiment were reused to feed in the simulation model 
and captured the behavior of the operation of the proposed 
hardware.  The information captured includes: 

1. The cache hit rate during memory allocation 

2. The cache hit rate during memory deallocation 

3. The overall cache hit rate 

4. Average internal fragmentation of regions 

5. Average region utilization during kick out from 
cache 

6. The oversize rate of allocation requests that the 
block sizes of allocation requests exceeded the limit 
and will not be processed by the hardware. 

The hit rates captured are used to evaluate the efficiency 
of the cache, while the internal fragmentation and region 
utilization during kick out are used to evaluate the 
efficiency of the usage of memory.  The oversize rate of 
allocation requests are used to calculate the effective time 
required to process a request. 

4.2 The Simulation Results and Analysis 

The analysis shows that the hardware proposed gives a 
high overall hit rate at around 98.4% in handling memory 
allocation and deallocation requests when using the 
default values in configurable parameters of the simulation 
model.  The default values of the configurable parameters 
are obtained by choosing the optimal values in different 
set of tests.  The average internal fragmentation is around 
14.8%.  The average region utilization during kick out is 
75.3% and the oversize rate is around 0.2%. 

Table 3  Hit Rate 
Benchmark Prog. Alloc. Hit Rate Free Hit Rate Total Hit Rate
JVM98 200 check 100.00% 100.00% 100.00%
JVM98 201 compress 100.00% 100.00% 100.00%
JVM98 202 jess 99.94% 99.81% 99.87%
JVM98 209 db 99.97% 99.94% 99.96%
JVM98 213 javac 99.84% 96.88% 98.42%
JVM98 222 mpegaudio 99.98% 99.19% 99.63%
JVM98 227 mtrt 99.93% 99.30% 99.62%
JVM98 228 jack 99.95% 99.56% 99.75%
Java2D Demo 99.93% 99.67% 99.80%
J2EE PetStore 99.86% 99.18% 99.53%
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Fig. 11  Hit Rate 

Table 4  Internal Fragmentation 
Benchmark Program Internal Fragmentation
JVM98 200 check 26.28%
JVM98 201 compress 24.58%
JVM98 202 jess 10.89%
JVM98 209 db 2.88%
JVM98 213 javac 10.77%
JVM98 222 mpegaudio 18.89%
JVM98 227 mtrt 3.52%
JVM98 228 jack 13.33%
Java2D Demo 15.03%
J2EE PetStore 21.78%
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Fig. 12  Internal Fragmentation 
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Table 5  Region Utilization during Kick Out 
Benchmark Program Region Utilization 
JVM98 200 check 
JVM98 201 compress 
JVM98 202 jess 76.43%
JVM98 209 db 69.61%
JVM98 213 javac 76.68%
JVM98 222 mpegaudio 78.96%
JVM98 227 mtrt 75.93%
JVM98 228 jack 82.68%
Java2D Demo 69.21%
J2EE PetStore 72.68%
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Fig. 13  Region Utilization during Kick Out 

Table 5  Oversize Rate 
Benchmark Program Oversized Rate 
JVM98 200 check 0.32%
JVM98 201 compress 5.08%
JVM98 202 jess 0.01%
JVM98 209 db 0.01%
JVM98 213 javac 0.05%
JVM98 222 mpegaudio 0.82%
JVM98 227 mtrt 0.00%
JVM98 228 jack 0.11%
Java2D Demo 0.37%
J2EE PetStore 0.26%
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Fig. 14  Oversize Rate 

When a Java program is executed under our memory 
management scheme, around 99.8% of all memory 
allocation and deallocation requests are handled by 
hardware while around 0.2% of memory allocation and 
deallocation requests are handled by software.  Among 
these 99.8% memory allocation and memory deallocation 
requests, around 98.4% will generate a hit in the memory 
management cache during request processing.  These 
numbers imply that around 98.2% of all memory 
allocation and deallocation requests can be handled by the 
hardware in a single cycle.  1.6% of the requests will have 
a penalty on the miss in the memory management cache, 
and 0.2% of the requests will rely on software method to 
fulfill the requests. 

During a memory management cache miss, the system 
needs to kick out the least recently used bit vector with 
status bits to the memory and brings in a suitable bit vector 
with status bits to the memory manage cache.  Using the 
default configuration parameters, the length of a bit vector 
is 2(16 - 3) = 8,192 bits, the length of status bits is 11 bits.  
Therefore during a miss in memory management cache the 
memory management cache needs to read and write a total 
(8,192 + 11) / 8 = 1,026 bytes from and to memory.  
Assuming reading/writing memory need a cycle for each 
32-bit word, reading and writing the bit-vector with status 
bits from and to memory requires around 514 cycles.  By 
adding around 500 cycles for the decision logic to decide 
which bit vector to bring in, the total penalty of cache miss 
is around 1,014 cycles. 

For traditional software approach, [7] states that the best 
malloc software algorithm needs around an average 400 
cycles to process a single memory allocation request.  The 
effective speed required to process a memory allocation 
request using the proposed hard/software approach is 
approximately equals to: 

cycles
cycles
cycles

cyclellocationtime for aEffective 

18
4000.2%  
10141.6%  
 1  98.2%  

=
×+
×+
×=

 

Comparing with the 400 cycles required by best  malloc 
software algorithm, the performance of the proposed 
solution give a gain of 400 / 18 = 22 times.  According to 
the information given in [1], around 15.58% of the Java 
program execution time is used for memory allocation.  
The overall speedup in Java program execution when 
using our hardware/software solution is: 
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As a summary, our proposed solution can give a 
performance gain of 22 times in doing memory allocations, 
which will lead to a gain of 17% in the overall execution 
of Java programs. 

5. Conclusion 

Based on the locality characteristics of dynamic memory 
usage of Java programs, a hardware/software combined 
memory system is proposed.  The hardware is responsible 
for handling memory allocation/deallocation requests of 
small size (<= 1K bytes) blocks, while traditional software 
malloc routine is used for handling requests of large block 
sizes (> 1K bytes). 

The proposed hardware gives a significant efficiency in 
handling memory allocation and deallocation requests.  It 
can handle 99.8% of all memory allocation and 
deallocation requests and gives an overall hit rate of 
98.4% with internal fragmentation 14.8% and region 
utilization 75.3% during kick out.  Using the proposed 
design, each memory allocation requests need an average 
18 cycles to process.  When comparing to pure software 
approach which need 400 cycles to handle each memory 
allocation requests, the performance gain in processing 
memory allocation requests is 22 times of pure software 
method.  This performance gain can lead to a 17% gain in 
the performance of overall Java program execution. 
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