
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

146

Manuscript received June 5, 2007

Manuscript revised June 20, 2007

An Efficient Memory System for Java

Li, Richard C. L. and Fong, Anthony S. S.,

Department of Electronic Engineering
City University of Hong Kong

83 Tat Chee Avenue, Kowloon, Hong Kong

Summary
One of the significant issues that hinder the performance of Java
program execution is dynamic memory usage. Some researchers
stated that in executing Java programs, 15.58% of the CPU time
is used in handling memory allocation requests and 28.08% of
the CPU time in garbage collection. A statistical study on the
dynamic memory usage behavior of both desktops and servers,
Java applications show similar locality, and that memory
allocation requests are concentrated on small block sizes (< 1K
bytes), and blocks allocated usually have short life times. Based
on these findings, we proposed a hardware/software approach in
handling memory allocation and deallocation requests that gives
a 17% overall performance gain in Java program execution.
Key words:
Java, dynamic memory management, memory allocation,
memory deallocation.

Introduction

In the technology world, there are motivations and reasons
for designs and implementations. When time passes and
the technology evolves, many reasons that support old
designs and implementations may no longer be valid, but
new designs and implementations may still follow old
reasons to develop without asking why. The evolution in
microprocessor architecture design is under this situation.
During the last few decades, although the computer
architecture design evolved from CISC to RISC and
VLIW, the basic model is still von Neumann, which was
developed based on procedural programming model.
When the mainstream programming model in software
development moved from procedural paradigm to object-
oriented paradigm, many of the old reasons to support the
von Neumann model are no longer valid. There are new
reasons established in control flow, protection and
memory management of the object-oriented paradigm. It
comes to a point that we have to rethink how the computer
architecture should be developed based on these new
scenarios.

Among these new reasons, memory management plays an
important part, because [2] and [3] stated that a C++
program performs an order of magnitude more memory
allocations than comparable C program. For Java
program, the situation is even worse that the amount of
memory allocation requests is much more than a C++
program, and the allocated objects need to be collected
automatically by the runtime environment, [1] stated that
15.58% of CPU time is used in handling memory
allocation requests and 28.08% of the CPU time is used in
garbage collection. If the memory management can be
handled by hardware in an effective way, the performance
of Java execution can be greatly enhanced.

2. Dynamic Memory Usage in Java

In order to obtain the statistics on the memory allocation
and deallocation behavior of Java programs, a tracing tool
was developed to collect memory allocation and
deallocation events during Java program execution for
further analysis. This tracing tool is a profiler agent
developed according to the specification of the Java
Virtual Machine Profiler Interface (JVMPI). When
executing a Java program using an instance of the Java
Virtual Machine (JVM) with the profiler agent installed,
all the memory allocation and deallocation events can be
captured for further analysis.

The choice of the Java applications under test should
covered different areas including desktop applications and
server applications, therefore the applications shown in
Table 1 are chosen for the evaluation.

Table 1 Java Applications chosen for Evaluation
Java Application Description

SPEC JVM98 benchmark Standard benchmark suite

Java2D demo Typical desktop Java application
(single-user, multi-threads)

Pet Store
Typical enterprise Java
application
(multi-users, multi-threads)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

147

By executing and profiling these applications, the memory
allocation and deallocation events were obtained and
passed to an analyzer to analyze the data in two different
dimensions:

1. Size of block requested

2. Life time of a block

Fig. 1 to 4 show the 3-dimensional plots of the distribution
of blocks requested against the block size and block life.
All 3 tested applications show similar distribution in the
plots that memory blocks requested by the applications
concentrate on small sizes and short life times. This
locality finding is a good seed for developing an efficient
memory management system for Java.

3. Hardware Support of Memory
Management for Java

3.1 Description of Prior Art

In order to improve the overall performance of object-
oriented program execution, a sensible approach is to
improve the efficiency of the memory management system
of the execution environment. Many researchers had
proposed many hardware approaches to improve the
efficiency of Java memory management system [4] [5] [6]
[7] [8] [9]. These approaches all uses tree based
combinational logic to locate free memory blocks and to
mark blocks used/freed. Chang and Srisa belongs to the
same research team and proposed an modified buddy
system as the core of their solution; while Cam utilizes the
basic idea of Chang’s suggestion and proposes another
structure which can generate less fragmentation than
Chang’s method, but it requires much more logic gates to
implement.

Both methods can do memory allocation and deallocation
requests in a single-cycle, but they can only detect free
blocks with sizes in the power of 2. In addition, the trees
will become too complex to implement if the total number
of memory units is large. For example, if the basic unit
for allocation is 16 bytes and the total memory is 128MB,
the size of the bit-vector is 8M bits. To implement such a
system using Chang’s design requires a tree with (28M)/2
nodes. If Cam’s design is applied, even more nodes are
needed. Apparently it is impractical to implement such a
design in a chip when the number of nodes is this much.

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 22 0
 5e+006

 1e+007
 1.5e+007

 2e+007
 2.5e+007

 3e+007
 3.5e+007

 0

 2

 4

 6

 8

 10

 12

 14

 16

% of Total Allocations
check

compress
jess

db
javac

mpegaudio
mtrt
jack

Block Size in the Power of 2

Life Time (Allocations Count)

% of Total Allocations

Fig. 1 Dynamic Memory Usage Characteristics of JVM-98 Benchmarks

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 22 0
 1e+006

 2e+006
 3e+006

 4e+006
 5e+006

 6e+006
 7e+006

 0

 0.5

 1

 1.5

 2

 2.5

 3

% of Total Allocations
Java2D

Block Size in the Power of 2

Life Time (Allocations Count)

% of Total Allocations

Fig. 2 Dynamic Memory Usage Characteristics of Java2D Demo

 2
 4

 6
 8

 10
 12

 14
 16

 18 0
 1e+006

 2e+006
 3e+006

 4e+006
 5e+006

 6e+006

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

% of Total Allocations
J2EE-PetStore

Block Size in the Power of 2

Life Time (Allocations Count)

% of Total Allocations

Fig. 3 Dynamic Memory Usage Characteristics of J2EE PetStore Demo

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

148

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 22 0
 5e+006

 1e+007
 1.5e+007

 2e+007
 2.5e+007

 3e+007
 3.5e+007

 0

 2

 4

 6

 8

 10

 12

 14

 16

% of Total Allocations
check

compress
jess

db
javac

mpegaudio
mtrt
jack

Java2D
J2EE-PetStore

Block Size in the Power of 2

Life Time (Allocations Count)

% of Total Allocations

Fig. 4 Dynamic Memory Usage Characteristics of All Applications

To overcome this problem, larger units may be used to
reduce the total number of blocks, but this will lead to
greater internal fragmentation. Another approach is to
partition the memory into many regions so that the
hardware tree is used for managing only one region and
the operating system is responsible to switch the active
region for the hardware to work on from time to time.
This method ruins the performance of the hardware
approaches, as a lot of software overhead is required in
augmenting the hardware.

3.2 Hardware/Software Memory Management
System

3.2.1 Locality Characteristics that Driven the Design

Based on our study on the dynamic memory usage
behavior in Java programs, we have concluded three
locality characteristics:

1. Dynamic memory allocations are heavily used by
Java programs. A simple Othello game applet
generates about 600K memory allocation requests
for one game play [10].

2. Dynamic allocation requests are concentrate on
small block sizes. Around 90% of the total
allocation requests are with block sizes less than 256
bytes and around 99.5% of the total allocation
requests are with block sizes less than 1K bytes.

3. Most of the blocks allocated have short lifetime, and
blocks with small sizes have a higher probability in
having short lifetime as well.

These three characteristics conclude that the memory
allocation and deallocation behavior of Java programs
have certain localities. These localities focus on small
sized memory allocations/deallocation requests. Therefore
to improve the efficiency of memory
allocation/deallocation request handling for Java runtime
environment, a hardware/software co-design can be
applied. For small block sizes, a relatively simple
hardware can be used to gain better performance; while
for larger block sizes, a traditional malloc-like software
method can be used. This approach can facilitate the
memory allocations and deallocations to be efficiently
done and the performance can be greatly enhanced.

3.2.2 Detailed Description of the Design

Allocation requests are first classified into small size and
large size types. This process is implemented by a
combinational logic to detect which range is the size
resides in and triggers appropriate process. If an
allocation request belongs to small size type, the block
size will be passed to the small size allocation hardware
and generate a block reference. If an allocation request
belongs to large size, a software trap will occur and the
control will be passed to the appropriate software routine
to handle the request depends on which type the request
belongs to. Based on the statistical results, the threshold
to divide small size requests from large size is 1K bytes.
Deallocation requests use the same type information
assigned during the allocation process and use the same
components to do a reverse operation to free up the
memory units.

To provide effective memory management in hardware,
the main memory is divided into fixed sized regions, so
that the memory address is divided into a region address
and a region offset, see Fig 5. The region address is used
to identify a specific region, while the region offset is used
to address data values within a region.

Memory Address

Region Address Region Offset

Fig. 5 Region Addressing

The Small Object Heap (SOH), which is a collection of
regions partitioned from the main memory, and serves the
purpose of allocating small blocks. It does not require to
be contiguous, but it is built up by many fragments such
that each fragment is a contiguous set of regions, see Fig 6.
This heap is maintained by the operating system and the
overall size can be enlarged or shrunk according to the
demands of small size allocation requests.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

149

Main Memory

Region

Region

Region

Region

Region

Region

Region

Small Object Heap
Fragments

Fig. 6 Small Object Heap Fragments

Each region in the Small Object Heap (SOH) has a bit-
vector, which records the used/freed information of each
memory units within a region. Each unit is the minimum
distinctive entity for memory management. The size of a
memory unit should be somewhat smaller than the size of
a region, but it cannot be too small (e.g. 1 byte) otherwise
the memory management will not be effective as the bit-
vector for a region will be too long. In this way, the
region offset is divided into a unit address and a unit offset,
see Fig 7. The unit address is used to address each unit
within a region; while the unit offset is used to address
each byte of data values within a memory unit. The size
of the bit-vector associated with a region is governed by
the following formula:

bit-vector length = 2length of unit address bits

When a small size allocation request arrives, the size of
the request is quantized into number of memory units.
Then a suitable region in the Small Object Heap (SOH) is
selected for handling this request and a search is
conducted on the bit-vector associated to this region to
find out the first contiguous block of units with the
quantized size. The unit address of the block is generated
and combined with the region address to form the memory
address. The memory address of the block is then
returned to fulfill the request and the allocated units are
marked as used in the bit-vector. When a small size
deallocation request arrives, the process is reversed. First
the block address is sliced to produce a region address and
a unit address. Then the region address is used to find out
which region the block resides in. Using the unit address

and the quantized size of the block, deallocated units are
marked as freed in the bit-vector.

Region Offset

Unit Address Unit Offset

Fig. 7 Unit Addressing

To speed up this algorithm, a hardware structure named
Memory Management Cache (MMC) is used so that an
allocation or deallocation request takes only 1 cycle or a
few pipeline stages to process. The Memory Management
Cache (MMC) is a fast storage that holds the information
of a subset of regions within the Small Object Heap
(SOH). See Fig 8.

Block Reference

D
etection block size

A
llocation block size

Status bits

Decision
Logic

block size

Encoding Logic

Quantization
Logic

Unit Address Region Address Size Info

Region Address (tag) Bit-vector

Allocation / Deallocation
Decision Tree

Unit Address Region Address Size Info

Decoding
Logic

Block Reference
0..0

0..0

Fig. 8 Memory Management Cache

Each cache line represents a region and consists of three
parts: Region Address, Bit-vector, and a status bit. The
region address defines which region this cache line is
representing and uses to match with the region address
provided by a deallocation request to select appropriate
cache line for deallocation. The bit-vector stores the
used/freed information associated with the region. The
status bits store information that helps to select appropriate
region for handling an allocation request. It consists of the
Most Recently De-allocated (MRD) information, the Most
Recently Allocated (MRA) information and the
information whether the region has any free blocks of each
of the detectable sizes given by the allocation/deallocation
decision tree.

The Decision Logic is used to select which region for
allocation. It uses the information provided by the status
bits of all cache lines and the block size of the allocation
request to make the decision. The allocation/deallocation
decision tree is responsible for locating free blocks,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

150

marking the bit vector, generating the region offset and
updating the status bits. To make a better search of free
blocks, we proposed a design that is capable to detect free
blocks with more discrete sizes and not restricted to sizes
of power of 2. The way to do this is to group multiple bits
in the size to address the level of the decision tree. If we
group 2 bits at a time, we can detect the following discrete
units:

1, 2, 3, 4, 8, 12, 16, 32, 48, 64

An implementation of the prefix circuit based on grouping
2 bits is shown in Fig 9.

Size (Units)

8 001000

4 000100

3 000011

2 000010

1 000001

Fig. 9 Multi-bit Prefix Circuit

When a small size allocation request arrives, the block size
will be quantized into 2 different sizes using the
quantization logic: the detection block size and the
allocation block size. The detection block size is used by
the detection logic for cache line selection and the
allocation/deallocation decision tree for free block lookup;
while the allocation block size is used by the encoding
logic and the allocation/deallocation decision tree for
marking bit-vector. The allocation block size is generated
by quantizing the block size in terms of memory units,
while the block detection size is generated by quantizing
the block allocation size into one of the detectable sizes of
the allocation/deallocation decision tree.

After quantization of sizes, the detection block size will be
passed in the decision logic, and it will suggest a region
for handling the allocation request using the status bits of
all cache lines. As the status bits already contain
information if any free blocks can be detected with a given
detection block size, the region selected guarantees a free
block with the given size can be detected.

After a cache line is selected, the bit-vector will be passed
to the allocation/deallocation decision tree along with the
detection block size and allocation block size. The
decision tree will locate the free block and generates its
unit address, which is then combined with a unit offset
with zero value to produce the region offset. Then the
units allocated are marked used by consulting the unit

address and the allocation block size. In addition, a new
copy of status bits will be generated by the decision tree
and updates the old copy in the cache line.

Finally the allocation block size is encoded into a size info
and combined with the region address, the unit address
and the zeroed unit offset to form a block reference, see
Fig 10. If a region cannot be found in the very beginning
for allocation, the control will be passed to the operating
system to kick out some cache lines and bring in some
new lines.

Block Reference

Size Info. Memory Address

Fig. 10 Block Reference

When a small size deallocation request arrives, the block
reference will be decomposed into a size info, a region
address, an unit address, and a zeroed unit offset. Then,
the size info will be passed into the decoding logic and
produce the allocation block size. The region address will
be used to match all the region addresses of the cache lines.
If a miss occurs, the control will be passed to the operating
system and kick out a cache line and bring in the required
line. If a hit occurs, the deallocation process continues.
First the hit cache line is enabled and the bit-vector will be
passed to the allocation/deallocation decision tree. With
the bit-vector, the allocation block size, and the unit
address, the decision tree will mark the units de-allocated
as freed in the bit vector. Also, a new copy of status bits
will be generated by the decision tree and updates the old
copy in the cache line.

4. Performance Evaluation of the Hardware
Support

4.1 The Experiment

In order to evaluate the performance of the proposed
hardware/software approach in handling memory
allocation and deallocation requests of Java programs. A
high level behavioral model was built for evaluation by
injecting events of memory allocation/deallocation when
executing benchmark programs into the model. The
benchmark programs chosen are the same used for
obtaining the statistical behavior. The model was setup
with the hardware proposed and a simple LRU
replacement algorithm for handling the memory
management cache miss. The hardware parameters
chosen in the simulation is shown in Table 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

151

Table 2 Optimized Configurable Parameters
Parameter Value
No. of bits grouped in multi-bit prefix circuit 2
No. of bits of the unit offset 3
No. of bits on the region offset 16
Maximum allocatable size 1K bytes
No. of cache lines 16

In this simulation, the events captured in the previous
experiment were reused to feed in the simulation model
and captured the behavior of the operation of the proposed
hardware. The information captured includes:

1. The cache hit rate during memory allocation

2. The cache hit rate during memory deallocation

3. The overall cache hit rate

4. Average internal fragmentation of regions

5. Average region utilization during kick out from
cache

6. The oversize rate of allocation requests that the
block sizes of allocation requests exceeded the limit
and will not be processed by the hardware.

The hit rates captured are used to evaluate the efficiency
of the cache, while the internal fragmentation and region
utilization during kick out are used to evaluate the
efficiency of the usage of memory. The oversize rate of
allocation requests are used to calculate the effective time
required to process a request.

4.2 The Simulation Results and Analysis

The analysis shows that the hardware proposed gives a
high overall hit rate at around 98.4% in handling memory
allocation and deallocation requests when using the
default values in configurable parameters of the simulation
model. The default values of the configurable parameters
are obtained by choosing the optimal values in different
set of tests. The average internal fragmentation is around
14.8%. The average region utilization during kick out is
75.3% and the oversize rate is around 0.2%.

Table 3 Hit Rate
Benchmark Prog. Alloc. Hit Rate Free Hit Rate Total Hit Rate
JVM98 200 check 100.00% 100.00% 100.00%
JVM98 201 compress 100.00% 100.00% 100.00%
JVM98 202 jess 99.94% 99.81% 99.87%
JVM98 209 db 99.97% 99.94% 99.96%
JVM98 213 javac 99.84% 96.88% 98.42%
JVM98 222 mpegaudio 99.98% 99.19% 99.63%
JVM98 227 mtrt 99.93% 99.30% 99.62%
JVM98 228 jack 99.95% 99.56% 99.75%
Java2D Demo 99.93% 99.67% 99.80%
J2EE PetStore 99.86% 99.18% 99.53%

JVM98
200
check

JVM98
201
com-

JVM98
202
jess

JVM98
209 db

JVM98
213
javac

JVM98
222
mpe-

JVM98
227
mtrt

JVM98
228
jack

Java2D
Demo

J2EE
Pet-
Store

96.75%
97.00%
97.25%
97.50%
97.75%
98.00%
98.25%
98.50%
98.75%
99.00%
99.25%
99.50%
99.75%

100.00%

Hit Rate

Allocation Hit Rate
Free Hit Rate
Total Hit Rate

Benchmark P rogram

H
it

R
at

e

Fig. 11 Hit Rate

Table 4 Internal Fragmentation
Benchmark Program Internal Fragmentation
JVM98 200 check 26.28%
JVM98 201 compress 24.58%
JVM98 202 jess 10.89%
JVM98 209 db 2.88%
JVM98 213 javac 10.77%
JVM98 222 mpegaudio 18.89%
JVM98 227 mtrt 3.52%
JVM98 228 jack 13.33%
Java2D Demo 15.03%
J2EE PetStore 21.78%

JVM98
200
check

JVM98
201
com-

JVM98
202
jess

JVM98
209 db

JVM98
213
javac

JVM98
222
mpe-

JVM98
227 mtrt

JVM98
228
jack

Java2D
Demo

J2EE
Pet-
Store

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

22.50%

25.00%

27.50%

Internal Fragmentation

Benchmark P rogram

Fr
ag

m
en

ta
tio

n

Fig. 12 Internal Fragmentation

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

152

Table 5 Region Utilization during Kick Out
Benchmark Program Region Utilization
JVM98 200 check
JVM98 201 compress
JVM98 202 jess 76.43%
JVM98 209 db 69.61%
JVM98 213 javac 76.68%
JVM98 222 mpegaudio 78.96%
JVM98 227 mtrt 75.93%
JVM98 228 jack 82.68%
Java2D Demo 69.21%
J2EE PetStore 72.68%

JVM98
200
check

JVM98
201
com-

JVM98
202
jess

JVM98
209 db

JVM98
213
javac

JVM98
222
mpe-

JVM98
227 mtrt

JVM98
228
jack

Java2D
Demo

J2EE
Pet-
Store

69.00%
70.00%
71.00%
72.00%
73.00%
74.00%
75.00%
76.00%
77.00%
78.00%
79.00%
80.00%
81.00%
82.00%
83.00%

Average Kick Out Region Utilization

Benchmark P rogram

U
til

iz
at

io
n

Fig. 13 Region Utilization during Kick Out

Table 5 Oversize Rate
Benchmark Program Oversized Rate
JVM98 200 check 0.32%
JVM98 201 compress 5.08%
JVM98 202 jess 0.01%
JVM98 209 db 0.01%
JVM98 213 javac 0.05%
JVM98 222 mpegaudio 0.82%
JVM98 227 mtrt 0.00%
JVM98 228 jack 0.11%
Java2D Demo 0.37%
J2EE PetStore 0.26%

JVM98
200
check

JVM98
201
com-

JVM98
202 jess

JVM98
209 db

JVM98
213
javac

JVM98
222
mpe-

JVM98
227 mtrt

JVM98
228
jack

Java2D
Demo

J2EE
Pet-
Store

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

5.50%

Oversize Rate

Benchmark P rogram

O
ve

rs
iz

e
R

at
e

Fig. 14 Oversize Rate

When a Java program is executed under our memory
management scheme, around 99.8% of all memory
allocation and deallocation requests are handled by
hardware while around 0.2% of memory allocation and
deallocation requests are handled by software. Among
these 99.8% memory allocation and memory deallocation
requests, around 98.4% will generate a hit in the memory
management cache during request processing. These
numbers imply that around 98.2% of all memory
allocation and deallocation requests can be handled by the
hardware in a single cycle. 1.6% of the requests will have
a penalty on the miss in the memory management cache,
and 0.2% of the requests will rely on software method to
fulfill the requests.

During a memory management cache miss, the system
needs to kick out the least recently used bit vector with
status bits to the memory and brings in a suitable bit vector
with status bits to the memory manage cache. Using the
default configuration parameters, the length of a bit vector
is 2(16 - 3) = 8,192 bits, the length of status bits is 11 bits.
Therefore during a miss in memory management cache the
memory management cache needs to read and write a total
(8,192 + 11) / 8 = 1,026 bytes from and to memory.
Assuming reading/writing memory need a cycle for each
32-bit word, reading and writing the bit-vector with status
bits from and to memory requires around 514 cycles. By
adding around 500 cycles for the decision logic to decide
which bit vector to bring in, the total penalty of cache miss
is around 1,014 cycles.

For traditional software approach, [7] states that the best
malloc software algorithm needs around an average 400
cycles to process a single memory allocation request. The
effective speed required to process a memory allocation
request using the proposed hard/software approach is
approximately equals to:

cycles
cycles
cycles

cyclellocationtime for aEffective

18
4000.2%
10141.6%
 1 98.2%

=
×+
×+
×=

Comparing with the 400 cycles required by best malloc
software algorithm, the performance of the proposed
solution give a gain of 400 / 18 = 22 times. According to
the information given in [1], around 15.58% of the Java
program execution time is used for memory allocation.
The overall speedup in Java program execution when
using our hardware/software solution is:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

153

%17

1
)1558.01(

22
1558.0

1

=

−
−+

=ctorSpeedup fa

As a summary, our proposed solution can give a
performance gain of 22 times in doing memory allocations,
which will lead to a gain of 17% in the overall execution
of Java programs.

5. Conclusion

Based on the locality characteristics of dynamic memory
usage of Java programs, a hardware/software combined
memory system is proposed. The hardware is responsible
for handling memory allocation/deallocation requests of
small size (<= 1K bytes) blocks, while traditional software
malloc routine is used for handling requests of large block
sizes (> 1K bytes).

The proposed hardware gives a significant efficiency in
handling memory allocation and deallocation requests. It
can handle 99.8% of all memory allocation and
deallocation requests and gives an overall hit rate of
98.4% with internal fragmentation 14.8% and region
utilization 75.3% during kick out. Using the proposed
design, each memory allocation requests need an average
18 cycles to process. When comparing to pure software
approach which need 400 cycles to handle each memory
allocation requests, the performance gain in processing
memory allocation requests is 22 times of pure software
method. This performance gain can lead to a 17% gain in
the performance of overall Java program execution.

Acknowledgments

The work described in this paper was partially supported
by the City University of Hong Kong, Strategic Research
Grant 7001847.

References
[1] Lo, C.-T.D.; Srisa-an, W.; Chang, J.M., "Who is Collecting

Your Java Garbage?", In IT Professional, Volume: 5, Issue:
2, pages 44-50. IEEE Computer Society Press, Mar-Apr
2003.

[2] Detlefs, D.; Dosser, A.; Zorn, B., "Memory Allocation
Costs in Large C and C++ Programs", In Software -
Practice and Experience, pages 527-542. , June 1994.

[3] Calder, B.; Grunwald, D.; Zorn, B., "Quantifying
Behavioral Differences Between C and C++ Programs", In
Technical Report CU-CS-698-95, pages . Department of
Computer Science, University of Colo, Jan 1995.

[4] Chang, J. M.; Gehringer, E. F., "A High Performance
Memory Allocator for Object-oriented Systems", In IEEE
Transactions on Computers, Volume: 45, Issue: 3, pages
357-366. IEEE Computer Society Press, Mar 1996.

[5] Chang, J.M.; Hasan, Y.; Lee, W.H., "A high-performance
memory allocator for memory intensive applications", In
High Performance Computing in the Asia-Pacific Region,
2000. Proceedings. The Fourth International
Conference/Exhibition on , Volume: 1, pages 6 - 12 vol.1.
IEEE Conference, May 2000.

[6] Cam, H.; Abd-El-Barr; Sait, S. M., "A High-Performance
Hardware-Efficient Memory Allocation Technique and
Design", In International Conference on Computer Design,
1999 (ICCD '99), pages 274-276. IEEE Computer Society
Press, Oct 1999.

[7] Srisa-An Witawas; Chia-Tien Dan Lo; J Morris Chang, "A
performance analysis of the active memory system", In
Computer Design, 2001. ICCD 2001. Proceedings. 2001
International Conference on, pages 493 - 496. , Sep 2001.

[8] Srisa-an, W.; Lo, C.-T.D.; Chang, J.M., "Performance
Enhancements to the Active Memory System", In
Proceedings IEEE International Conference on Computer
Design: VLSI in Computers and Processors, 2002, pages
249-256. IEEE Computer Society Press, Sep 2002.

[9] Srisa-an, W.; Lo, C.-T.D.; Chang, J.-M., "Active memory
processor: a hardware garbage collector for real-time Java
embedded devices", In Mobile Computing, IEEE
Transactions on, pages 89 - 101. , Apr-Jun 2003.

[10] Li Richard C. L.; Fong Anthony S.; Chun H. W.; Tam C. H.,
"Dynamic Memory Allocation Behavior in Java Programs",
In Proceedings of the ISCA 16th International Conference
in Computers and Their Applications, 2001., pages 362-365.
The International Society for Computers and Their
Applications - ISCA, 2001.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

154

Li, Richard C. L. received the
first class honor BEng in
Computer Engineering and the
M.Phil. degrees in City
University of Hong Kong in 1996
and 1999, respectively. During
1999-2006, he stayed in City
University of Hong Kong to
continue his PhD. study. He has
been awarded one United States
patents on computer architecture
and design. At present he is
finishing his PhD. Study and

working in a self-founded software company.

Dr. Fong, Anthony S. S.
received his M.Sc. degree in
Computer Science from the State
University of New York at
Buffalo. He was awarded Ph.D.
degree from University of
Sunderland. He has been
awarded eight United States
patents on computer architecture
and design and published more
than sixty papers on computer
architecture and design, and

database. At present he is Associate Professor in City University
of Hong Kong and working on a computer system project HISC
for object-oriented computing.

