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Summary 
An approach for 3D surface reconstruction from two uncalibrated 
views is proposed in this paper. The SUSAN corner detector is 
used for corners from points in edges, which are detected by Sobel 
edge operator. After corners matching between two images, the 
fundamental matrix is estimated to acquire 3D structure from 
matched corners by an improved weighted linear algorithm, which 
is based on the epipolar geometry and the absolute conic theory. 
The triangular textures are acquired by dividing 2D image. Then a 
realistic 3D surface model is built by mapping the triangular 
textures to the 3D structure surface. Experiments show that the 
reconstructed 3D surface models are satisfactory and 
photo-realistic. 
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1. Introduction 

In recent years, image-based rendering and modeling have 
been one of the most active subjects in virtual reality and 
computer graphics domain. With the technique of 
image-based modeling (IBM), we can acquire 3D 
information and models of scene or objects from images 
taken from digital equipment, such as hand-held digital 
camera and digital video. As compared with conventional 
geometry-based modeling, the image-based modeling 
technique can be used to extract actual texture and 
illumination from images directly for visual 3D modeling, 
without many complex processes, such as geometry 
modeling, shade and ray-tracing computing. 

The technique of image-based modeling is related to 
virtual reality, pattern recognition, computer graphics, 
computer vision, photogrammetry and so on. Various 
algorithms were proposed to perform 3D reconstruction of 
architecture, natural scene or face etc [1-15], which is 
based on calibrated or uncalibrated views. An early 
approach was proposed by Tomasi et al [1]. They extracted 
3D model from perspective image sequences with the 
method of affine transform factorization. Pollefeys [2] 
presented a method which reconstruct object surface 
model more accurately with a hand-held camera. He 
mapped image textures onto the surface of 3D model to 
achieve perfect visual effect after matching every point 

between images. For architecture scene images, Debevec 
et al[3] gave a 3D modeling method to reconstruct simple 
geometry objects, which only needed several images and 
some known geometric parameters. In order to achieve 
photorealistic 3D reconstruction from handheld cameras, 
Rodriguez et al [4] presented an integrated approach to 
generate 3D mesh from sparse data and deal with partial 
occlusions. 

3D surface model can be reconstructed from one, two 
or several uncalibrated images. For one uncalibrated image, 
the 3D information is acquired through geometric attribute, 
such as coplanarity, orthogonality and parallelism. This 
method only needs one image, but there is too much 
restriction in content of image to widely use. For two 
images, 3D reconstruction is based on matched points. 
This method has no restriction in content of image, and 
could be the basis of 3D reconstruction from several 
images. These images are captured in the same scene with 
different viewpoints. 

This paper proposes an approach to achieve 3D 
surface reconstruction from two uncalibrated images. The 
steps of our approach are: (1) detection and matching of 
feature points based on two uncalibrated images; (2) 
fundamental matrix computation based on matched points, 
camera self-calibration for intrinsic parameters and 
exterior parameters; (3) 3D coordinates computation of 
matched points for surface reconstruction; (4) mapping 
textures from images onto 3D surface for visual geometric 
model. We adopt approaches synthetically, such as the 
smallest univalue segment assimilating nucleus (SUSAN) 
corner detector[16], the weighted linear algorithm[17], the 
Delaunay Triangulation algorithm[18]etc, and also 
improve them for more accurate and faster 3D modeling. 
 
2. Detection and matching of feature points 

 
The accuracy of matched feature points would affect 
estimation of fundamental matrix and computation of 3D 
points intensively. This paper detects and matches corners 
of images as feature points. Corners are points, which have 
biggest curvature on partial outline, embody the significant 
information. The smallest univalve segment assimilating 
nucleus (SUSAN) algorithm [16] is an efficient approach 
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to low level image processing, and can be used for edge 
and corner detection. But it needs detecting each point of 
image. In this paper, we detect edges of image by Sobel 
operator firstly, and then extract corners from the detected 
edges by SUSAN.  

The feature points (corners) matching between two 
images could be achieved automatically or interactively. 
Automatic matching strategy could be adopted between 
two images with close viewpoints. The matching point is 
determined by similarity measures, which is defined as the 
weighted sum of the gradient magnitude, gradient 
orientation and intensity cross-correlation. For two corners 
in two images, the more similarity measures, the more 
possibility to be matched. Matched corners similarity 
measures should greater than a threshold. For two images 
from different viewpoints obviously, we can build the 
corners correspondence interactively. The example is 
shown in Fig.1, the symbol “+” indicates the detected 
corners, “□” is matched corners between two images.  

  

 
 

Fig. 1 Corners initial matching. 
 
3. Fundament matrix estimation and 
refinement 
 
Based on matched corners, fundamental matrix can be 
estimated and refined. Fundamental matrix is a matrix with 
rank-2, which implements corresponding geometry 
relationship. It does not only include intrinsic parameters 
and external parameters, but also can restrict the search 
range of matching points to a pair of corresponding 
epipolar lines. The weighted normalization linear 
algorithm [17] is steady for estimation of fundamental 
matrix. These matched points were weighted and 
normalized before fundamental matrix estimation to 
acquire robustness and improve accuracy. On the basis of 
the weighted normalization linear algorithm, our algorithm 
removes the outliers iteratively to refine fundamental 
matrix by following equation:  
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where F represents the fundamental matrix, im  and im′  

denotes a pair of matched points of two images, 2)( jiFm  

is the j component )2,1( =j  of epipolar vectors iFm . 

The ),( i
T

id mFm ′  is the distance from im  to i
TmF ′ . 

The ),( iid Fmm′  is the distance from im′  to iFm . 

The id is the sum of the two epipolar distances.  
If the error of matched points is greater than a threshold 

by Eq.(1), we consider the matched points as outliers and 
remove them. The epipolar distance obeys Gauss distribution, 
so the threshold is set to σ3 (σ  is the variance). After the 
outliers removing, we refine the fundamental matrix with 
residual matched points iteratively until the disappearance of 
outliers. The residual matched points and epipolar lines after 
refining fundamental matrix are shown in Fig.2.      
 

 
 

Fig. 2 Corresponding corners and epipolars. 
 
4. Camera self-calibration 
 
Camera self-calibration is key technology to acquire 3D 
information from images. It includes the computation of 
intrinsic parameters and exterior parameters. The intrinsic 
parameters are focus length, principal point, etc. The exterior 
parameters are the information of camera movement, such as 
rotation and translation.  
 
4.1 Computation of intrinsic parameters 
 
The intrinsic parameters can be expressed as the 
calibration matrix: 
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where f  is the focus length, uk  and vk  are proportion 
factors of pixel on the direction of u  and v  respectively, 
they implicate the scale of pixel, θ  is the included angle of 
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x axis and y axis in image coordinate system; ),( vu  is the 
principal point. Peter Sturm [19] presented a method to 
compute the focus length with fundamental matrix. This 
method is based on the simplified camera model. In general, 
the plane of image is rectangle ( 2/πθ = ), the principal 
point is the centre of image plane, 2/,2/ hvwu == ( w  
and h  are the width and height in image respectively); 
pixel is square ( 1−== vu kk ).  After simplification, the 
calibration matrix likes this: 
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There is only one unknown parameter f (focus length). The 
semi-calibrated fundamental matrix G  is used to compute 
focus length. G  is an intermediate between the 
fundamental matrix and the essential matrix, can be 
expressed by:  
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the symbol “~” denotes equality of matrices or vectors up to 
scale (the same with the following text). We can get G′  by 
normalizing G  to improve the stability of computation: 
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)3,2,1,( =jigij  is element of G . Let the singular value 

decomposition ofG be given by: 
 

TVUG Λ=′                 (6) 
 

with )0,,( badiag=Λ  the diagonal matrix,U  and V  

are both orthogonal matrices: [ ]321 uuuU = , 

[ ]321 vvvV = , [ ]Tiiii uuuu 321= , [ ]Tiiii vvvv 321= , 

3,2,1=i . Based on literature [20], the Kruppa equations 
can be written as: 
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×][ 3u  is the skew symmetric matrix of vector 3u : 
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Multiplying the Kruppa equation (7) by TU  from the left 
and U  from the right, due to the orthogonality ofU : 
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The last row and the last column of this matrix equation are 
zero vectors, so we concentrate on the upper left 22×  part 
of the equation: 
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Expanding the above equation: 
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We obtain two linear equations and a quadratic one to 
calculate f : 
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There are two focus lengths 1f  and 2f  computed by 
Eq.(14). The two focus lengths are checked with Eq.(12) 
and Eq.(13). The focus length, which makes Eq.(12) and 
Eq.(13) both closer to zero, will be chosen. Then the 
calibration matrix K  also will be determined. 
 
4.2 Computation of exterior parameters 
 
Camera exterior parameters includes rotation matrix R  and 

translation vector t . Rotation matrix
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it is an orthogonal matrix. Translation vector [ ]Tzyx tttt= .  
We compute camera exterior parameters based on 

essential matrix E [21]. The essential matrix implicates 
information of camera movement (rotation matrix R  and 
translation vector t ). As known from epipolar equation, the 
essential matrix E  can be expressed by fundamental 
matrix F  and intrinsic matrix K :  

 
                  FKKE T=               (15) 

 
rotation matrix R  and translation vector t  can be 
obtained by the singular value decomposition of essential 
matrix E :  
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where 1±=k , )det()det( VUs ⋅= . So the R  will 

have two values, 1R (when 1=k ) and 2R (when 1−=k ). 

3u  is the third column of matrixU . By above equations, 
the exterior parameter can be computed.  
 
5. 3D coordinates computation of feature 
points and mapping texture 

 
After determination of intrinsic parameter, 3D coordination 
of the feature points can be computed by triangulation[21]. 
Suppose that the 3D homogeneous coordinate of space point 
M  is [ ]Twzyx , and its 2D homogeneous 

coordinate in image is [ ]Tvum 1= . They are related 
by projection matrix: 
 

[ ] [ ]TT wzyxPvu ⋅=1     (19) 
 

where P  is a 43×  projection matrix. It can be 
expressed with intrinsic matrix and exterior matrix: 
 

[ ]tRKP |⋅=               (20) 
 

We suppose that: [ ]0|IKP ⋅=  is the projection matrix 
of one image. Based on exterior parameter, there are four 
choices for projection matrix of the other image: 

[ ]tRKP |11 ⋅=′ , [ ]tRKP −⋅=′ |12 , [ ]tRKP |23 ⋅=′  

or [ ]tRKP −⋅=′ |24 . If [ ]Tvum 1=  and 

[ ]Tvum 1′′=′  are points in two images respectively 

corresponding to 3D point [ ]TwzyxM = , we can 
write the projection equation as follows:  
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Expanding above equation, the projection equation can be 
written as:  
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                                       (22) 
With known image matched points m  and m′ , 3D 
homogeneous coordinate of M  can be computed using the 
singular value decomposition through 1P′ , 2P′ , 3P′  and 4P′  
respectively. One of 1P′ , 2P′ , 3P′  and 4P′ , by which the 
most 3D points in front of camera can be obtained, is 
selected as the final projection matrix P′ . Once the 
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projection matrix P′ is determined, we can pick some 
matched feature points between two images, compute the 3D 
coordinates, and build 3D structure (As shown in Fig. 3). 

 

 
 

Fig. 3  Matched feature points and 3D coordinates. 
 

After building 3D structure, we can map the 2D texture 
from images to the surface of the 3D structure to improve the 
visual effect. Through the texture mapping, we obtain a 
“photo-realistic” 3D surface model. In this paper, we divide 
2D image into triangular meshes by feature points, then map 
the triangular textures onto the corresponding 3D triangular 
meshes one by one. 

Triangulation is an important step before texture 
mapping. Firstly we need to link the feature points to form 
the polygons, and then triangulate them. There are several 
sorts of polygon [18], such as self-intersection polygon, non 
self-intersection polygon with overlap and non 
self-intersection polygon without overlap. In this paper, 
Convex Hull Algorithm [22] is used to link the feature points 
become no-overlap polygon without self-intersection in 2D 
images. Among some discrete points, convex hull is the 
smallest convex polygon that contains these points. As 
shown in Fig.4 (a). After iterative computing, we obtain 
several convex hulls as shown in Fig.4 (b). Then we divide 
these convex hulls with Delaunay triangulation algorithm 
[18]. The principal idea of Delaunay triangulation algorithm 
is “min max angle criterion”, namely the sum of inner angles 
is the biggest. And these angles are the smallest in each 
triangle. This idea is also beneficial to mapping texture. In 
real scene, the result of triangulation is not perfect generally, 
so we need to modify it interactively to obtain the correct 
triangulation. Fig.5 is the triangulation according to feature 
points that are shown in Fig.3. 

 

 
 

(a) Convex hull in out layer   (b) Convex hull in each layer 
  

     Fig. 4 Convex hulls from discrete points. 
 
With the application of programming interface OpenGL, 

we can map triangular textures to the 3D structure one by 

one. The triangular texture images can be fused from two 
images or extracted directly from one image.  

Once the 3D surface model is reconstructed, we can 
look around it from any viewpoint. Fig.6 is two views of the 
reconstructed 3D model from two different viewpoints. Fig.7 
is the additional examples. 
 
 

        
 

     Fig. 5  Triangulation. 
 
 

 
 

     Fig. 6  Two views of 3D surface model. 
 
 

 
 
(a)Two original images of a building and a view of the reconstructed 3D 
surface 

 

 
 
(b)Two original images of a stele and a view of the reconstructed 3D surface 
 

Fig. 7  Examples of 3D surface reconstruction 
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6. Conclusion 
 

In this paper, 3D modeling from two uncalibrated images 
is investigated and realized. We combine the sobel edge 
detection and SUSAN algorithm to enhance computation 
speed in the process of corner detection, and improve the 
weighted normalization linear algorithm to compute more 
accurate fundamental matrix. Based on the structure of 
scene, we choose some feature points to reconstruct the 3D 
surface structure, divide the 2D image into triangular 
meshes with these points, and then map triangular textures 
onto the surface of 3D structure to reconstruct 3D surface 
model. Experimental results prove that our approach is 
accurate and efficient. 
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