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Abstract 
Radio Resource Management (RRM) is one of the most 
challenging and one of the most important aspects of modern 
wireless communication networks. System performance can be 
improved by applying intelligent radio resource management 
scheme in wireless networks. So distributed solutions to the 
resource management are motivated by the need to cope with the 
complexity in modern wireless communication networks. The 
purpose of this paper is to analyze the radio resource 
management problem in a cognitive radio based wireless ad-hoc 
network from the viewpoint of game theory. The main focus is to 
model and analyze a distributed power control in cognitive radio 
based wireless ad-hoc network using non-cooperative games. 
Using this model, we show a distributed power control scheme 
that converges to a fixed point for satisfaction of each user in the 
wireless network. Formulating distributed power control as a 
non-cooperative game we show the existence and uniqueness of 
the Nash equilibrium which can be achieved by the application 
of power control game. 
Key words: power control, radio resource management, 
cognitive radio, wireless ad hoc networks, game theory, Nash 
equilibrium. 

1. Introduction 

RRM is one of the most challenging and one of the most 
important aspects of wireless communications. An 
intelligent radio resource management scheme can 
significantly improve system performance. For instance, a 
CDMA (Code Division Multiple Access) system can 
achieve significant capacity gains relative to a TDMA 
(Time Division Multiple Access) system. This is not due 
to any inherent processing advantages provided the Direct 
Sequence Spread Spectrum (DS-SS) of Frequency Hopped 
Spread Spectrum (FH-SS) signal. In fact, from an 
information theory perspective, a CDMA signal has the 
same capacity as a TDMA signal [1]. Rather, CDMA 
provides a number of radio resource management 
advantages not available in a TDMA system. The most 
notable of these RRM advantages are CDMA’s theoretical 
frequency reuse factor of 1, and an ability to dynamically 
reallocate bandwidth during voice inactivity [2]. However, 
a proper understanding of a RRM algorithm often requires 

an understanding of a number of complex interrelated 
processes. Thus the number of considerations when 
analyzing a RRM algorithm can be quite large. This 
problem is complicated in distributed dynamic RRM 
algorithms where interactive decision making processes 
occur. An understanding of these processes is critical as 
they are a virtual necessity in the increasingly popular 
cognitive radio based wireless ad-hoc networks and are 
also encountered to a lesser extent in cellular networks. 
In this paper we propose that game theory can be applied 
to the analysis of these interactive decision processes. 
Indeed it is anticipated that with a formalized approach of 
applying game theory to RRM issues and an identification 
of appropriate game theory models, many of the more 
difficult RRM problems will be addressed and understood 
and analyzed within the game theory framework. 
The remainder of this document is a discussion of how 
game theory can be applied to radio resource management 
in cognitive radio based wireless ad-hoc networks is given. 
We also show the existence of Nash equilibrium in 
cognitive radio wireless networks achieved by game 
theoretical analysis and a description of future research 
directions. 

2. Radio Resource Management in Wireless 
Networks 

RRM can be best understood as a constrained probabilistic 
optimization problem that can be formulated as follows 
[2][3][4]: 
Given a particular infrastructure deployment (constraints), 
allocate resources (variables) in a manner that (ideally) 
max(min)imize some operational parameter(s) (objective 
functions). 
It is important to note that the probabilistic aspect of RRM 
causes it to differ from most common mathematical 
optimization problems (linear and nonlinear programming 
problems). Thus, when evaluating RRM objective 
functions various statistical measures are frequently used. 
For instance expected number of dropped calls and the 
variance in the number of dropped calls are evaluated as 
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opposed to a specific number of outages. RRM is further 
complicated by the sheer complexity of the interactions of 
the algorithms under consideration. However like many 
other optimization problems, RRM also has the 
complication of having to consider inversely related 
objectives such as the following: 

• Maximize user resources ↔ Maximize 
coverage/capacity 

• Maximize mobility support ↔ Maximize capacity 
• Maximize coverage ↔ Minimize cost 

     
However, efficient spectrum use and optimal resource 
allocation are critical to the network performance. 
Coverage holes may be left, quality of service guarantees 
may be left or an excessive amount of spectrum may be 
lost to overhead. 
There are several different aspects to radio resource 
management. We can divide these schemes into fixed 
RRM design and dynamic RRM algorithms. In a fixed 
RRM scheme, resource management decisions are made 
just once, typically before system deployment. Once this 
decision is made, to varying extents, these resources 
cannot be reallocated. If wireless networks were static and 
deterministic, fixed resource design and allocation would 
be sufficient. However, mobility is central to wireless 
networks and expected load distributions, mobile locations, 
fading profiles, and virtually every other assumption 
considered during fixed resource design and allocation 
change during operation. Thus nearly every allocation 
decision is subject to change in practical wireless networks. 
This adaptability can significantly improve performance in 
wireless networks. 
There are two fundamental approaches to dynamic RRM: 
centralized dynamic RRM and distributed dynamic RRM. 
In centralized RRM, a single authority, such as a base 
station, collects information from various nodes in the 
network, computes a change in resource allocation, and 
signals this change to the other nodes in the network. In 
distributed RRM, each of a number of authorities in the 
network collects information and adjusts the resource 
allocations within its control. Note that a distributed 
dynamic RRM algorithm generally incurs less overhead 
than a centralized dynamic RRM algorithm. However, the 
operation of distributed algorithms can be difficult to 
predict as the dynamic actions of one authority can 
influence the actions of the other authorities in the 
network. Thus simulations must frequently be used in 
place of analysis to perform network planning. 
Additionally, without a convergent state, even more 
bandwidth might be lost to signaling overhead to 
accommodate the resource allocation adjustments. 

2.1 Power Control 

The performance of wireless communications systems is a 
function of the signal-to-interference-plus-noise-ratio 
(SINR). While readily apparent at the physical layer, it is 
also generally true at the higher layers. Optimal network 
performance is typically achieved only at a unique power 
vector. In a static network, it would be trivial to assign 
transmit powers to each node in the network to achieve 
this power vector. However, wireless systems are 
generally mobile, or at least operate in a dynamic 
environment, so that any initial power vector assignment 
will not maintain its optimality. 
For instance, consider a pedestrian in an urban cellular 
environment who rounds a corner and creates a line-of-
sight (LOS) path to his base station. These results in a 
significant increase in the power received at his base 
station, significantly improving his performance, but 
potentially jamming the other users in the network. Clearly 
this new environment has a different ideal power vector 
than the original. 
In an attempt to maintain the optimum power vector, most 
modern communications schemes include some form of 
power control. Power control is a set of real-time 
algorithms implemented on a network in order to 
maximize a performance metric. Some common 
applications of power control include [5][6]: 

• Ensuring proper operation in multi- user direct-
sequence spread spectrum (DS-SS) systems. 

• Trading off system capacity for quality of service.  
• Trading off battery life versus quality of service. 

Every power control scheme is designed for a particular 
target application and anticipated devices. These 
assumptions permit the network planner to maximize QoS 
while minimizing the use of system resources. 
For example consider the following generalization of the 
reverse-link power control scheme used in IS-95. This 
scheme is primarily interested in maximizing system 
capacity while maintaining a minimum QoS, typically 
measured as a bit-error-rate (BER). For a system operating 
in the ideal steady-state where all received powers are 
equal and ignoring out-of-cell interference, [6] gives the 
relation between system capacity, K desired SINR, Eb/N0, 
spreading gain W/R, signal power S, and noise power η. 
 

0

/1
/b

W RK
E N S

η
= + −                … … … (1) 

However, [2] states that if the received powers are instead 
received with a log normal distribution with a standard 
deviation of just 2dB, then 60% of the system capacity can 
be lost. Clearly, power control plays a vital role in the 
success of a system. It is clear from equation (1) that it is 
possible to trade off capacity for bit error rate. Thus as the 
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number of users in this system increases, performance can 
“elegantly” degrade. 

2.2 Previous work on Power Control 

Previously researchers were engaged to develop some new 
power control schemes for cellular radio environments. In 
this section we discuss about some cellular power control 
schemes specially Yates’s standard interference function 
model and Goodman’s objective oriented power control 
schemes. 

2.2.1 Yates’s standard interference function model 

In [7], Yates represents a novel framework for standard 
interference function model for uplink power control in 
cellular radio systems. In this framework, each node, j , 
attempts to achieve a required SINR, jγ , with a minimum 
power consumption, jp  at its node(s) of interest, 

{ }jv (one or more base stations). This model assumes that 

each node is capable of observing the SINR at { }jv  (or 

alternately, observes the total received power at { }jv  and 

knows its own gains, { }, jj v
h . Based on these observations, 

the nodes compute a scenario dependent standard 
interference function I(p) formed by the ratio of the target 
SINR and the effective SINR where p is the vector of 
transmit powers employed in the cell. 
The properties of I(p) are key to the results of the model. 
I(p) has the following properties: 
 

• Positivity I(p) > 0 
• Monotonicity If p ≥ p*, then I(p) ≥ I(p*) 
• Scalability For all α > 1, αI(p) > I(αp) 

where the convention that p > p* means that pj > p*j 
 
In general Ij(p) takes the form shown in equation (2) as the 
ratio of target SINR and actual SINR. I(p) is then given by  
( ) ( )j N jI I∈= × pp . 

( ) ( )
j

j
j

I
γ

μ
=p

p
                     … … … (2) 

Power levels for each mobile are updated at stage k+1 by 
the equation (3). 

( ) ( ) ( )( )1j jp k p k I k+ = p            … … … (3) 

Assuming capacity constraints are satisfied, this model is 
shown to converge to a steady state under the following 
scenarios: 

• Fixed assignment where each mobile is assigned 
to a particular base station ( { } 1jv = ). 

• Minimum power assignment where each mobile 
is assigned to the base station where its SINR is 
maximized ( { } 1jv =  but jv changes). 

• Macro diversity where all base stations combine 
the signals of the mobiles ( { } 1jv > ) 

• Limited diversity where a subset of the base 
stations combine the signals of the mobiles 
( { } 1jv > ) 

• Multiple connection reception where the target 
SINR must be maintained at a number of base 
stations. ( { } 1jv > ). 

In [7], Yates shows that the standard interference function 
has the following properties: 

• If the algorithm has a fixed point, then that fixed 
point is unique. 

• When I(p) is feasible, a fixed point exists. I(p) is 
said to be feasible if there exists some ∈p P such 
that I (p) ≥ 1 

• If I(p) is feasible, then starting at any p(0) other 
than p(0) = 0, then the algorithm converges to the 
fixed point when decisions are updated 
synchronously. 

2.2.2 Goodman’s power control schemes 

Whereas Yates treated distributed power control as a 
general fixed point problem, Goodman considers 
distributed power control as a distributed interactive 
objective maximization problem [8]. In this formulation 
the objective function has been expressed as equation (4). 

( ) ( ),i i b
i

Ru f
p

μ=p                … … … (4) 

where R is the data rate, f is the probability of successful 
bit transmission as a function of a modified SINR, ,i bμ . 

,i bμ is calculated as follows, 

,
, 2

,
\

j b j
i b

k b k b
k N j

h pW
R h p

μ
σ

∈

=
+∑

             … … … (5) 

where W is the transmission bandwidth. 

3. Cognitive Radio  

Cognitive radio technology is the key technology that 
enables a wireless network to use spectrum in a dynamic 
manner. The term, cognitive radio, can formally be 
defined as follows [9][10][11][12]: 
Cognitive radio is an intelligent wireless communication 
system that is aware of its surrounding environment (i.e., 
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outside world), and uses the methodology of 
understanding-by-building to learn from the environment 
and adapt its internal states to statistical variations in the 
incoming RF stimuli by making corresponding changes in 
certain operating parameters (e.g., transmit-power, carrier-
frequency, and modulation strategy) in real-time, with two 
primary objectives in mind: 

• highly reliable communications whenever and 
wherever needed; 

• efficient utilization of the radio spectrum. 
 
The cognitive radio concept was first introduced in [13] 
[14], where the main focus was on the radio knowledge 
representation language (RKRL) and how the cognitive 
radio can enhance the flexibility of personal wireless 
services. The cognitive radio is regarded as a small part of 
the physical world to use and provide information from 
environment. 
The ultimate objective of the cognitive radio is to obtain 
the best available spectrum through cognitive capability 
and reconfigurability as described before. Since most of 
the spectrum is already assigned, the most important 
challenge is to share the licensed spectrum without 
interfering with the transmission of other licensed users as 
illustrated in Fig. 1. The cognitive radio enables the usage 
of temporally unused spectrum, which is referred to as 
spectrum hole or white space [10]. If this band is further 
used by a licensed user, the cognitive radio moves to 
another spectrum hole or stays in the same band, altering 
its transmission power level or modulation scheme to 
avoid interference as shown in Fig. 1. 
 

 
Fig. 1 Spectrum sharing and spectrum hole detection in Cognitive Radio 

3.1 Cognitive Functions 

The cognitive functions of a cognitive radio enable real 
time interaction with its environment to determine 
appropriate communication parameters and adapt to the 
dynamic radio environment. The tasks required for 
adaptive operation in open spectrum are shown in Fig. 2, 
which is referred to as the cognitive cycle [14]. 
 

 
Fig. 2 Cognitive Cycle [14] 

 
The functions of cognitive cycle as shown in Fig. 2 are as 
follows: 

• Spectrum sensing: A cognitive radio monitors the 
available spectrum bands, captures their 
information, and then detects the spectrum holes.  

• Spectrum analysis: The characteristics of the 
spectrum holes that are detected through 
spectrum sensing are estimated. 

• Spectrum decision: A cognitive radio determines 
the data rate, the transmission mode, and the 
bandwidth of the transmission. Then, the 
appropriate spectrum band is chosen according to 
the spectrum characteristics and user 
requirements. 

3.2 Reconfigurable Capabilities 

Reconfigurability is the capability of adjusting operating 
parameters for the transmission on the fly without any 
modifications on the hardware components. This 
capability enables the cognitive radio to adapt easily to the 
dynamic radio environment. There are several 
reconfigurable parameters that can be incorporated into 
the cognitive radio [10] as explained below: 

• Operating frequency: A cognitive radio is 
capable of changing the operating frequency. 
Based on the information about the radio 
environment, the most suitable operating 
frequency can be determined and the 
communication can be dynamically performed on 
this appropriate operating frequency. 

• Modulation: A cognitive radio should reconfigure 
the modulation scheme adaptive to the user 
requirements and channel conditions. For 
example, in the case of delay sensitive 
applications, the data rate is more important than 
the error rate. Thus, the modulation scheme that 
enables the higher spectral efficiency should be 
selected. Conversely, the loss-sensitive 
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applications focus on the error rate, which 
necessitate modulation schemes with low bit error 
rate. 

• Transmission power: Transmission power can be 
reconfigured within the power constraints. Power 
control enables dynamic transmission power 
configuration within the permissible power limit. 
If higher power operation is not necessary, the 
cognitive radio reduces the transmitter power to a 
lower level to allow more users to share the 
spectrum and to decrease the interference. 

• Communication technology: A cognitive radio 
can also be used to provide interoperability 
among different communication systems. 

The transmission parameters of a cognitive radio can be 
reconfigured not only at the beginning of a transmission 
but also during the transmission. 

4. Game Theoretical Formulation of 
Transmission Power 

The fundamental component of game theory is the notion 
of a game, expressed in normal form as { }, , iG M A u= , 

where G is a particular game, M is a finite set of players 
(decision makers) {1, 2, … …, m}, Ai is a set of action 
available to player i, 1 2 ......... mA A A A= × × × is the action 
space, and {ui} = { u1, u2, … …, um } is the set of objective 
functions that the players wish to maximize. For every 
player i, the objective function ui, is the function of the 
particular action chosen by player i, ai, and the particular 
action chosen by all other players in the game, a-i. For this 
model, steady state conditions, known as Nash Equilibria 
are identified wherein no player would rationally choose 
to deviate from their chosen action as this would diminish 
their payoff, i.e. ( ) )( ,i i i iu a u b a−≥ for all ,i j M∈ . The 

action tuples (a unique choice of each player) 
corresponding to the Nash Equilibria are then predicted as 
most popular outcomes. In a game the steady-state 
condition (Nash Equilibria) need not to be Pareto Efficient 
operating point.  
The fundamental components of a non-cooperative game 
can be described as follows [15]: 

• Players: Players are the decision making entities 
in the modeled system. 

• Actions: An action set represents the choices 
available to a player. Note that these choices may 
be quite complex and, for instance, may represent 
a sequence of real world actions. Each player in 
the game has its own action set and makes its 
decision by choosing an action from its action set. 
A choice of actions by all players in the game 
produces an action vector or action tuple. All 

possible action vectors in the game are contained 
within the game’s action space. The action space 
is formed the Cartesian product of every player’s 
action set. 

• Outcomes: Each action vector produces a well 
defined and expected outcome. Note as an 
outcome is jointly defined by every player’s 
action choice, there is an interactive relationship. 
Thus in every game there exists a mapping from 
the action space to some outcome space. As this 
mapping is presumed, most game analyses ignore 
outcomes and focus solely on the actions that 
produce the outcomes. 

• Preference Relations: Fundamental to game 
theory is the concept of preference relations. A 
preference relation describes a comparative 
preference between two outcomes or action 
tuples (and thus is a binary operator). The 
preference operator is normally represented by 
the symbol

�
f . Here, a b

�
f indicates that outcome 

a is at least as preferable to outcome b. In game 
theory, the preference relation is assumed to be 
reflexive, transitive and complete over the action 
space. In a game, each player is expected to have 
preference relations defined over all possible 
outcomes. 

• Utility Functions: While games can be analyzed 
based on the ordinal relations implied by 
preference relations, cardinal relations have a 
richer tool set and are generally preferred for 
analysis. Utility functions (objective functions) 
transform the ordinal relationships of players’ 
preference relationships to cardinal relationships. 
Generally a utility function is constructed over 
the action (outcome) space so that if a is 
preferable to b, then the cardinal value assigned 
to a will be greater than the cardinal value 
assigned to b. Thus in light of utility functions, it 
may be fair to treat the preference operator,

�
f , as 

the greater than or equal to operator, ≥ . 
• Nash Equilibrium: An action vector a is said to 

be a Nash equilibrium (NE) iff 
( ) )( , ,i i i i i iu a u b a i N b A−≥ ∀ ∈ ∈  where a is an 

action tuple, )( ,i ib a− is another action tuple that 

differs from a only in the component determined 
by i and ui is player i's utility function. Restated, a 
NE is an action vector from which no player can 
profitably unilaterally deviate. NE corresponds to 
the steady-states of the game and is then 
predicted as the most probable outcomes of the 
game.  
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• Best Response Function: A best response 
function (correspondence) specifies the action 
(set of actions) for a particular player, say player i, 
that produces the largest utility given the action 
tuple chosen by all remaining players, a-i. Nash 
equilibriums for a game are equivalent to the 
fixed points of the multi-player best response 
correspondence formed from the Cartesian 
product of all players’ best response functions. 

 
A wireless network can be modeled as a game according 
to Fig. 3. The decision making nodes in the network form 
the player set of the game, each node’s available power 
levels form the action sets of the players, and the 
algorithms used by the nodes to modify their behavior 
form the utility functions and learning processes within the 
game. 
 

 

 

 
Fig. 3 Network model as a game 

 
Here, we now introduce a more specific game model for 
distributed transmission power for cognitive radio based 
wireless ad-hoc networks. The model is based on the 
following key assumptions: 

• Fundamentally, the choice of a power levels are 
the adaptations that may be adopted at the 
physical layer by a node of the network. 

• From a physical layer perspective, performance is 
generally a function of the effective signal-to- 
interference-plus-noise ratio (SINR) at the 
node(s) of interest. 

• Effective SINR is a function of the choice by a 
node: the transmit power level. The exact 
structure of this function is also impacted by a 
variety of factors not directly controllable at the 
physical layer; the most notable of these factors 
are environmental path losses and the processing 
capabilities of the node(s) of interest. 

• When the nodes in a network respond to changes 
in perceived SINR by adapting their signal to 
SINR changes, a physical layer interactive 
decision making process occurs. 

 
Based on these assumptions, a game theoretic model for 
transmission power level of a cognitive radio wireless ad-

hoc network can be formed using the parameters listed in 
Table 1. 

Table 1: Power Control Notation 
Symbol Meaning 
N The set of decision making (Cognitive) radios or  

nodes in the system 
,i j  Two different cognitive radios or nodes ,i j N∈  

jP  The set of power level available to radio or node j

ip  A power level chosen by j  

P  The power space formed by Cartesian product of  
all jP . 1 2 ... nP P P P= × × ×  

p  A  p o w e r  v e c t o r  f r o m  P  f o r m e d  a s  
{ }1 2, ,..., np p p p=  

( )ju p  The utility that j  receives from p. This is the         
specific function that j is looking to maximize.  

 
Thus the general notation of power game is,       

{ }, , iG N P u=                      … … … (6) 

4.1 Power Game Model of Network 

In this subsection we describe the power game model of a 
cognitive radio wireless network. 

• Players: A set of all decision making nodes in the 
participating networks. For an example here the 
set is N = {1,2,… … …,n} nodes in the networks. 

• Actions: The set of available power for each 
node i N∈ , i.e. { },min ,max: [ , ]i i iP p p P P= ∈ . 

• Utility Functions: We consider ip  the 
transmission power of node i  and ig  the link 
gain of i . Then i i iy p g= , 1, 2,......,i m=  is the 
received power of each node i . The quality of 
service QoS of each node i  is measured in terms 
of the signal to interference plus noise radio 
(SINR) of i .Thus the SINR for each node i  is 

given by,     i
i

jj i

y
SINR

y e
≠

=
+∑

, where e  

designates external noise power. It is presumed 
that self-interference is negligible or nonexistent. 
Each node of interest relays its SINR information 
back to the nodes transmitting to it. Each 
transmitting node then adapts its transmission 
parameters as a function of SINR at its node of 
interest constrained by a cost function that 
models the internal costs for a particular energy / 
waveform pair (battery life, complexity, 
distortion) and / or a cost function imposed by a 
network for a particular energy / waveform pair. 

         Network 
Nodes 
Power Levels 
Algorithms 

          Game 
  Players 

Actions 
Utility Functions 
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Thus the objective function iu  can be described 
in terms of SINR as follows,  

( ) ( )i i i iu i SINR c p= × −      … … … (7) 

( )i
i i iM

j
j i

y
u i c p

y e
≠

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= × −⎜ ⎟⎜ ⎟

+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

… … … (8) 

 
Here ( )i ic p  is the cost function of each node i  which can 

be described in unit price of power p′ , i.e. ( )i i ic p p p′= ∗ . 
In this power control game each node will try to increase 
its utility by choosing a power from available power 
vector rationally and finally reach a steady state condition 
i.e. Nash Equilibria. 

4.2 Existence of Nash Equilibrium 

In this section we describe the Nash Existence Theorem 
and apply this theorem we show the Nash Equilibrium 
(NE) for our modeled power game. 

4.2.1 Nash Existence Theorem 

A strategic game , ,G N A R= has at least one NE if 
i N∀ ∈ the following condition holds 

• The set iA of actions is non empty, compact and 
convex subset of a Euclidean space. 

 
The terms from set theory used in this theorem are 
concisely defined in [16]. 

4.2.2 NE for Power Game 

The power game described in previous section has at least 
one Nash Equilibrium (NE). In order to prove this we 
apply Nash Existence Theorem to power game. 

• Proof: The action sets iP are non empty and 
convex, by definition. Each iP is closed since it 
includes the boundary levels ,miniP and ,maxiP . All 
power levels in iP lie within the boundary, thus it 
is bounded. Therefore the iP ’s are compact. 

Thus the power game must have Nash Equilibrium point. 

4.3 Nash Equilibrium Solution Method 

The objective of this power game for each node can be 
stated as: for each node i N∈ , given the action tuples of 
the remaining players, i.e. ( )

\j j N i
P

∈
find an action iP that 

maximize the utility function iu . This motivates a 
distributed solution approach which proceeds as an 
iterative optimization problem of a scalar objective 
function. The iterative step is defined as follows: 

• Step: For each node i N∈ , given ( )
\j j N i

P
∈

, find 

the maximum utility from equation (9). 
( ), max , ,

i
i eqm i i iP

P u P P i N−= ∀ ∈⎡ ⎤⎣ ⎦        … … … (9) 

This iterative procedure continues until all nodes in the 
network find that their utilities do not change between 
iterations and the change in their power levels is less than 
a pre-defined bound or an upper limit on the number of 
iterations is reached. 

5. Simulation and Results 

We consider a cognitive radio wireless ad-hoc network 
where the number of nodes N = 17, external noise e = 
0.001 and unit power price = 0.5. We assume the available 
received power space P is a set of any real number 
between 0 to 10. At every iteration each node 
asynchronously in a random order decides its individually 
optimal strategies i.e. transmission power to achieve its 
utility. By applying power game model each node reaches 
a steady state i.e. Nash Equilibria point after some 
iteration. In Fig. 4 each node converges at a fixed power 
level to meet Nash Equilibria as well as maximizes its 
utility. 

 
Fig. 4 Power of each node meets the NE 

 
In Fig. 5 we show the utility of each node. Each mobile 
reaches its maximum utility after playing power game and 
shows its Nash Equilibrium point.  
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Fig. 5 Utility of each node and its NE 

 
 

 
Fig. 6 Time required by each node to reach its NE 

 
Fig. 6 shows the required iteration time of each node to reach the 
stead state situation i.e. NE point. 
 
Now we show the simulation results of another utility function 
that is derived from the current action sets and SINR. We 
introduce the logarithmic approach of utility function. Then the 
desired utility function is, 
 

( ) ( )10logi i i iu i SINR c p= ∗ −        … … … (10) 

10log ( )i
i i iM
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j i
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+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

  … … … (11) 

Here we modify the cost function as ( ) q
i i ic p p p′= ∗ to 

punish more the node which rationally uses more power. 
Applying the same power game and same parameters, we 
find the existence of Nash Equilibrium for this utility 

function. Fig. 7 and Fig. 8 show the existence of Nash 
Equilibria for power and utility respectively. 

 
Fig. 7 Nash Equilibrium for power game  

 

 
Fig. 8 Nash Equilibrium for logarithmic utility  

6. Conclusion 

Radio resource management is a challenging task in 
cognitive radio wireless networks because all nodes are 
communicating one another in a distributed manner. In 
this paper we introduced game theoretical techniques for 
radio resource management especially power management 
in cognitive radio wireless ad-hoc networks. We showed 
that by applying non-cooperative game theoretical 
techniques we got Nash Equilibrium for these networks 
and all participating nodes in the networks showed steady 
state condition. Our future approach will be to extend this 
work to rate control as well as throughput maximization of 
a large self-organizing network. 
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