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Summary 
In this paper, artificial neural networks for solving 
multiobjective optimization problems have been 
considered. The Tank-Hopfield model for linear 
programming has been extended, and then the neural 
model for finding Pareto-optimal solutions in the linear 
multi-criterion optimization problem with continuous 
decision variables has been discussed. Furthermore, the 
model for solving quasi-quadratic multiobjective 
optimization problems has been studied. What is more, 
some models of the Hopfield neural network for solving 
NP-hard combinatorial multi-criterion optimization 
problems have been proposed. Finally, the family of 
extended Hopfield models for finding Pareto-optimal 
solutions has been developed.. 
Key words: 
Neural networks, efficient solutions, multi-criterion optimization. 

1. Introduction 

A Hopfield neural network model HNN for linear 
programming has been proposed by Tank and Hopfield 
[14]. It can be modified for solving nonlinear optimization 
problems with continues decision variables [6]. So, we can 
apply the extended neural model for finding Pareto 
solutions to the multiobjective optimization problems. 

Besides optimization problems with continuous 
decision variables, we can consider questions with binary 
variables. The first neural algorithm for solving the 
Traveling Salesman Problem has been proposed by Tank 
and Hopfield in [14], too. Moreover, the hybrid neural 
network model consisted of multiprocessor systems has 
been presented for finding solutions of TSP and 
successfully discovers solutions to the Hamiltonian Cycle 
by Sun and Fu in [13]. Some developments of Hopfield 
models for solving combinatorial optimization problems 
are proposed in [9]. For some other NP-hard problems, 
neural algorithms can be modified to find suboptimal 
solutions [15]. For instance, graphs problems and flows 
minimization problems are solved with using Hopfield 
models [7]. 

In this paper, the extended Hopfield models for 
solving some multi-criterion optimization problems are 
presented. To obtain this purpose some network models 
for standard constraints and objective functions are 
designed, separately. Then, synaptic connections of these 
networks are developed in one global network prepared 
for solving the special case of multiobjective optimization 
problem to obtain an efficient solution. This meta-
heuristics is rather general and gives solution that is close 
to an optimum. 

2. The Hopfield model of neural networks  

In gradient models of HNN the neural activation states are 
changed from the initial state u t u t u t u tm M

T( ) [ ( ),..., ( ),..., ( )]0 1 0 0 0=  
according to the below differentiable equations [2]: 

;M1,=mfor     I+)(
d m

1
mm

N

n
nm

m

mm ugwu
t

du ∑
=

+−=
η

    (1) 

where  
M - the number of neurons, 
um - the activation level of mth neuron, m M= 1, , 
ηm - the positive passive suppress coefficient for 

   the neuron with the output xm , 
wnm - the synaptic weight from the neuron xn to the  

   neuron xm , 
Im - the external input to the neuron xm  . 

Matrix of synaptic weights W is symmetric. An 
important assumption, that 

 wmm m= ,M= 0 1,     ,                     (2) 
causes that the energy function there has no minimum in 
the interior of the output space. Moreover, external inputs 
and synaptic weights are constant during the process of 
energy function minimization. For optimization problems 
with continuous decision variables, the signals in neurons 
are transformed according to the linear activation function 
gm , as follows: 

 ;,Mm=ux mm 1for            =         (3) 
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Hopfield proposed the Liapunov function for the 
differential system (1) in respect to the below formula [8]: 
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where  

g m
− 1  - a reverse function for an activation function mg , 

mmmm xxgu == − )(1 . 

3. Linear problem with continuous variables 

Let the linear minimization problem be consider in the 
following form: 

∑
=∈

M

m
mm xc
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min ,                         (5) 

where 
xm - decision variables, Mm ,1= , 
cm - cost coefficients, Mm ,1= , 
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anm - constraint coefficients, Mmn ,1, = . 
Decision variables are continuous and their 

values is the same as outputs from neurons in the stable 
state of the network. The objective function )(xf  is 
linear. Constraints are linear with lower limits.  

A linear programming problem can be 
transformed into the standard form with constraints 
modeled as equations. Some optimization techniques can 
be used for finding solutions to the problem [11]. For 
instance, the SIMPLEX method or the parallel COMPLEX 
method can be used for solving it. These methods are the 
fundaments for preparing some techniques in nonlinear 
optimization as well as multi-criterion optimization.  

4. Neural model for linear optimization 

Let us consider a constraint, as below: 
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We introduce a denotation for a positive 
inequality resource:  

n
M
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1
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If rn ≥ 0 , then inequality constraint is satisfied. 
In the other case, inequality constraint is not satisfied.  

Unfeasible solution should be punished during 
network relaxation. It can be made by the following 
penalty function: 
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An energy function can be written, as follows: 
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The motion system can be obtained, as follows: 
du
dt

E
x

m

m
= −

∂
∂

                          (10) 

Above formula gives an analogy between the 
deepest descent method and Hopfield network. But, in 
Hopfield network a data processing is parallel, because 
each neuron plays a role of processor in computer. If 
another formula is applied, then the constant Cm is used on 
the left side of above formula. However, it does not 
influence on the equilibrium point of motion equations [1]. 
From (9) and (10), we get, as below: 
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Because of formula (8) the partial derivatives are 
given, as follows: 
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According to the Tank-Hopfield model for 
solving linear optimization problem, above function can 
be used as an activation function in constraint neurons. 
This model is denoted as LTH model.  

Figure 1 shows the network for solving linear 
minimization problem can be presented. In this network 
two groups of neurons are considered. The first one 
consists of M neurons with linear activation functions. 
These neurons are called decision neurons. Decision 
neurons change their states according to the formula (11). 
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The output values xm from mth neurons are sent to the 
second group of N neurons with activation functions 
expressed by formula (12). These neurons are called 
constraint neurons and are responsible for constraint 
satisfaction. Constraint neurons do not work as dynamic 
decision neurons, but they give output value on inputs 
force without delay. Indeed, only marked decision neurons 
are Hopfield neurons.  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The LTH model for linear minimization.  

If the associated constraint is not performed, then 
the constraint neuron generates positive value proportional 
to the resource non-satisfaction of its. Gradient component 
of penalty function is given on the input of decision 
neurons, because output -rn(x) is multiplied by the mth 
constraint partial derivative anm . In this way to mth 

decision neuron the term −
=
∑anm

Pn
rnn

N ∂
∂

1
 is given. This 

term is the component of penalty function gradient, and 
leads to the growth of rn(x)  for nth unsatisfied constraint. 
Constraint neurons and synaptic connections to decision 
variables from constraint neurons introduce a competition 
mechanism for neural networks. It transforms the 
requirement of constraint satisfaction into activation level 
modifications of decision neurons to satisfy all constraints. 
This undirected competition mechanism tends the network 
trajectory to the feasible solution set.      

In decision neurons, the activation functions are 
linear, because the dynamic system (11) can be written in 
a simpler form, as below: 
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This motion system can be solved by the linear 
Euler method or the first order Runge-Kutty method.  

5. The extended LTH model 

 
The considered LTH model has two disadvantages for 
some problem instances. During several numerical 
experiments we observe that for few cases LTH model 
converges to an interior of feasible solution set X, where 
an optimal solution is a vertex of a convex polyhedron. 
Moreover, for the other few cases the trajectory of 
network did not converge to a point from X. The amount 
of failed cases was no greater than few percent, but these 
disadvantages of the LTH model can be removed.  

If the state x(t) is in a feasible solution set X, then 
the dynamic system has a following form: 

dxm
dt

xm t

m
cm m M= − − =

( )
, , ,

η
1           (14) 

because all constraints are satisfied and the term 

−
=
∑anm

Pn
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∂

1
 is equal to 0. So, on each decision neuron 

its external input Im=-cm has an influence, only. If the 
trajectory x(t) is in X, then passive suppress coefficients 
and costs coefficients exist, and they are such, that 
network obtains an equilibrium point in X, according to 
the following formula: 

dxm
dt

xm t

m
cm m M= − − = =

( )
, , ,

η
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 and 
xm mcm m M* , , ,= − =η 1                    (16) 

Let η η= =m m M, ,1 . Because the set X is 
constrained, then there is a passive suppress coefficient 
such, that 

 ηc X∉ ,                                   (17) 
For the given initial value of passive suppress 

coefficient the above condition is tested. If it is not 
satisfied, then this parameter is iterative increases until 
condition (17) is performed. 

Another disadvantage of the LTH model is a fact, 
that for few cases the trajectory of network did not 
converge to a point from X. This non feasible way of 
network operating can be omitted by introducing a 
minimal penalty An>0 for non-satisfaction of nth constraint, 
which perform the below inequality estimation: 

An
c

xrn
m M≥ −

−
∇

=η , , ,1                  (18) 

where |x| denotes the length of the vector x.  
Let A=max{An, n=1,...,N}. Figure 2 shows the 

transfer function for constraint neurons in the extended 

xm

-c1 -cM -cm 

-b1 -bN-bn 

a11 a1m aNm 
anm 

x1 xM
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LTH model. It is right-site continuous, and can be 
expressed as follows: 
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Figure 2. Transfer function for constraint neurons in extended LTH 
model 

6. Multi-criterion linear optimization by PLNN 

.  
The PLNN model can be considered for solving 
multiobjective optimization linear problems, where K 
linear criteria F1,...,Fk,...,FK are simultaneously minimized. 
The Pareto solutions, domination solutions, or 
compromise solutions can be found. For aggregation of all 
criteria in one global criterion the nonnegative convex 
combination function can be used, as below: 

min { ( )}
x X

k Fk x
k

K

∈ =
∑α

1
,                    (20) 

where α αk k K k
k

K
≥ = =

=
∑0 1 1

1
, , .  

Additional constraints can be modified 

α αk k K k
k

K
≥ = + ≥

=

+

∑0 1 1 1
1

1
, , , where αK+1 denotes 

dummy variables. So, we consider M decision variables xm, 
K unknown nonnegative convex combination coefficients 
αk, and dummy variables αK+1, which are represented by 
M+K+1 decision neurons with linear activation function. 
Neuron xm is connected with neuron αk  by synaptic 
weights -0.5ckm denoting cost coefficient in kth criterion 
for mth variable. Additional constraints are respected in 

network by the same way as linear constraints in the 
extended LTH model.  

7. Multiobjective quasi-quadratic 
programming by the PQNN model 

 
The PQNN model of neural network is proposed for 
solving multiobjective optimization problems, where K 
criteria F1,...,Fk,...,FK are quasi-quadratic functions defined, 
as follows: 

Fk x xT Dk x ck
T x k K( ) . , , ,= − − =05 1           (21) 

where Dk - MxM matrix of real numbers for function Fk . 
This function is called quasi-quadratic, in 

opposite to quadratic, because cmm=0 for m=1,...,M. 

Figure 3 shows the scheme of the PQNN for 
finding a Pareto solution. The interactive mechanism for 
minimization -0.5αkxTDkx is missed [3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The PQNN model for finding Pareto solutions. 

8. Some optimization problems with zero-one 
decision variables 

Let consider the multiobjective optimization problem 
(X,F,P) for finding the Pareto-optimal solutions, which are 
some allocations of program modules and processor types 
in a computer network. This problem seems to be very 
representative for the other combinatorial problems as it 

c11 cK
ckm

-b1 -bN-bn

a11 a1m aNm an
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αKαk

-1

x1 xm xM
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was shown in [4]. In this problem some denotations are 
used, as follows:  

1) X - a feasible solutions set 

X= x¸B  |  x= x ,...,x ,...,x x x xV+J
vi V{ ( 11 ij 2J
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2) F - a vector quality criterion                                                                       (1) 

   F  : X R  → 2  ,    F(x) = [F1(x) , F2(x)] T for x∈X 
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3)  P - the Pareto relation [3] 
 

In the constraint 1
2

=1i

=∑ vix for ,Vv=1  the 

following denotations are used. xvi is the decision variable, 
which is equal to 1 if the program module mv is assigned 
to the processing node wi. V is the number of all program 
modules. Above constraint can be written in a general 

form     
1

Lx
M

m=
m =∑ , where xm is a typical binary variable, 

and it should be satisfied for M≥L. It means that only L 
variables can be equal to 1, and the other variables M-L 
should have value 0. There are no preferences which 
decision variables should be taken. This constraint is 
related with the requirement to program modules should 
be assigned or to the node w1 or to the node w2.  

The general form of constraints Lx 
M

m=
m =∑

1
  

represents several constraints of combinatorial problems. 
For instance, in the Traveling Salesman Problem [14] 
during L (L is the number of all cities) steps a salesman 
should come through each city ci exactly ones, what can 

be written as ,Lk=x
L

k=
ik 1for   1  

1
=∑  , where xik is equal to 1 

if the salesman in the kth step is in the city ci. The length 
of the salesman travel is supposed to be equal to L steps, 

and if the constraints ,Lk=x
L

k=
ik 1for   1

1

=∑  are satisfied, 

then this requirement is performed, too.  

Similar constraints are in the vehicle routing 
problem VRP, the 0-1 knapsack problem, the set covering 
problem or the standard assignment problem [8]. They can 

be expressed in a general form Lx
M

m=
m =∑

1
.  

The Hopfield model of artificial neural networks 
(called HNN) can be used for performing above constraint 
and the other sorts of constraint [10]. This time, signals in 
a neuron are transformed according to an activation 
function:  

[ ] ,1 , ) tanh(1
2
1)( ,Mm=uug nmmm α+=       (22) 

where ∝m is the gain coefficient in the mth neuron 
( Mmgrm ,1 ,0 =>≥ αα ). 

Uniform Hopfield networks called UHNN 
perform important role for satisfaction of the special class 
of constraints expressed in a general form [5]. For uniform 
Hopfield networks, all main parameters have the same 
value for each neuron, as below:  

Mmnwwnm ,1,for    = ∈ ,  

I I m Mm = for  = ,1 , 

η ηm m M=  for = ,1 ,   

α αm m M=   for = ,1 . 
The Euler method can be used for solving the 

motion equations of UHNNs. The following iterative 
procedure for finding active level value in the next 
moment is applied: 

( ) ,,1= ,+)()(1)(
1

MmtItxtwtutttu
M
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n
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km ΔΔ+Δ−=Δ+ ∑

≠
=η

   (23) 

In the Euler method, the integrity step length Δt 
should be taken as small as possible to avoid errors related 
with the approximation of differentiable equations. But, if 
Δt is too small, then the iterations number should be large 
to obtain the equilibrium point or saddle points.  

To satisfy the considered constraint    
1

Lx
M

m=
m =∑  

the special case of UHNN can be used according to the 
below theorem. This theorem gives values of main 
parameters of UHNN such as the neurons number, 
synaptic wages, and external inputs.  
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Theorem. 1 [5] 
If  
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and the uniform Hopfield network has following 
parameters: 
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where M is the number of neurons, 
then  
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)1()()(  is a penalty 

function for constraint. 
UHNN with synaptic weights equal to -2 and 

nonnegative external inputs calculated according to the 
rule I=2L-1 can be called UHNN/L/M, because the pair 
(L,M) is required for the designing of UHNN/L/M, only. 
Signals from the other neurons are converted and their 
absolute value is increased. Moreover, each neuron has its 
nonnegative constant input, which forces the activation 
level u*=ηI in the equilibrium point for the winner 
neurons.  

All cases of a network UHNN/L/M (M≤100) 
were studied by numerical experiments. For generating of 
initial states, the following formula was used:  

,,1 ,
10

2
1-

)( 0 Mm
MiM

tum =
−+

=                (25) 

Moreover, we assume, that α=100, Δt=0.2, and 
η=1. A stop criterion kstop is the condition E tk( ) ≤ ε , 
where ε=0.01. For the worst case, the iteration number 
Kmax( E tk( ) ≤ ε )  for solving a general equation is equal 
to 5. These experimental results confirm that neural 
networks can be designed as a very efficient method for 
solving some numerical problems. For the network 
UHNN/L/M the neurons number M does not influence on 
the increasing of Kmax( E tk( ) ≤ ε ). For 1000 decision 

variables, and L=600, Kmax( E tk( ) ≤ ε )=4. 

9. HNN/F1/C for linear constrained 
minimization 

A following optimization problem is studied:  

∑ ∑
= =∈

2

1 1
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i

J

j
ijj x

Xx
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Two separated modified networks HANN/1/J can 
be used. They satisfy the constraints 

2,1,1
1

==∑
=

ix
J

j
ij
π . In these networks external inputs 

are modified according to the formula 

2,1,,1,)(5.12)( ==Δ−+= iJjxIJxI ijij
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where  
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)(
κ
κπ j

ijxI =Δ ,  

κmax is the cost of the most expensive processor. 
Above formula is related to the conclusion, that if 

in UHNN/L/M one neuron has the external input greater 
than the others, then this chosen neural output gets 1 in an 
equilibrium point. So, this is a way for preferring neurons 
related with the cheaper processors. Therefore, the 
additional term decreases the external inputs when the cost 
increases. If in a network UHNN/L/M all external inputs 
are increased about small value, then still L neurons are 
chosen in an equilibrium point. For L=0, there is I=2L-1=-
1. For L=1, there is I=1. So, according to the bounder 
increasing L=0,1,2,3,4,... , there is an input increasing I=-
1,1,3,4,6,... . For the bounder L is the interval for feasible 
external inputs (2L-2,2L). In this interval, the changed 
external inputs should have they value. For each node 
number, two separate networks UHNN/1/J are considered.  

10. HNN/F2/C for quasi-quadratic 
constrained minimization 

If a more complex problem is considered, when the time 
criterion F2(.) is minimized with respect to constraints. 
This optimization problem can be transformed to the 
unconstrained optimization problem. Energy functions of 
neural networks designed for constraint satisfaction or 
for objective function minimization can be aggregated in a 
penalty function, as below: 

),()()(),(
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11
2 xExExFxE
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v
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+

+==

++= βββ    (27) 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007 

 

199

 

where 
βv, βi- penalty coefficients, 
Ev- the energy function of the network UHNN/1/2 for 

a satisfaction of the constraint 1
2

1=i
=∑ vix , 

Ei- the energy function of a network UHNN/1/J for 

a satisfaction of the constraint ∑
=

≤
J

j
ijx

1
1π . 

Figure 4 shows a network HNN/F2/C for 
minimization for finding solution to the studied problem. 
Penalty coefficient can be found by systematically 
increasing from the initial value β0 (usually equals 1). If in 
the equilibrium point one of the energy function related to 
the vth constraint is greater than 0, then this constraint is 
not satisfied, and its penalty parameter is increased about 
Δβ (usually about 0.05). This process is stopped, if all 
energy functions of constraints are equal to zero.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Synaptic connections and external inputs for the neuron 
x v

m
1 in HNN/F2/C 

If Δβ is too large, then a feasible solution will be 
found, but for smaller values the influence of a goal 
function is greater than the influence of penalties functions 
on the neural network trajectory. Then chances of finding 
an optimal solution or a suboptimal solution are much 
greater. From the other hand, smaller value of Δβ causes 
the longer time of a network simulation.  

11. Some experimental examples 

Model HNN/F2/C was tested by several numerical 
examples. Figure 5 shows the energy function trajectories 
for the following optimization problem instance.  

V=4, J=2, I=2, 
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Fig. 5. Minimization the energy function 

The number of decision variables is 
M=I(V+J)=12. Moreover, the following network 
parameters are taken: α∈{100,200,300,400,500}, η=1, 
Δt=0.2, ε<0.005. Model started from the initial activation 
level state: 

u(t0)= [10-6, 0, 10-6, 0, 10-6, 0, 10-6, 0, 10-6, 0, 10-6, 0]T. 

An optimal value of the objective function 
F2(x*)=7.0 was obtained for β=[2.55, 2.45, 2.25, 2.25, 
7.35, 7.30]T , and for α=200 in an equilibrium point 
x*=[1,0,0,1,0,1,1,0, 0,1,0,1,0,0]T.  

If the penalty coefficient of a partial network is 
increased, then the role of this network increases, too. 
Then, signals generated by this network try to dominate 
signals from the other network.  

For the correct value of the penalty vector β the 
optimal solution was found after 18 steps of updating 
states in the neural model. Unfortunately, for each case the 
right value of the penalty vector β  should be sought. 

12. Neural model for Pareto allocations  

For finding a local efficient point of that problem we can 
use the Hopfield ANN (PHANN). PHANN can represent 
one Pareto-optimal solution in equilibrium point. An 
energetic function for PHANN are constructed as below: 
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For N=2, the combination coefficients can be 
systematically changed from a period (0,1). The objective 
function and penalty functions can be presented by the 
separate partial energetic functions. For the objective 
function in non-negative convex combination method, we 
get the following formula of separate energetic function: 
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where 
wrm

n  - the synaptic weight from rth neuron to mth 
neuron related with the multiplied objective 
function En(x,αn)= αnFn(x) 

I r
n  -the external input of rth neuron related with the 

multiplied objective function En(x,αn)=αnFn(x) 
In the similar way, we can obtain the formulas of 

partial energetic functions for the constraint satisfaction. 
Hence, we have the global basic energetic function of  
PHANN: 
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In above formula, combination coefficients are 
systematically fixed from 0 to 1. If α1=1 and α2=0, then 
we get a network HNN/F1/C. If α1=0 and α2=1, then we 
get a network HNN/F2/C. Similarly, we can obtain the 
others synaptic weights and external inputs, which are 
related with the others constraints and the objective 
function.  

 

13. Concluding remarks  

 
Numerical experiments with presented neural 

models were carried out in the PC environment without 
neural accelerators. It is possible to use the neural 
accelerators and improve the performance of the neural 
calculating. Simulations of considered neural networks 
confirmed, that neural networks are competitive 
techniques with standard numerical methods.   

Above approach can be used for nonlinear 
programming with linear constraints by a simply 
modification of the LTH model. In this case the synaptic 
connections between decision neurons are added. For 
multiobjective optimization the PLNN model and the 

PQNN model can be adapted for solving hierarchical 
solutions or compromise solutions with parameter p.=1.  

Moreover, neural algorithms for solving several 
optimization problems of operation allocation have been 
proposed. Formulas to determine values of synaptic 
weights and external inputs for networks, which satisfy 
basic constraints and objective functions, are presented.  

The recurrent HNN for optimization can be 
combined with genetic algorithms. Therefore, a hybrid 
genetic-neural algorithm seems to be a very powerful tool 
for solving combinatorial problems. From that reason, we 
will focus on solving this problem in our future works. 
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