
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

193

Manuscript received June 16, 2007

Manuscript revised June 25, 2007

Neural Algorithms for Solving
Some Multi-Criterion Optimization Problems

Jerzy Balicki †,

Naval University of Gdynia, ul. Smidowicza 69, Gdynia, Poland

Summary
In this paper, artificial neural networks for solving
multiobjective optimization problems have been
considered. The Tank-Hopfield model for linear
programming has been extended, and then the neural
model for finding Pareto-optimal solutions in the linear
multi-criterion optimization problem with continuous
decision variables has been discussed. Furthermore, the
model for solving quasi-quadratic multiobjective
optimization problems has been studied. What is more,
some models of the Hopfield neural network for solving
NP-hard combinatorial multi-criterion optimization
problems have been proposed. Finally, the family of
extended Hopfield models for finding Pareto-optimal
solutions has been developed..
Key words:
Neural networks, efficient solutions, multi-criterion optimization.

1. Introduction

A Hopfield neural network model HNN for linear
programming has been proposed by Tank and Hopfield
[14]. It can be modified for solving nonlinear optimization
problems with continues decision variables [6]. So, we can
apply the extended neural model for finding Pareto
solutions to the multiobjective optimization problems.

Besides optimization problems with continuous
decision variables, we can consider questions with binary
variables. The first neural algorithm for solving the
Traveling Salesman Problem has been proposed by Tank
and Hopfield in [14], too. Moreover, the hybrid neural
network model consisted of multiprocessor systems has
been presented for finding solutions of TSP and
successfully discovers solutions to the Hamiltonian Cycle
by Sun and Fu in [13]. Some developments of Hopfield
models for solving combinatorial optimization problems
are proposed in [9]. For some other NP-hard problems,
neural algorithms can be modified to find suboptimal
solutions [15]. For instance, graphs problems and flows
minimization problems are solved with using Hopfield
models [7].

In this paper, the extended Hopfield models for
solving some multi-criterion optimization problems are
presented. To obtain this purpose some network models
for standard constraints and objective functions are
designed, separately. Then, synaptic connections of these
networks are developed in one global network prepared
for solving the special case of multiobjective optimization
problem to obtain an efficient solution. This meta-
heuristics is rather general and gives solution that is close
to an optimum.

2. The Hopfield model of neural networks

In gradient models of HNN the neural activation states are
changed from the initial state u t u t u t u tm M

T() [(),..., (),..., ()]0 1 0 0 0=
according to the below differentiable equations [2]:

;M1,=mfor I+)(
d m

1
mm

N

n
nm

m

mm ugwu
t

du ∑
=

+−=
η

 (1)

where
M - the number of neurons,
um - the activation level of mth neuron, m M= 1, ,
ηm - the positive passive suppress coefficient for

 the neuron with the output xm ,
wnm - the synaptic weight from the neuron xn to the

 neuron xm ,
Im - the external input to the neuron xm .

Matrix of synaptic weights W is symmetric. An
important assumption, that

 wmm m= ,M= 0 1, , (2)
causes that the energy function there has no minimum in
the interior of the output space. Moreover, external inputs
and synaptic weights are constant during the process of
energy function minimization. For optimization problems
with continuous decision variables, the signals in neurons
are transformed according to the linear activation function
gm , as follows:

 ;,Mm=ux mm 1for = (3)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

194

Hopfield proposed the Liapunov function for the
differential system (1) in respect to the below formula [8]:

, d(-
2
1)(

1 0

1

11 1
∑ ∫∑∑∑
=== =

+−=
M

m
mm

x
-
mm

M

m
mmn

M

n

M

m
nm ξ)gxIxxwuE

m
ξ (4)

where

g m
− 1 - a reverse function for an activation function mg ,

mmmm xxgu == −)(1 .

3. Linear problem with continuous variables

Let the linear minimization problem be consider in the
following form:

∑
=∈

M

m
mm xc

Xx 1
min , (5)

where
xm - decision variables, Mm ,1= ,
cm - cost coefficients, Mm ,1= ,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=≥∈= ∑
=

NnbxaRxX n
M

m
mnm

M ,1,:
1

,

anm - constraint coefficients, Mmn ,1, = .
Decision variables are continuous and their

values is the same as outputs from neurons in the stable
state of the network. The objective function)(xf is
linear. Constraints are linear with lower limits.

A linear programming problem can be
transformed into the standard form with constraints
modeled as equations. Some optimization techniques can
be used for finding solutions to the problem [11]. For
instance, the SIMPLEX method or the parallel COMPLEX
method can be used for solving it. These methods are the
fundaments for preparing some techniques in nonlinear
optimization as well as multi-criterion optimization.

4. Neural model for linear optimization

Let us consider a constraint, as below:

a x bm m
m

M

n
=
∑ ≥

1
 for given n. (6)

We introduce a denotation for a positive
inequality resource:

n
M

m
mmn bxar ∑

=
−=

1
. (7)

If rn ≥ 0 , then inequality constraint is satisfied.
In the other case, inequality constraint is not satisfied.

Unfeasible solution should be punished during
network relaxation. It can be made by the following
penalty function:

Nn
bxaif

bxaifbxabxaP
n

t
n

n
t
nn

t
n

n
t
nn ,1,

00
0)(5.0)(

2
=

⎪⎩

⎪
⎨
⎧

≥−
<−−=− (8)

An energy function can be written, as follows:

E ct x Pn an
t x bn

mm

M
md m

x

n

N m
= + − +

−=
∑ ∫∑ () 1

1 01
η

ξ ξ (9)

The motion system can be obtained, as follows:
du
dt

E
x

m

m
= −

∂
∂

 (10)

Above formula gives an analogy between the
deepest descent method and Hopfield network. But, in
Hopfield network a data processing is parallel, because
each neuron plays a role of processor in computer. If
another formula is applied, then the constant Cm is used on
the left side of above formula. However, it does not
influence on the equilibrium point of motion equations [1].
From (9) and (10), we get, as below:

dum
dt

um
m

anm
Pn
rnn

N
cm= − + −

=
−∑η

∂
∂

()
1

, (11)

where
∂
∂

∂
∂

∂
∂

∂
∂

Pn
xm

Pn
rn

rn
xm

anm
Pn
rn

= = .

Because of formula (8) the partial derivatives are
given, as follows:

Nn
bxafor

bxaforbxa
r
P

n
t
n

n
t
nn

t
n

n

n ,1,
00

0)(=
⎪⎩

⎪
⎨
⎧

≥−
<−−=

∂
∂ , (12)

According to the Tank-Hopfield model for
solving linear optimization problem, above function can
be used as an activation function in constraint neurons.
This model is denoted as LTH model.

Figure 1 shows the network for solving linear
minimization problem can be presented. In this network
two groups of neurons are considered. The first one
consists of M neurons with linear activation functions.
These neurons are called decision neurons. Decision
neurons change their states according to the formula (11).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

195

The output values xm from mth neurons are sent to the
second group of N neurons with activation functions
expressed by formula (12). These neurons are called
constraint neurons and are responsible for constraint
satisfaction. Constraint neurons do not work as dynamic
decision neurons, but they give output value on inputs
force without delay. Indeed, only marked decision neurons
are Hopfield neurons.

Fig. 1. The LTH model for linear minimization.

If the associated constraint is not performed, then
the constraint neuron generates positive value proportional
to the resource non-satisfaction of its. Gradient component
of penalty function is given on the input of decision
neurons, because output -rn(x) is multiplied by the mth
constraint partial derivative anm . In this way to mth

decision neuron the term −
=
∑anm

Pn
rnn

N ∂
∂

1
 is given. This

term is the component of penalty function gradient, and
leads to the growth of rn(x) for nth unsatisfied constraint.
Constraint neurons and synaptic connections to decision
variables from constraint neurons introduce a competition
mechanism for neural networks. It transforms the
requirement of constraint satisfaction into activation level
modifications of decision neurons to satisfy all constraints.
This undirected competition mechanism tends the network
trajectory to the feasible solution set.

In decision neurons, the activation functions are
linear, because the dynamic system (11) can be written in
a simpler form, as below:

dxm
dt

xm
m

anm
Pn
rnn

N
cm= − + −

⎛

⎝
⎜

⎞

⎠
⎟

=
−∑η

∂
∂

1
, (13)

This motion system can be solved by the linear
Euler method or the first order Runge-Kutty method.

5. The extended LTH model

The considered LTH model has two disadvantages for
some problem instances. During several numerical
experiments we observe that for few cases LTH model
converges to an interior of feasible solution set X, where
an optimal solution is a vertex of a convex polyhedron.
Moreover, for the other few cases the trajectory of
network did not converge to a point from X. The amount
of failed cases was no greater than few percent, but these
disadvantages of the LTH model can be removed.

If the state x(t) is in a feasible solution set X, then
the dynamic system has a following form:

dxm
dt

xm t

m
cm m M= − − =

()
, , ,

η
1 (14)

because all constraints are satisfied and the term

−
=
∑anm

Pn
rnn

N ∂
∂

1
 is equal to 0. So, on each decision neuron

its external input Im=-cm has an influence, only. If the
trajectory x(t) is in X, then passive suppress coefficients
and costs coefficients exist, and they are such, that
network obtains an equilibrium point in X, according to
the following formula:

dxm
dt

xm t

m
cm m M= − − = =

()
, , ,

η
0 1 (15)

 and
xm mcm m M* , , ,= − =η 1 (16)

Let η η= =m m M, ,1 . Because the set X is
constrained, then there is a passive suppress coefficient
such, that

 ηc X∉ , (17)
For the given initial value of passive suppress

coefficient the above condition is tested. If it is not
satisfied, then this parameter is iterative increases until
condition (17) is performed.

Another disadvantage of the LTH model is a fact,
that for few cases the trajectory of network did not
converge to a point from X. This non feasible way of
network operating can be omitted by introducing a
minimal penalty An>0 for non-satisfaction of nth constraint,
which perform the below inequality estimation:

An
c

xrn
m M≥ −

−
∇

=η , , ,1 (18)

where |x| denotes the length of the vector x.
Let A=max{An, n=1,...,N}. Figure 2 shows the

transfer function for constraint neurons in the extended

xm

-c1 -cM -cm

-b1 -bN-bn

a11 a1m aNm
anm

x1 xM

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

196

LTH model. It is right-site continuous, and can be
expressed as follows:

Nn
bxaif

bxaifbxaA
r
P

n
t
n

n
t
nn

t
n

n

n ,1,
00

0)(=
⎪⎩

⎪
⎨
⎧

≥−
<−−+=

∂
∂ , (19)

∂Pn/∂rn

0 rn

A

Figure 2. Transfer function for constraint neurons in extended LTH
model

6. Multi-criterion linear optimization by PLNN

.
The PLNN model can be considered for solving
multiobjective optimization linear problems, where K
linear criteria F1,...,Fk,...,FK are simultaneously minimized.
The Pareto solutions, domination solutions, or
compromise solutions can be found. For aggregation of all
criteria in one global criterion the nonnegative convex
combination function can be used, as below:

min { ()}
x X

k Fk x
k

K

∈ =
∑α

1
, (20)

where α αk k K k
k

K
≥ = =

=
∑0 1 1

1
, , .

Additional constraints can be modified

α αk k K k
k

K
≥ = + ≥

=

+

∑0 1 1 1
1

1
, , , where αK+1 denotes

dummy variables. So, we consider M decision variables xm,
K unknown nonnegative convex combination coefficients
αk, and dummy variables αK+1, which are represented by
M+K+1 decision neurons with linear activation function.
Neuron xm is connected with neuron αk by synaptic
weights -0.5ckm denoting cost coefficient in kth criterion
for mth variable. Additional constraints are respected in

network by the same way as linear constraints in the
extended LTH model.

7. Multiobjective quasi-quadratic
programming by the PQNN model

The PQNN model of neural network is proposed for
solving multiobjective optimization problems, where K
criteria F1,...,Fk,...,FK are quasi-quadratic functions defined,
as follows:

Fk x xT Dk x ck
T x k K() . , , ,= − − =05 1 (21)

where Dk - MxM matrix of real numbers for function Fk .
This function is called quasi-quadratic, in

opposite to quadratic, because cmm=0 for m=1,...,M.

Figure 3 shows the scheme of the PQNN for
finding a Pareto solution. The interactive mechanism for
minimization -0.5αkxTDkx is missed [3].

Fig. 3. The PQNN model for finding Pareto solutions.

8. Some optimization problems with zero-one
decision variables

Let consider the multiobjective optimization problem
(X,F,P) for finding the Pareto-optimal solutions, which are
some allocations of program modules and processor types
in a computer network. This problem seems to be very
representative for the other combinatorial problems as it

c11 cK
ckm

-b1 -bN-bn

a11 a1m aNm an

α1

αK+1

αKαk

-1

x1 xm xM

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

197

was shown in [4]. In this problem some denotations are
used, as follows:

1) X - a feasible solutions set

X= x¸B | x= x ,...,x ,...,x x x xV+J
vi V{ (11 ij 2J

T2
11 2, ,..., ,...,) ;π π π

i=1

2
x v V x ivi ij

j

J
∑ ∑= = = =

=
1 1 1 1 2

1
, , , , , ;π }

2) F - a vector quality criterion (1)

 F : X R → 2 , F(x) = [F1(x) , F2(x)] T for x∈X

F x x
j

J

i
1

11

2
() = j ijκ π

==
∑∑ ,

F x t x x x xvi
i=v=

V

j

J

vi ij vu
i=u=

V

v=

V

vi ui2
1

2

11 1

2

11
()),= +∑∑∑ ∑∑∑

=

π τ (1-

3) P - the Pareto relation [3]

In the constraint 1
2

=1i

=∑ vix for ,Vv=1 the

following denotations are used. xvi is the decision variable,
which is equal to 1 if the program module mv is assigned
to the processing node wi. V is the number of all program
modules. Above constraint can be written in a general

form
1

Lx
M

m=
m =∑ , where xm is a typical binary variable,

and it should be satisfied for M≥L. It means that only L
variables can be equal to 1, and the other variables M-L
should have value 0. There are no preferences which
decision variables should be taken. This constraint is
related with the requirement to program modules should
be assigned or to the node w1 or to the node w2.

The general form of constraints Lx
M

m=
m =∑

1

represents several constraints of combinatorial problems.
For instance, in the Traveling Salesman Problem [14]
during L (L is the number of all cities) steps a salesman
should come through each city ci exactly ones, what can

be written as ,Lk=x
L

k=
ik 1for 1

1
=∑ , where xik is equal to 1

if the salesman in the kth step is in the city ci. The length
of the salesman travel is supposed to be equal to L steps,

and if the constraints ,Lk=x
L

k=
ik 1for 1

1

=∑ are satisfied,

then this requirement is performed, too.

Similar constraints are in the vehicle routing
problem VRP, the 0-1 knapsack problem, the set covering
problem or the standard assignment problem [8]. They can

be expressed in a general form Lx
M

m=
m =∑

1
.

The Hopfield model of artificial neural networks
(called HNN) can be used for performing above constraint
and the other sorts of constraint [10]. This time, signals in
a neuron are transformed according to an activation
function:

[] ,1 ,) tanh(1
2
1)(,Mm=uug nmmm α+= (22)

where ∝m is the gain coefficient in the mth neuron
(Mmgrm ,1 ,0 =>≥ αα).

Uniform Hopfield networks called UHNN
perform important role for satisfaction of the special class
of constraints expressed in a general form [5]. For uniform
Hopfield networks, all main parameters have the same
value for each neuron, as below:

Mmnwwnm ,1,for = ∈ ,

I I m Mm = for = ,1 ,

η ηm m M= for = ,1 ,

α αm m M= for = ,1 .
The Euler method can be used for solving the

motion equations of UHNNs. The following iterative
procedure for finding active level value in the next
moment is applied:

() ,,1= ,+)()(1)(
1

MmtItxtwtutttu
M

mn
n

nn
m

km
km ΔΔ+Δ−=Δ+ ∑

≠
=η

 (23)

In the Euler method, the integrity step length Δt
should be taken as small as possible to avoid errors related
with the approximation of differentiable equations. But, if
Δt is too small, then the iterations number should be large
to obtain the equilibrium point or saddle points.

To satisfy the considered constraint
1

Lx
M

m=
m =∑

the special case of UHNN can be used according to the
below theorem. This theorem gives values of main
parameters of UHNN such as the neurons number,
synaptic wages, and external inputs.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

198

Theorem. 1 [5]
If

MLMLxLx m

M

m
m ,...,2,1,0,},1,0{for

1
=≤∈=∑

=

,

and the uniform Hopfield network has following
parameters:

MmLI

jmMjmw

m

mj

,112

,,1,2

=−=

≠=−=
 (24)

where M is the number of neurons,
then

E(x)=h(x)
where

∑∑∑
== =

−−=
M

m
m

M

n

M

m
mn xIxxwxE

11 12
)(is a basic energy

function of this UHNN,

∑∑
==

−+−=
M

m
mm

M

m
m xxxLxh

1

2

1
)1()()(is a penalty

function for constraint.
UHNN with synaptic weights equal to -2 and

nonnegative external inputs calculated according to the
rule I=2L-1 can be called UHNN/L/M, because the pair
(L,M) is required for the designing of UHNN/L/M, only.
Signals from the other neurons are converted and their
absolute value is increased. Moreover, each neuron has its
nonnegative constant input, which forces the activation
level u*=ηI in the equilibrium point for the winner
neurons.

All cases of a network UHNN/L/M (M≤100)
were studied by numerical experiments. For generating of
initial states, the following formula was used:

,,1 ,
10

2
1-

)(0 Mm
MiM

tum =
−+

= (25)

Moreover, we assume, that α=100, Δt=0.2, and
η=1. A stop criterion kstop is the condition E tk() ≤ ε ,
where ε=0.01. For the worst case, the iteration number
Kmax(E tk() ≤ ε) for solving a general equation is equal
to 5. These experimental results confirm that neural
networks can be designed as a very efficient method for
solving some numerical problems. For the network
UHNN/L/M the neurons number M does not influence on
the increasing of Kmax(E tk() ≤ ε). For 1000 decision

variables, and L=600, Kmax(E tk() ≤ ε)=4.

9. HNN/F1/C for linear constrained
minimization

A following optimization problem is studied:

∑ ∑
= =∈

2

1 1
min

i

J

j
ijj x

Xx
πκ (26)

Two separated modified networks HANN/1/J can
be used. They satisfy the constraints

2,1,1
1

==∑
=

ix
J

j
ij
π . In these networks external inputs

are modified according to the formula

2,1,,1,)(5.12)(==Δ−+= iJjxIJxI ijij
ππ ,

where

max

)(
κ
κπ j

ijxI =Δ ,

κmax is the cost of the most expensive processor.
Above formula is related to the conclusion, that if

in UHNN/L/M one neuron has the external input greater
than the others, then this chosen neural output gets 1 in an
equilibrium point. So, this is a way for preferring neurons
related with the cheaper processors. Therefore, the
additional term decreases the external inputs when the cost
increases. If in a network UHNN/L/M all external inputs
are increased about small value, then still L neurons are
chosen in an equilibrium point. For L=0, there is I=2L-1=-
1. For L=1, there is I=1. So, according to the bounder
increasing L=0,1,2,3,4,... , there is an input increasing I=-
1,1,3,4,6,... . For the bounder L is the interval for feasible
external inputs (2L-2,2L). In this interval, the changed
external inputs should have they value. For each node
number, two separate networks UHNN/1/J are considered.

10. HNN/F2/C for quasi-quadratic
constrained minimization

If a more complex problem is considered, when the time
criterion F2(.) is minimized with respect to constraints.
This optimization problem can be transformed to the
unconstrained optimization problem. Energy functions of
neural networks designed for constraint satisfaction or
for objective function minimization can be aggregated in a
penalty function, as below:

),()()(),(
2

11
2 xExExFxE

V

Vi
ii

V

v
vv ∑∑

+

+==

++= βββ (27)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

199

where
βv, βi- penalty coefficients,
Ev- the energy function of the network UHNN/1/2 for

a satisfaction of the constraint 1
2

1=i
=∑ vix ,

Ei- the energy function of a network UHNN/1/J for

a satisfaction of the constraint ∑
=

≤
J

j
ijx

1
1π .

Figure 4 shows a network HNN/F2/C for
minimization for finding solution to the studied problem.
Penalty coefficient can be found by systematically
increasing from the initial value β0 (usually equals 1). If in
the equilibrium point one of the energy function related to
the vth constraint is greater than 0, then this constraint is
not satisfied, and its penalty parameter is increased about
Δβ (usually about 0.05). This process is stopped, if all
energy functions of constraints are equal to zero.

Fig. 4. Synaptic connections and external inputs for the neuron
x v

m
1 in HNN/F2/C

If Δβ is too large, then a feasible solution will be
found, but for smaller values the influence of a goal
function is greater than the influence of penalties functions
on the neural network trajectory. Then chances of finding
an optimal solution or a suboptimal solution are much
greater. From the other hand, smaller value of Δβ causes
the longer time of a network simulation.

11. Some experimental examples

Model HNN/F2/C was tested by several numerical
examples. Figure 5 shows the energy function trajectories
for the following optimization problem instance.

V=4, J=2, I=2,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1,12,2
2,52,1
9,84,1
3,15,2

T , τ =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.

0
5

10
15
20
25
30
35
40
45

0 2 4 6 8 10 12 14 16 18 20 22

E

F1

EC1

EC2

Kmax

Fig. 5. Minimization the energy function

The number of decision variables is
M=I(V+J)=12. Moreover, the following network
parameters are taken: α∈{100,200,300,400,500}, η=1,
Δt=0.2, ε<0.005. Model started from the initial activation
level state:

u(t0)= [10-6, 0, 10-6, 0, 10-6, 0, 10-6, 0, 10-6, 0, 10-6, 0]T.

An optimal value of the objective function
F2(x*)=7.0 was obtained for β=[2.55, 2.45, 2.25, 2.25,
7.35, 7.30]T , and for α=200 in an equilibrium point
x*=[1,0,0,1,0,1,1,0, 0,1,0,1,0,0]T.

If the penalty coefficient of a partial network is
increased, then the role of this network increases, too.
Then, signals generated by this network try to dominate
signals from the other network.

For the correct value of the penalty vector β the
optimal solution was found after 18 steps of updating
states in the neural model. Unfortunately, for each case the
right value of the penalty vector β should be sought.

12. Neural model for Pareto allocations

For finding a local efficient point of that problem we can
use the Hopfield ANN (PHANN). PHANN can represent
one Pareto-optimal solution in equilibrium point. An
energetic function for PHANN are constructed as below:

xv
m
1

xm
12 x11

π

xv
m
2

xV
m

2

x j1
π

x J1
π

-2βV+1

-τv1

-τvV

-tv1

-tvj

-tvJ

-2βv

βv

βv

βV+1

βV+1

βV+1

-2βV+1
-2βV+1

Synaptic connections from the network
HNN/F2
Synaptic connections and external inputs
from the network HNN/1/2
Synaptic connections and external inputs
from the network HNN/1/J

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

200

).()()(),(
2

111
xxExFxE

V

Vi

V

v
vv

N

n
nn ∑∑∑

+

+===
+= iiE+ ββαβ (28)

For N=2, the combination coefficients can be
systematically changed from a period (0,1). The objective
function and penalty functions can be presented by the
separate partial energetic functions. For the objective
function in non-negative convex combination method, we
get the following formula of separate energetic function:

,
2
1)(

1 1 11
∑∑ ∑∑
= = ==

−−=
M

r

M

m

M

r
r

n
rmr

n
rm

N

n
nn xIxxwxFα (29)

where
wrm

n - the synaptic weight from rth neuron to mth
neuron related with the multiplied objective
function En(x,αn)= αnFn(x)

I r
n -the external input of rth neuron related with the

multiplied objective function En(x,αn)=αnFn(x)
In the similar way, we can obtain the formulas of

partial energetic functions for the constraint satisfaction.
Hence, we have the global basic energetic function of
PHANN:

,)()(
2
1

1

2

111 1

2

11
∑ ∑∑∑∑ ∑∑
=

+

=== =

+

==

+−+−=
M

r
r

V

l

l
rl

n
r

N

n
n

M

r

M

m
mr

V

l

l
rml

N

n

n
rmn xIIxxwwE βαβα (30)

In above formula, combination coefficients are
systematically fixed from 0 to 1. If α1=1 and α2=0, then
we get a network HNN/F1/C. If α1=0 and α2=1, then we
get a network HNN/F2/C. Similarly, we can obtain the
others synaptic weights and external inputs, which are
related with the others constraints and the objective
function.

13. Concluding remarks

Numerical experiments with presented neural

models were carried out in the PC environment without
neural accelerators. It is possible to use the neural
accelerators and improve the performance of the neural
calculating. Simulations of considered neural networks
confirmed, that neural networks are competitive
techniques with standard numerical methods.

Above approach can be used for nonlinear
programming with linear constraints by a simply
modification of the LTH model. In this case the synaptic
connections between decision neurons are added. For
multiobjective optimization the PLNN model and the

PQNN model can be adapted for solving hierarchical
solutions or compromise solutions with parameter p.=1.

Moreover, neural algorithms for solving several
optimization problems of operation allocation have been
proposed. Formulas to determine values of synaptic
weights and external inputs for networks, which satisfy
basic constraints and objective functions, are presented.

The recurrent HNN for optimization can be
combined with genetic algorithms. Therefore, a hybrid
genetic-neural algorithm seems to be a very powerful tool
for solving combinatorial problems. From that reason, we
will focus on solving this problem in our future works.

References

1. S. Abe, Convergence Acceleration of the Hopfield
Neural Networks by Optimizing Integration Step Sizes,
IEEE Trans. on Systems, Man, and Cybernetics. Part
B: Cybernetics. Vol. 28, No. 1, February 1996,
pp.194-201.

2. S.V.B. Aiyer, H. Niranjan and F. Fallside, A
theoretical investigation into the performance of
Hopfield model. IEEE Tran. on Neural Networks, Vol.
1, No. 3, pp. 204-215, (1990).

3. A. Ameljañczyk, Multicriteria optimization, WAT,
Warsaw 1986.

4. J. Balicki, Negative selection with ranking procedure
in tabu-based multi-criterion evolutionary algorithm
for task assignment, Lecture Notes in Computer
Science. Vol. 3993, Springer-Verlag, Berlin
Heidelberg New York, pp. 863-870, (2006).

5. J.Balicki, Z. Kitowski and A. Stateczny, Extended
Hopfield Model of Neural Networks for
Combinatorial Multiobjective Optimization Problems.
Proceedings of 1998 IEEE World Congress on
Computational Intelligence, Anchorage, May 4-9,
1998, Vol. 2, pp. 1646-1651, (1998).

6. A. Cichocki, R. Unbehauen, „Neural networks for
solving systems of linear equations and related
problems”, IEEE Trans. on Circuits and Systems, Vol.
39, No.2 1992, pp.124-137.

7. N. Funabiki, J. Kitamichi and S. Nishikawa, An
evolutionary neural network algorithm for max cut
problems. Proceedings of the 1997 International
Conference on Neural Networks, Vol. 2, Houston,
USA, June 9-12, pp. 1260-1265, (1997).

8. D. Koznachey, A. Jagota and S. Das, Primal-target
neural net heuristics for the hypergraph K-coloring
problem. Proceedings of the 1997 International
Conference on Neural Networks, Vol. 2, Houston,
USA, June 9-12, pp. 1251-1255, (1997).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

201

9. W.E. Lillo, S. Hui and S.H. Żak, Neural networks for
constrained optimization problems. Int. J. of Circuit
Theory and Applications, Vol. 21 pp. 385-399, (1991).

10. J. Mandziuk, Pulsed noise-based stochastic
optimization with the Hopfield model. Proceedings of
the 1997 International Conference on Neural
Networks, Vol. 2, Houston, USA, June 9-12, pp.
1315-1320, (1997).

11. C.R. Reeves, Modern heuristic techniques for
combinatorial problems. McGraw-Hill Book
Company, London, (1995).

12. D.W.Tank and J.J. Hopfield, Simple "neural"
optimization networks: an A/D converter, signal
decision circuit, and linear programming circuit,
IEEE Trans. on Circuits and Systems, Vol. CAS-33,
pp. 533-541, (1986).

13. S. Salcedo-Sanz and C. Bousoño-Calzón, A hybrid
neural-genetic algorithm for the frequency
assignment problem in satellite communications,
Applied Intelligence, Vol. 22, No. 3, pp. 207-217,
(2005).

14. K.H. Sun and H.C. Fu, A hybrid neural model for
solving optimization problems. IEEE Trans. on
Computers, Vol. 42. No. 2, pp. 219-227, (1993).

15. D.W. Tank, J.J. Hopfield, Simple "neural"
optimization networks: an A/D converter, signal
decision circuit, and linear programming circuit,
IEEE Trans. on Circuits and Systems, vol. CAS-33,
pp. 533-541, May 1986.

16. J. Żurada, Introduction to artificial neural systems.
West Publishing Company, USA, (1993).

Jerzy Balicki received the
M.S. and Ph.D. degrees in
Computer Science from Warsaw
University of Technology in 1982
and 1987, respectively. During
1982-1997, he stayed in
Computer Center of High School
of Gdynia to study management
systems, mobile systems, and
decision support systems. Then,
he achieved habilitation from
Technical University of Poznan

in 2001. He was admitted as a professor at Naval University
of Gdynia in 2002.

