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Summary 
The parallel list-ranking is a difficult problem because of 
its extreme sequential property and irregularity. Given a 
linked list of n nodes, the proposed algorithm runs in O(1) 
time on the reconfigurable mesh of size nⅹn with shift 
switching. We improve the time complexity by a factor of 
O(logn/loglogn) as compared to the previous result using 
the same architecture. Our result also is improved over a 
logarithm factor in AT2 as compared to the previous 
algorithms using two dimensional processor arrays with 
reconfigurable buses. 
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1. Introduction 

The list-ranking problem has emerged as one of the 
fundamental techniques in designing parallel algorithms 
[1]. The list-ranking problem is defined as follows. We 
assume that a linked list of n nodes is given as an array 
next[] such that next(i) points to the node next to the node 
i in the list, and next(i) is nil if the node i is the last node in 
the list. Let rank(j) (0≤ j≤ n-1) be the number of nodes 
that precede a node j in the list. The list-ranking problem 
then is to find, in parallel, the rank(j) of every node j. For 
example, rank(j) (0≤ j≤ 6) is {4, 3, 1, 5, 2, 0, 6} when a 
linked list of seven nodes is given as an array next[] = {3, 
0, 4, 6, 1, 2, nil}. 

Different architectures equipped with reconfigurable 
buses have been considered in an attempt to reduce the 
communication diameter of a conventional mesh of 
processors. These include RMESH [2], RN [3], PARBS 
[4], REBSIS [5], CRAP [6], etc, and also reconfigurable 
processors for general application have been studied and 
developed [7-9]. These architectures have been used as an 
attractive and powerful computational model. Efficient 
parallel algorithms for a variety of problems such as 
fundamental data movements, sorting, selection, image 
processing, graph problems, and computational geometry 
have been proposed using this enhanced capability. 

The list-ranking problem also has been widely studied 
on a variety of architectures. The number of nodes in a 
linked list is noted as n throughout this paper. Horng has 
shown how to solve the problem in O(1) time on a three 
dimensional nⅹnⅹn PARBS [10]. Olariu et al. proposed 
algorithms that run in O(1) and O(logn/logm) time on a 
two dimensional (ne(n+1)+2)ⅹ3n RMESH, 0<e≤ 1, and 
nmⅹn RMESH, respectively [11]. Lin et al. proposed an 
algorithm that runs in O(logn/loglogn) time on an nⅹn 
REBSIS, which has a local cross-bridge switch within 
each processor [5]. Lee proposed a constant time 
algorithm on an n(logn)eⅹn(logn)e RMESH [12]. Hayashi 
et al. developed an efficient algorithm that runs in 
O(log*n) time on an nⅹn RMESH [13]. Kim et al. 
showed that the algorithm of Hayashi et al. can be 
performed at the same time on a reconfigurable mesh of 
high dimensions with O(n1+e) processors [14]. 
     It is difficult to design an efficient parallel algorithm 
for the list-ranking problem because of its extreme 
sequential property and irregularity. Even though 
processor arrays with reconfigurable buses are very 
powerful, the list-ranking problem has not yet been solved 
in constant time on a reconfigurable mesh of size nⅹn 
with the bus of width logn bits. In this paper, we consider 
an nⅹn reconfigurable mesh on which the bus is of width 
logn bits and processors have the shift switching capability 
at the bit level. This computation model is the same as 
REBSIS and CRAP proposed by Lin et al. [5] and Kao et 
al. [6] respectively. 

This paper presents an efficient parallel algorithm for 
the list-ranking problem that runs in O(1) time on the 
reconfigurable mesh of size nⅹn with shift switching.  In 
this paper, we improve the time complexity by a factor of 
O(logn/loglogn) as compared to the REBSIS algorithm of 
Lin et al. [5] using the same computational model. The 
proposed algorithm takes O(n2) in AT2 which is a 
complexity measure of VLSI algorithms [15], where A is 
the area of its layout and T is the execution time of the 
algorithm. We also improve the VLSI complexity measure 
over a logarithm factor as compared to the previous 
algorithms developed on two dimensional processor arrays 
with reconfigurable buses. 
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The remainder of this paper is organized as follows. In 
section 2, we review the architecture of a reconfigurable 
mesh with shift switching. In section 3, we describe our 
algorithm in detail, and compare our result with the 
previous results. Finally, we conclude with some final 
remarks. 

2. The computational model 

2.1 The reconfigurable mesh 

We first review the basic features of a reconfigurable 
mesh that is an attractive and powerful computational 
platform among the architectures with reconfigurable 
buses. The details on the reconfigurable mesh are shown 
in [2]. A reconfigurable mesh of size nⅹn consists of n2 
identical processors positioned on a rectangular array with 
n rows and n columns. An example of the reconfigurable 
mesh with size 4ⅹ4 is shown in Figure 1. In the figure, 
every processor has four ports denoted by N, S, E, and W. 
PE(i,j) denotes the processor in row i and column j, and 
PE(0,0) denotes the processor located at the upper 
leftmost corner. As usual, all the PE(i,j)s know their 
coordinate (i,j) within the mesh. Each processor includes 
fixed amount storages and can execute basic arithmetic 
and logic operations.  

 

 
Fig. 1. An example of a reconfigurable mesh 

 
In the architecture, the internal connections among 

four ports within each processor can be reconfigured 
during the execution of an algorithm. For example, {WE, 
NS} represents the configuration in which W port is 
connected to E port and N port is connected to S port. If 
every processor establishes its internal connection {WE, N, 
S}, all the processors in each row are connected by a 
single bus. Buses are capable of carrying the data of 
θ (logn) bits long. Each processor communicates with 
others by broadcasting data on a bus and multiple 

processors are allowed to broadcast data on the different 
buses simultaneously at any time if no collision occurs. 
The communication among processors on the same bus 
takes O(1) time. 

2.2 The reconfigurable mesh with shift switching 

Lin et al. [5] introduced the REBSIS(reconfigurable 
buses with shift switching) architecture that adds shift 
switching within each processor on a reconfigurable mesh, 
so that the processors on the same bus can shift data by 
one bit in left or right. Kao et al. [6] also introduced the 
CRAP (cross-bridge reconfigurable array of processors) 
model similar to the REBSIS. The local cross-bridge 
switch in the CRAP is the same as shift switching. Kao et 
al. and Lin et al. also referred that the local cross-bridge 
switch within each processor can be implemented with a 
little bit of overhead [5, 6].  

 

   
     Fig. 2. An example of shift switching 

 
Now, we briefly explain shift switching to be used in 

our computation. The details can be found in [5, 6]. Let Wi, 
Ei, Si, Ni be the i-th bit of ports W, E, S, N within each 
processor on the mesh, respectively, where 0≤ i≤ logn-1. 
Figure 2 shows an example of the shift switching 
regarding the configuration {WiE(i+1) • mod• logn, N, S}. In 
the figure, the i-th bit of W is connected to the 
((i+1)• mod• logn)-th bit of E, while N is disconnected 
to S.  

3. The list-ranking algorithm 

3.1 The basic operations 

This section reviews a couple of the basic results that 
will be used in designing our list-ranking algorithm. Let a 
binary sequence be b0, b1, b2, … , bn-1, and the prefix sums 
of a binary sequence be b0, b0 + b1, b0 + b1 + b2, … , b0 + 
b1 + b2 + … + bn-1. The prefix sum problem has been 
proved to be one of the fundamental techniques in 
designing parallel algorithm. The following lemma shows 
a result of the problem on a reconfigurable mesh. 

 
Lemma 1. The prefix sums of n binary sequences stored in 
one row or column of a reconfigurable mesh of size nⅹn 
can be computed in O(1) time [16]. 
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As mentioned in section 1, some parallel algorithms 

for the list-ranking problem have been proposed on 
processor arrays with reconfigurable buses. We use the 
result of Lee [12] as a basic tool, and state as follows. 

 
Lemma 2.  The list-ranking problem with n nodes can be 
solved in O(1) time on a reconfigurable mesh of size 
n(logn)eⅹn(logn)e, (0<e≤ 1) [12]. 
 

Next, let us consider a list {a0, a1, a2, … , an-1} where 
ai is either an integer between 0 and n-1 or nil. Our 
purpose rearranges a given list so that all the elements 
except nil are moved in the left side, preserving the same 
order as the list has before. For example, given a list {nil, 
2, nil, 5, 3, nil, 7} of seven elements, the rearranged list 
consists of {2, 5, 3, 7, nil, nil, nil}. We start by proving 
this in the following lemma. 

 
Lemma 3. Given a list of n elements consisting of an 
integer or nil stored in one row of a reconfigurable mesh 
of size nⅹn, the problem of rearranging all the elements 
except nil in consecutive positions can be solved in O(1) 
time. 

 
Proof.  Initially, it is assumed that each element ai in the 
list {a0, a1, a2, … , an-1} is stored in the processor PE(0,i) 
of the first row on the mesh. We copy the values stored in 
the first row to all rows by using a column bus. Every 
processor PE(i,j) (0≤ i,j≤ n-1) establishes its local 
connection {WE, N, S} if the value copied is nil, and {WN, 
SE} otherwise.  Now, using the bus configuration, each 
processor PE(0,j) (0≤ j≤ n-1) in the first row broadcasts 
its value through port N, and PE(i,0) (0≤ i≤ n-1) in the 
first column reads the value received from port W and 
stores it itself. At this time, every processor PE(i,0) 
without receiving any value sets its value to nil. Then, all 
the values other than nil are moved into consecutive 
positions from the uppermost processor of the first column.  
The values in the first column can be easily routed to the 
first row. It is easy to see that these steps can be performed 
in O(1) time. □ 

 

3.2 The algorithm 

We first outline the basic ideas of our algorithm that 
rely on prefix sums, and compute the rank of a single node 
in the list through the divide and conquer technique. The 
outline of our algorithm is shown below. We later will 
show how to implement each step in O(1) time on the 
reconfigurable mesh of size nⅹn with shift switching. 

 

Step 1. Divide the given linked list into ┌n/logn┐ sublists 
of length logn and compute separately the rank 
values of all the nodes in each sublist. 

Step 2. Construct the new linked list of length ┌n/logn┐ 

consisting of the first node of each sublist. Here, 
the first node means the node at the leftmost 
position in each sublist divided by step 1. 

Step 3. Compute the rank value of each node in the new 
linked list and then multiply each rank value by 
logn. 

Step 4. Compute the rank values of all the nodes in each 
sublist by using the rank values of the new linked 
list. 

 
For clarity, we assume that logn is an integer that is 

divisible by n. Step 1 divides the given linked list into 
┌n/logn┐ sublists, each containing logn nodes. Hence, the 
rank of each node in sublists has a value between 0 and 
logn-1. Step 2 constructs the new linked list of length 
┌n/logn┐ consisting of the first node of each sublist 
without violating an order in the given linked list. Step 3 
computes the rank values of all the nodes included in the 
new linked list by using Lemma 2 and then multiplies the 
rank value of each node by logn. Once step 3 is done, the 
rank values of all the nodes in the linked list can be 
computed. In step 4, we broadcast the rank value of the 
first node in each sublist, which is already computed in 
step 3, to all the nodes within the sublist including itself, 
and then add this value to the rank value computed in step 
1. Finally, the rank value of each node in the linked list 
exactly equals to the result of step 4. 

We now explain how each step of the above algorithm 
can be implemented in O(1) time. Initially, it is assumed 
that next(j) (0≤ j≤ n-1) is stored in the processor PE(0,j) 
of the first row on the reconfigurable mesh of size nⅹn 
with shift switching. Actually, the remaining steps except 
for step 1 are solved in O(1) time on the reconfigurable 
mesh without shift switching. We omit the details on how 
to build the bus configurations if they can be obtained by 
simple port connections. 

 
Lemma 4. Step 1 in the algorithm can be solved in O(1) 
time on the reconfigurable mesh of size nⅹ n with shift 
switching. 

 
Proof. This step divides the given linked list to ┌n/logn┐ 

sublists of length logn and computes separately the rank 
values of all the nodes within each sublist. We first 
construct the bus configuration connecting main diagonal 
processors using next(j) held in each PE(0,j) (0≤ j≤ n-1). 
Every diagonal processor PE(i,i) should be connected to 
PE(j,j) via PE(j,i), as next(i) equals to j. In order to 
establish this bus configuration, PE(0,j) (0≤ j≤ n-1) in the 
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first row broadcasts next(j) to all the processors in column 
j, and then every processor PE(i,j) (0≤ i,j≤ n-1) marks a 
'*' if its index i equals to next(j). There exists at most one 
processor having '*' mark on each row because next(j) 
(0≤ j≤ n-1) has a unique value. We can easily establish 
the bus configuration as shown in Figure 3 by using '*' 
mark in each row and column. The figure shows an 
example of the bus configuration for the given linked list 
{3, 0, 4, 6, 1, 2, nil}, starting at node 5 and ending at node 
6. The processor holding a starting node on the mesh can 
be determined as PE(k,k) without '*' mark in any row k, 
and similarly the processor holding an ending node can be 
founded as PE(r,r) without '*' mark in any column r. 
These steps take O(1) time because it requires only simple 
data movements and port configurations. 
 

  
  Fig. 3. The bus configuration of a linked list with 7 nodes 
 

Once the bus configuration is established, diagonal 
processors can be connected as a linear array with n 
processors so that the starting and ending processors are 
placed on the leftmost and rightmost position, respectively. 
In order to divide the given linked list into ┌n/logn┐ 

sublists of length logn and compute (rank(j)) mod (logn) 
of node j within each sublist, all the processors on the 
linear array establish their port connections as shift 
switching with left(incoming port) to right(outgoing port) 
pattern in bit level. Through the above local connection, a 
signal that is sent from any bit of the starting processor 
can be passed to the other processors by shifting it 
cyclically. 

Let mrank(j) be the rank value of node j to be 
computed separately in each sublist. On the linear array 
we have just described, the starting processor sends a 

signal '1' through the left most(first) bit of its left port 
assuming as if it received the signal from the preceding 
processor, and then each processor PE(j,j) sets mrank(j) to 
the bit position of its left port passing the signal. The 
mrank(j) of each node j has an integer between 0 and logn-
1 after completing the steps described above. Thus, the 
value of mrank(j) will result in the same as (rank(j)) mod 
(logn) because all the processors on this array are 
connected to the bus corresponding to the given linked list 
and the bus width is of length logn bits.  Finally, if all the 
processor PE(j,j)s with mrank(j) equal to 0 establish its 
port connection to be disconnected, the bus can be divided 
into ┌n/logn┐ subbuses. In case of an nⅹn reconfigurable 
mesh with shift switching, we can achieve the same result 
by setting the port connection of the corresponding 
diagonal processors as {W, E, N, S}. These steps clearly 
take O(1) time. □ 

 
Lemma 5. Step 2 in the algorithm can be solved in O(1) 
time on the reconfigurable mesh of size nⅹn. 
 
Proof. This step constructs the new linked list of length 
┌n/logn┐ consisting of the first node of each sublist. We 
define ┌n/logn┐ subbuses divided in the previous step as 
S0, S1, S2, … , S┌n/logn┐-1. The new linked list can be 
composed of the first processors on each subbuses that 
mean all the PE(j,j)s with mrank(j) equal to 0. Let mnext(j) 
be the node following node j in the new linked list. The 
first processor PE(j,j) on the subbus Si broadcasts its index 
j to the processors on the subbus Si-1 in parallel, and then 
the first processor PE(k,k) on the subbus Si-1 sets mnext(k) 
to the received value. At the same time, the other 
processors PE(l,l)s except the first processor on each 
subbus set mnext(l) to nil. 

Each PE(j,j) (0≤ j≤ n-1) broadcasts mrank(j) and 
mnext(j) to each PE(0,j) in the first row, and then each 
PE(0,j) (0≤ j≤ n-1) in the first row has the values as 
follows: next(j), mrank(j), mnext(j). Since mnext(j) has 
either an integer between 0 and n-1 or nil, the list of 
mnext(j)s (0≤ j≤ n-1) in the first row is the same as the list 
defined in Lemma 3. Also, there will exist at most 
┌n/logn┐ elements without nil on the list. We have to 
compact the values except nil in the first row in order to 
construct the new linked list consisting of ┌n/logn┐ nodes. 
For compaction, if mrank(j) is equal to 0, each PE(0,j) 
(0≤ j≤ n-1) in the first row stores 1 in one of its register, 
and otherwise it stores 0. After this is done, the prefix sum 
for a sequence of binary numbers in the first row is 
computed by applying Lemma 1. 

Let pre(j) be the sum of -1 and the prefix sum held in 
each PE(0,j) and mnext_t(j) be the value that will be used 
in order to adjust the position of mnext(j) according to the 
result of the prefix sum. Now each processor PE(0,j) in the 
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first row whose mrank(j) is equal to 0 sets mnext_t(pre(j)) 
to the value of pre(mnext(j)) held in PE(0,mnext(j)). Each 
processor PE(0,j) can receive the value of pre(mnext(j)) 
held in PE(0,mnext(j)) via PE(mnext(j),j) and PE(mnext(j), 
mnext(j)). No conflicts occur since mnext(j) has a unique 
value, and these steps are performed in parallel in O(1) 
time. Finally, mnext_t()s in the first row can be compacted 
consecutively from left in the first row by using Lemma 3. 
We also must route mnext_t(pre(j)) and j together as 
Lemma 3 is applied, and later the index j will be used to 
route the rank value of each node in the new linked list to 
the original position. Consequently, step 2 takes O(1) time. 
□ 

 
Lemma 6. Step 3 in the algorithm can be solved in O(1) 
time on the reconfigurable mesh of size nⅹn. 
 
Proof. This step computes the rank value of each node in 
the new linked list, and then multiplies its value by logn. 
The list-ranking problem with n nodes can be solved in 
O(1) time on an nlognⅹnlogn reconfigurable mesh by 
Lemma 2. After step 2 is completed in the algorithm, the 
new linked list is represented consecutively from leftmost 
processor in the first row, and its length has at most 
┌n/logn┐. Therefore, Lemma 2 can be directly applied on 
an nⅹn reconfigurable mesh since (n/logn)log(n/logn)ⅹ 
(n/logn)log(n/logn) < nⅹn. Let lrank(k) be the rank value 
of node k in the new linked list. Finally, each PE(0,k) 
(0≤ k≤ ┌n/logn┐-1) in the first row sets the value of 
lrank(k) to lrank(k)ⅹlogn. This step takes O(1) time by 
Lemma 2. □  

 
Lemma 7. Step 4 in the algorithm can be solved in O(1) 
time on the reconfigurable mesh of size nⅹn. 
 
Proof. This step computes the rank values of all the nodes 
in each sublist by using the rank value in the new linked 
list. First, each PE(0,k) (0≤ k≤ n-1) in the first row routes 
the value of lrank(k) computed in step 3 to PE(j,j), using 
the index j held in step 2, and then each PE(j,j) whose 
mrank(j) is equal to 0 sets rank(j) to the received value. 
Next, the first processor PE(j,j), which has mrank(j) equal 
to 0, on the subbus Si broadcasts rank(j) to all the 
processors on the subbus including itself in parallel. Every 
processor PE(k,k) except the first processor on each 
subbus sets rank(k) to the sum of mrank(k) and the 
received value, and then each PE(j,j) (0≤ j≤ n-1) routes 
rank(j) to PE(0,j). Finally, each PE(0,j) (0≤ j≤ n-1) in the 
first row has rank(j) for node j. These steps clearly take 
O(1) time. □  

 
As shown in the above lemmas, the main diagonal 

processors need the shift switching in order to solve step 1 

in O(1) time, and the remaining steps can be solved on the 
reconfigurable mesh without shift switching. Hence, we 
have the following result. 

 
Theorem 8. The list-ranking problem with n nodes can be 
solved in O(1) time on the reconfigurable mesh of size 
nⅹn with shift switching. 
 
Proof. It is obvious that this problem can be solved in 
O(1) time using Lemma 4, 5, 6, 7. □  

 

3.3 The comparison 

Now let us compare our result to the previous ones. 
First, the time complexity is improved by a factor of 
O(logn/loglogn) when we compare our result with the one 
of Lin et al. [5] used the same computation model. 

 
Table 1. The comparison in the VLSI complexity measure 

Model Size /  
 Time AT2 

REBSIS [5] nⅹn 
O(logn/loglogn) O(n2(logn/logn)2)

RMESH  [11] n1+eⅹn 
O(1) O(n2+e) 

RMESH [12] n(logn)eⅹn(logn)e 
O(1) O(n2(logn)2e) 

RMESH  [13] nⅹn 
O(log*n) O(n2(log*n)2) 

Ours nⅹn 
O(1) O(n2) 

 
Second, we consider AT2, a complexity measure of 

VLSI algorithms [15], where A is the area of its layout and 
T is the execution time of the algorithm. We also consider 
only the results using two dimensional processor arrays 
with reconfigurable bus because the VLSI complexity in 
higher dimensions is increased. The result of comparison 
is summarized in Table 1, and it is assumed that 0<e≤ 1. 
Our result takes O(n2) in AT2. However, the results of Lee 
[12] and Hayashi et al. [13] have O(n2(logn)2e) and 
O(n2(log*n)2) in AT2, respectively. Therefore, our result is 
improved by factors of O((logn)2e) and O((log*n)2) in AT2, 
respectively. 

4. Conclusions 

The list-ranking is one of the fundamental techniques in 
designing parallel algorithms. Efficient parallel algorithms 
for the list-ranking problem have been proposed using 
processor arrays with reconfigurable buses. However, to 
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the best of our knowledge, the list-ranking problem has 
not yet been solved in constant time on a reconfigurable 
mesh with two dimensions. In this paper, we proposed an 
efficient algorithm for this problem that runs in constant 
time on a reconfigurable mesh with shift switching in two 
dimensions. The time complexity of our algorithm has 
been improved as compared to the previous result using 
the same architecture. We also compared our result with 
the previous algorithms using two dimensional processor 
arrays with reconfigurable buses in the area of the VLSI 
complexity. 
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