
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

209

Manuscript received June 5, 2007

Manuscript revised June 25, 2007

An Efficient List-Ranking Algorithm on a Reconfigurable Mesh
with Shift Switching

Young-Hak Kim

Kumoh National Institute of Technology, Gumi, Korea

Summary
The parallel list-ranking is a difficult problem because of
its extreme sequential property and irregularity. Given a
linked list of n nodes, the proposed algorithm runs in O(1)
time on the reconfigurable mesh of size nⅹn with shift
switching. We improve the time complexity by a factor of
O(logn/loglogn) as compared to the previous result using
the same architecture. Our result also is improved over a
logarithm factor in AT2 as compared to the previous
algorithms using two dimensional processor arrays with
reconfigurable buses.

Key words:
List ranking, Reconfigurable mesh/bus, Shift switching

1. Introduction

The list-ranking problem has emerged as one of the
fundamental techniques in designing parallel algorithms
[1]. The list-ranking problem is defined as follows. We
assume that a linked list of n nodes is given as an array
next[] such that next(i) points to the node next to the node
i in the list, and next(i) is nil if the node i is the last node in
the list. Let rank(j) (0≤ j≤ n-1) be the number of nodes
that precede a node j in the list. The list-ranking problem
then is to find, in parallel, the rank(j) of every node j. For
example, rank(j) (0≤ j≤ 6) is {4, 3, 1, 5, 2, 0, 6} when a
linked list of seven nodes is given as an array next[] = {3,
0, 4, 6, 1, 2, nil}.

Different architectures equipped with reconfigurable
buses have been considered in an attempt to reduce the
communication diameter of a conventional mesh of
processors. These include RMESH [2], RN [3], PARBS
[4], REBSIS [5], CRAP [6], etc, and also reconfigurable
processors for general application have been studied and
developed [7-9]. These architectures have been used as an
attractive and powerful computational model. Efficient
parallel algorithms for a variety of problems such as
fundamental data movements, sorting, selection, image
processing, graph problems, and computational geometry
have been proposed using this enhanced capability.

The list-ranking problem also has been widely studied
on a variety of architectures. The number of nodes in a
linked list is noted as n throughout this paper. Horng has
shown how to solve the problem in O(1) time on a three
dimensional nⅹnⅹn PARBS [10]. Olariu et al. proposed
algorithms that run in O(1) and O(logn/logm) time on a
two dimensional (ne(n+1)+2)ⅹ3n RMESH, 0<e≤ 1, and
nmⅹn RMESH, respectively [11]. Lin et al. proposed an
algorithm that runs in O(logn/loglogn) time on an nⅹn
REBSIS, which has a local cross-bridge switch within
each processor [5]. Lee proposed a constant time
algorithm on an n(logn)eⅹn(logn)e RMESH [12]. Hayashi
et al. developed an efficient algorithm that runs in
O(log*n) time on an nⅹn RMESH [13]. Kim et al.
showed that the algorithm of Hayashi et al. can be
performed at the same time on a reconfigurable mesh of
high dimensions with O(n1+e) processors [14].
 It is difficult to design an efficient parallel algorithm
for the list-ranking problem because of its extreme
sequential property and irregularity. Even though
processor arrays with reconfigurable buses are very
powerful, the list-ranking problem has not yet been solved
in constant time on a reconfigurable mesh of size nⅹn
with the bus of width logn bits. In this paper, we consider
an nⅹn reconfigurable mesh on which the bus is of width
logn bits and processors have the shift switching capability
at the bit level. This computation model is the same as
REBSIS and CRAP proposed by Lin et al. [5] and Kao et
al. [6] respectively.

This paper presents an efficient parallel algorithm for
the list-ranking problem that runs in O(1) time on the
reconfigurable mesh of size nⅹn with shift switching. In
this paper, we improve the time complexity by a factor of
O(logn/loglogn) as compared to the REBSIS algorithm of
Lin et al. [5] using the same computational model. The
proposed algorithm takes O(n2) in AT2 which is a
complexity measure of VLSI algorithms [15], where A is
the area of its layout and T is the execution time of the
algorithm. We also improve the VLSI complexity measure
over a logarithm factor as compared to the previous
algorithms developed on two dimensional processor arrays
with reconfigurable buses.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

210

The remainder of this paper is organized as follows. In
section 2, we review the architecture of a reconfigurable
mesh with shift switching. In section 3, we describe our
algorithm in detail, and compare our result with the
previous results. Finally, we conclude with some final
remarks.

2. The computational model

2.1 The reconfigurable mesh

We first review the basic features of a reconfigurable
mesh that is an attractive and powerful computational
platform among the architectures with reconfigurable
buses. The details on the reconfigurable mesh are shown
in [2]. A reconfigurable mesh of size nⅹn consists of n2
identical processors positioned on a rectangular array with
n rows and n columns. An example of the reconfigurable
mesh with size 4ⅹ4 is shown in Figure 1. In the figure,
every processor has four ports denoted by N, S, E, and W.
PE(i,j) denotes the processor in row i and column j, and
PE(0,0) denotes the processor located at the upper
leftmost corner. As usual, all the PE(i,j)s know their
coordinate (i,j) within the mesh. Each processor includes
fixed amount storages and can execute basic arithmetic
and logic operations.

Fig. 1. An example of a reconfigurable mesh

In the architecture, the internal connections among

four ports within each processor can be reconfigured
during the execution of an algorithm. For example, {WE,
NS} represents the configuration in which W port is
connected to E port and N port is connected to S port. If
every processor establishes its internal connection {WE, N,
S}, all the processors in each row are connected by a
single bus. Buses are capable of carrying the data of
θ (logn) bits long. Each processor communicates with
others by broadcasting data on a bus and multiple

processors are allowed to broadcast data on the different
buses simultaneously at any time if no collision occurs.
The communication among processors on the same bus
takes O(1) time.

2.2 The reconfigurable mesh with shift switching

Lin et al. [5] introduced the REBSIS(reconfigurable
buses with shift switching) architecture that adds shift
switching within each processor on a reconfigurable mesh,
so that the processors on the same bus can shift data by
one bit in left or right. Kao et al. [6] also introduced the
CRAP (cross-bridge reconfigurable array of processors)
model similar to the REBSIS. The local cross-bridge
switch in the CRAP is the same as shift switching. Kao et
al. and Lin et al. also referred that the local cross-bridge
switch within each processor can be implemented with a
little bit of overhead [5, 6].

 Fig. 2. An example of shift switching

Now, we briefly explain shift switching to be used in

our computation. The details can be found in [5, 6]. Let Wi,
Ei, Si, Ni be the i-th bit of ports W, E, S, N within each
processor on the mesh, respectively, where 0≤ i≤ logn-1.
Figure 2 shows an example of the shift switching
regarding the configuration {WiE(i+1) • mod• logn, N, S}. In
the figure, the i-th bit of W is connected to the
((i+1)• mod• logn)-th bit of E, while N is disconnected
to S.

3. The list-ranking algorithm

3.1 The basic operations

This section reviews a couple of the basic results that
will be used in designing our list-ranking algorithm. Let a
binary sequence be b0, b1, b2, … , bn-1, and the prefix sums
of a binary sequence be b0, b0 + b1, b0 + b1 + b2, … , b0 +
b1 + b2 + … + bn-1. The prefix sum problem has been
proved to be one of the fundamental techniques in
designing parallel algorithm. The following lemma shows
a result of the problem on a reconfigurable mesh.

Lemma 1. The prefix sums of n binary sequences stored in
one row or column of a reconfigurable mesh of size nⅹn
can be computed in O(1) time [16].

0 1 2 3

0

1

2

3

i

j

W

S

N

E

… …… …

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

211

As mentioned in section 1, some parallel algorithms

for the list-ranking problem have been proposed on
processor arrays with reconfigurable buses. We use the
result of Lee [12] as a basic tool, and state as follows.

Lemma 2. The list-ranking problem with n nodes can be
solved in O(1) time on a reconfigurable mesh of size
n(logn)eⅹn(logn)e, (0<e≤ 1) [12].

Next, let us consider a list {a0, a1, a2, … , an-1} where
ai is either an integer between 0 and n-1 or nil. Our
purpose rearranges a given list so that all the elements
except nil are moved in the left side, preserving the same
order as the list has before. For example, given a list {nil,
2, nil, 5, 3, nil, 7} of seven elements, the rearranged list
consists of {2, 5, 3, 7, nil, nil, nil}. We start by proving
this in the following lemma.

Lemma 3. Given a list of n elements consisting of an
integer or nil stored in one row of a reconfigurable mesh
of size nⅹn, the problem of rearranging all the elements
except nil in consecutive positions can be solved in O(1)
time.

Proof. Initially, it is assumed that each element ai in the
list {a0, a1, a2, … , an-1} is stored in the processor PE(0,i)
of the first row on the mesh. We copy the values stored in
the first row to all rows by using a column bus. Every
processor PE(i,j) (0≤ i,j≤ n-1) establishes its local
connection {WE, N, S} if the value copied is nil, and {WN,
SE} otherwise. Now, using the bus configuration, each
processor PE(0,j) (0≤ j≤ n-1) in the first row broadcasts
its value through port N, and PE(i,0) (0≤ i≤ n-1) in the
first column reads the value received from port W and
stores it itself. At this time, every processor PE(i,0)
without receiving any value sets its value to nil. Then, all
the values other than nil are moved into consecutive
positions from the uppermost processor of the first column.
The values in the first column can be easily routed to the
first row. It is easy to see that these steps can be performed
in O(1) time. □

3.2 The algorithm

We first outline the basic ideas of our algorithm that
rely on prefix sums, and compute the rank of a single node
in the list through the divide and conquer technique. The
outline of our algorithm is shown below. We later will
show how to implement each step in O(1) time on the
reconfigurable mesh of size nⅹn with shift switching.

Step 1. Divide the given linked list into ┌n/logn┐ sublists
of length logn and compute separately the rank
values of all the nodes in each sublist.

Step 2. Construct the new linked list of length ┌n/logn┐

consisting of the first node of each sublist. Here,
the first node means the node at the leftmost
position in each sublist divided by step 1.

Step 3. Compute the rank value of each node in the new
linked list and then multiply each rank value by
logn.

Step 4. Compute the rank values of all the nodes in each
sublist by using the rank values of the new linked
list.

For clarity, we assume that logn is an integer that is

divisible by n. Step 1 divides the given linked list into
┌n/logn┐ sublists, each containing logn nodes. Hence, the
rank of each node in sublists has a value between 0 and
logn-1. Step 2 constructs the new linked list of length
┌n/logn┐ consisting of the first node of each sublist
without violating an order in the given linked list. Step 3
computes the rank values of all the nodes included in the
new linked list by using Lemma 2 and then multiplies the
rank value of each node by logn. Once step 3 is done, the
rank values of all the nodes in the linked list can be
computed. In step 4, we broadcast the rank value of the
first node in each sublist, which is already computed in
step 3, to all the nodes within the sublist including itself,
and then add this value to the rank value computed in step
1. Finally, the rank value of each node in the linked list
exactly equals to the result of step 4.

We now explain how each step of the above algorithm
can be implemented in O(1) time. Initially, it is assumed
that next(j) (0≤ j≤ n-1) is stored in the processor PE(0,j)
of the first row on the reconfigurable mesh of size nⅹn
with shift switching. Actually, the remaining steps except
for step 1 are solved in O(1) time on the reconfigurable
mesh without shift switching. We omit the details on how
to build the bus configurations if they can be obtained by
simple port connections.

Lemma 4. Step 1 in the algorithm can be solved in O(1)
time on the reconfigurable mesh of size nⅹ n with shift
switching.

Proof. This step divides the given linked list to ┌n/logn┐

sublists of length logn and computes separately the rank
values of all the nodes within each sublist. We first
construct the bus configuration connecting main diagonal
processors using next(j) held in each PE(0,j) (0≤ j≤ n-1).
Every diagonal processor PE(i,i) should be connected to
PE(j,j) via PE(j,i), as next(i) equals to j. In order to
establish this bus configuration, PE(0,j) (0≤ j≤ n-1) in the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

212

first row broadcasts next(j) to all the processors in column
j, and then every processor PE(i,j) (0≤ i,j≤ n-1) marks a
'*' if its index i equals to next(j). There exists at most one
processor having '*' mark on each row because next(j)
(0≤ j≤ n-1) has a unique value. We can easily establish
the bus configuration as shown in Figure 3 by using '*'
mark in each row and column. The figure shows an
example of the bus configuration for the given linked list
{3, 0, 4, 6, 1, 2, nil}, starting at node 5 and ending at node
6. The processor holding a starting node on the mesh can
be determined as PE(k,k) without '*' mark in any row k,
and similarly the processor holding an ending node can be
founded as PE(r,r) without '*' mark in any column r.
These steps take O(1) time because it requires only simple
data movements and port configurations.

 Fig. 3. The bus configuration of a linked list with 7 nodes

Once the bus configuration is established, diagonal
processors can be connected as a linear array with n
processors so that the starting and ending processors are
placed on the leftmost and rightmost position, respectively.
In order to divide the given linked list into ┌n/logn┐

sublists of length logn and compute (rank(j)) mod (logn)
of node j within each sublist, all the processors on the
linear array establish their port connections as shift
switching with left(incoming port) to right(outgoing port)
pattern in bit level. Through the above local connection, a
signal that is sent from any bit of the starting processor
can be passed to the other processors by shifting it
cyclically.

Let mrank(j) be the rank value of node j to be
computed separately in each sublist. On the linear array
we have just described, the starting processor sends a

signal '1' through the left most(first) bit of its left port
assuming as if it received the signal from the preceding
processor, and then each processor PE(j,j) sets mrank(j) to
the bit position of its left port passing the signal. The
mrank(j) of each node j has an integer between 0 and logn-
1 after completing the steps described above. Thus, the
value of mrank(j) will result in the same as (rank(j)) mod
(logn) because all the processors on this array are
connected to the bus corresponding to the given linked list
and the bus width is of length logn bits. Finally, if all the
processor PE(j,j)s with mrank(j) equal to 0 establish its
port connection to be disconnected, the bus can be divided
into ┌n/logn┐ subbuses. In case of an nⅹn reconfigurable
mesh with shift switching, we can achieve the same result
by setting the port connection of the corresponding
diagonal processors as {W, E, N, S}. These steps clearly
take O(1) time. □

Lemma 5. Step 2 in the algorithm can be solved in O(1)
time on the reconfigurable mesh of size nⅹn.

Proof. This step constructs the new linked list of length
┌n/logn┐ consisting of the first node of each sublist. We
define ┌n/logn┐ subbuses divided in the previous step as
S0, S1, S2, … , S┌n/logn┐-1. The new linked list can be
composed of the first processors on each subbuses that
mean all the PE(j,j)s with mrank(j) equal to 0. Let mnext(j)
be the node following node j in the new linked list. The
first processor PE(j,j) on the subbus Si broadcasts its index
j to the processors on the subbus Si-1 in parallel, and then
the first processor PE(k,k) on the subbus Si-1 sets mnext(k)
to the received value. At the same time, the other
processors PE(l,l)s except the first processor on each
subbus set mnext(l) to nil.

Each PE(j,j) (0≤ j≤ n-1) broadcasts mrank(j) and
mnext(j) to each PE(0,j) in the first row, and then each
PE(0,j) (0≤ j≤ n-1) in the first row has the values as
follows: next(j), mrank(j), mnext(j). Since mnext(j) has
either an integer between 0 and n-1 or nil, the list of
mnext(j)s (0≤ j≤ n-1) in the first row is the same as the list
defined in Lemma 3. Also, there will exist at most
┌n/logn┐ elements without nil on the list. We have to
compact the values except nil in the first row in order to
construct the new linked list consisting of ┌n/logn┐ nodes.
For compaction, if mrank(j) is equal to 0, each PE(0,j)
(0≤ j≤ n-1) in the first row stores 1 in one of its register,
and otherwise it stores 0. After this is done, the prefix sum
for a sequence of binary numbers in the first row is
computed by applying Lemma 1.

Let pre(j) be the sum of -1 and the prefix sum held in
each PE(0,j) and mnext_t(j) be the value that will be used
in order to adjust the position of mnext(j) according to the
result of the prefix sum. Now each processor PE(0,j) in the

1

2

4

3

0 3 4 6 1 2 ni

1 0 2 3 4 5 6

0

5

6

i

j

Next(j

*

*

*

*

*

*

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

213

first row whose mrank(j) is equal to 0 sets mnext_t(pre(j))
to the value of pre(mnext(j)) held in PE(0,mnext(j)). Each
processor PE(0,j) can receive the value of pre(mnext(j))
held in PE(0,mnext(j)) via PE(mnext(j),j) and PE(mnext(j),
mnext(j)). No conflicts occur since mnext(j) has a unique
value, and these steps are performed in parallel in O(1)
time. Finally, mnext_t()s in the first row can be compacted
consecutively from left in the first row by using Lemma 3.
We also must route mnext_t(pre(j)) and j together as
Lemma 3 is applied, and later the index j will be used to
route the rank value of each node in the new linked list to
the original position. Consequently, step 2 takes O(1) time.
□

Lemma 6. Step 3 in the algorithm can be solved in O(1)
time on the reconfigurable mesh of size nⅹn.

Proof. This step computes the rank value of each node in
the new linked list, and then multiplies its value by logn.
The list-ranking problem with n nodes can be solved in
O(1) time on an nlognⅹnlogn reconfigurable mesh by
Lemma 2. After step 2 is completed in the algorithm, the
new linked list is represented consecutively from leftmost
processor in the first row, and its length has at most
┌n/logn┐. Therefore, Lemma 2 can be directly applied on
an nⅹn reconfigurable mesh since (n/logn)log(n/logn)ⅹ
(n/logn)log(n/logn) < nⅹn. Let lrank(k) be the rank value
of node k in the new linked list. Finally, each PE(0,k)
(0≤ k≤ ┌n/logn┐-1) in the first row sets the value of
lrank(k) to lrank(k)ⅹlogn. This step takes O(1) time by
Lemma 2. □

Lemma 7. Step 4 in the algorithm can be solved in O(1)
time on the reconfigurable mesh of size nⅹn.

Proof. This step computes the rank values of all the nodes
in each sublist by using the rank value in the new linked
list. First, each PE(0,k) (0≤ k≤ n-1) in the first row routes
the value of lrank(k) computed in step 3 to PE(j,j), using
the index j held in step 2, and then each PE(j,j) whose
mrank(j) is equal to 0 sets rank(j) to the received value.
Next, the first processor PE(j,j), which has mrank(j) equal
to 0, on the subbus Si broadcasts rank(j) to all the
processors on the subbus including itself in parallel. Every
processor PE(k,k) except the first processor on each
subbus sets rank(k) to the sum of mrank(k) and the
received value, and then each PE(j,j) (0≤ j≤ n-1) routes
rank(j) to PE(0,j). Finally, each PE(0,j) (0≤ j≤ n-1) in the
first row has rank(j) for node j. These steps clearly take
O(1) time. □

As shown in the above lemmas, the main diagonal

processors need the shift switching in order to solve step 1

in O(1) time, and the remaining steps can be solved on the
reconfigurable mesh without shift switching. Hence, we
have the following result.

Theorem 8. The list-ranking problem with n nodes can be
solved in O(1) time on the reconfigurable mesh of size
nⅹn with shift switching.

Proof. It is obvious that this problem can be solved in
O(1) time using Lemma 4, 5, 6, 7. □

3.3 The comparison

Now let us compare our result to the previous ones.
First, the time complexity is improved by a factor of
O(logn/loglogn) when we compare our result with the one
of Lin et al. [5] used the same computation model.

Table 1. The comparison in the VLSI complexity measure

Model Size /
 Time AT2

REBSIS [5] nⅹn
O(logn/loglogn) O(n2(logn/logn)2)

RMESH [11] n1+eⅹn
O(1) O(n2+e)

RMESH [12] n(logn)eⅹn(logn)e
O(1) O(n2(logn)2e)

RMESH [13] nⅹn
O(log*n) O(n2(log*n)2)

Ours nⅹn
O(1) O(n2)

Second, we consider AT2, a complexity measure of

VLSI algorithms [15], where A is the area of its layout and
T is the execution time of the algorithm. We also consider
only the results using two dimensional processor arrays
with reconfigurable bus because the VLSI complexity in
higher dimensions is increased. The result of comparison
is summarized in Table 1, and it is assumed that 0<e≤ 1.
Our result takes O(n2) in AT2. However, the results of Lee
[12] and Hayashi et al. [13] have O(n2(logn)2e) and
O(n2(log*n)2) in AT2, respectively. Therefore, our result is
improved by factors of O((logn)2e) and O((log*n)2) in AT2,
respectively.

4. Conclusions

The list-ranking is one of the fundamental techniques in
designing parallel algorithms. Efficient parallel algorithms
for the list-ranking problem have been proposed using
processor arrays with reconfigurable buses. However, to

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.6, June 2007

214

the best of our knowledge, the list-ranking problem has
not yet been solved in constant time on a reconfigurable
mesh with two dimensions. In this paper, we proposed an
efficient algorithm for this problem that runs in constant
time on a reconfigurable mesh with shift switching in two
dimensions. The time complexity of our algorithm has
been improved as compared to the previous result using
the same architecture. We also compared our result with
the previous algorithms using two dimensional processor
arrays with reconfigurable buses in the area of the VLSI
complexity.

Acknowledgements

The work was partly supported by the Kumoh National
Institute of Technology in 2006.

References
[1] J. JaJa, An introduction to parallel algorithms,

Addison-Wesley Publishing Company, 1992.

[2] R. Miller, V. K. Prasanna-Kumar, D. Reisis, and Q. F.
Stout, “Parallel computations on reconfigurable
meshes,” IEEE Trans. Comput., vol. 42, no. 6, pp.
678-692, Jun. 1994.

[3] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A.
Schuster, “The power of reconfiguration,” J. Parallel
Distribut. Comput., vol. 13, no. 2, pp. 139-153, 1991.

[4] B. F. Wang and G. H. Chen, “Constant time
algorithms for the transitive closure and some related
graph problems on processor array with
reconfigurable bus systems,” IEEE Trans. Parallel
Distribut. Systems, vol. 1, no. 4, pp. 500-507, Oct.
1990.

[5] R. Lin and S. Olariu, “Reconfigurable buses with shift
switching: concepts and applications,” IEEE Trans.
Parallel Distribut. Systems, vol. 6, no. 1, pp. 93-104,
Jan. 1995.

[6] T. W. Kao, S. J. Horng, Y. L. Wang, and H. R. Tsai,
“Designing efficient parallel algorithms on a CRAP,”
IEEE Trans. Parallel Distribut. Systems, vol. 6, no. 5,
pp. 554-560, May. 1995.

[7] A. Niyonkuru and H. Zeidler, “Designing a runtime
reconfigurable processor for general purpose
applications,” 18th International Parallel and
Distributed Processing Symposium, pp. 143b, 2004.

[8] M. Okada, T. Hiramatsu, H. Nakajima, M. Ozone, K.
Hirase, and S. Kimura, “A reconfigurable processor
based on ALU array architecture with limitation on
the interconnection,” 19th International Parallel and
Distributed Processing Symposium, pp. 152a, 2005.

[9] B. Veale, J. Antonio, and M. Tull, “Configuration
steering for a reconfigurable superscalar processor,”
19th International Parallel and Distributed Processing
Symposium, pp. 152b, 2006.

[10] S. J. Horng, “Constant time algorithms for
summation and graph problems on a reconfigurable
array of processors,” Technical Report, ATT Bell
Lab., 1991.

[11] S. Olariu, J. L. Schwing, and J. Zhang, “Fundamental
algorithms on reconfigurable meshes,” Proc. 29th
Annual Allerton Conf. on Comm., Control and
Comput., pp. 811-820, 1991.

[12] K. U. Lee, A study on constant time algorithms for
evaluating set manipulation operation sequences and
list-ranking on a reconfigurable mesh, Ph.D
dissertation, Sogang University, 1997.

[13] T. Hayashi, K. Nakano, and S. Olariu, “Efficient list
ranking on the reconfigurable mesh with
applications,” Proc. 7th International Symposium on
Algorithms and Computation, pp. 326-335, Dec. 1996.

[14] S. Kim and K. Park, “Efficient list ranking algorithms
on reconfigurable mesh,” 6th International Computing
and Combinatorics Conference, Lecture Notes in
Computer Science Vol.1858, Springer, pp. 262-271,
2000.

[15] J. D. Ullman, Computational aspects of VLSI,
Computer Science Press, 1984.

[16] S. Olariu, J. L. Schwing, and J. Zhang, “Applications
of reconfigurable meshes to constant-time
computations,” Parallel Computing 19, pp. 229-237,
1993.

 Young-Hak Kim received the
M.S. and Ph.D. degrees in
Computer Engineering from
Sogang University in 1989 and
1997, respectively. He is currently
an associate professor in the
school of computer and software
engineering at Kumoh National
Institute of Technology, Gumi,
Korea. He was a visiting scholar
in the school of electrical and
computer engineering at Georgia

Institute of Technology. His research interests include parallel
algorithm, parallel processing, and embedded system.

