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Summary 
The histogram equalization (HE) method is widely used for 
image contrast enhancement. While it can enhance the overall 
contrast, the inherent dependence of its transformation 
function on the global content of the image limits its ability to 
enhance local details at the same time. Furthermore, using the 
method to reform the image histogram into a uniform one 
usually results in a significant change in the image brightness 
and saturation artifacts, specifically in low contrast images. 
One extension for HE is the local histogram equalization 
(LHE) method that processes the image on block-by-block 
basis and uses the transformation function of HE for that block 
to modify its center pixel. Although the LHE method can 
enhance image details, it often causes unacceptable and 
unnatural image modification due to noise amplification, 
especially in smooth regions. In this paper, we propose a new 
local enhancement method referred as Automatic Local 
Histogram Specification (ALHS). The ALHS method is applied 
locally such that for each pixel in the image a 
neighborhood/block of specific size is defined with that pixel 
being at the center of the block. Next, the ALHS method 
modifies the graylevel value of this central pixel by specifying 
an output histogram and applying the histogram matching 
algorithm. The core idea of the ALHS method is specifying the 
best output histogram for the block associated with each pixel. 
To specify the output histogram, a minimization problem for a 
functional with a constraint that preserves the mean brightness 
of that block is solved. The specified histogram in the ALHS 
method provides the maximum graylevel stretching and 
preserves the mean brightness of the block. This is reflected on 
the processed image by the enhancement of its contrast, 
preservation of its outlook, and minimum introduction of noise 
and overenhancement artifacts. The ALHS method is fully 
automatic and provides an analytic solution for the output 
histogram as a function of the mean brightness of the block. 
Our experimental evaluation on a set of benchmark images 
involved the use of two quantitative measures and visual 
assessment. The evaluation results show that the ALHS method 
outperforms both the HE and LHE methods. 
Key words: 
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1. Introduction 

The purpose of image contrast enhancement methods is 
to increase image visibility and details. Numerous 

enhancement methods have been proposed in the 
literature. This primarily includes: histogram processing 
methods [1]–[11], graylevel compression and stretching 
using exponentials and polynomials [1,2,12], spatial 
statistical filtering [13,14,15], and frequency domain 
processing techniques [16,17]. The enhancement 
efficiency, computational requirements, noise 
amplification, user intervention, and application 
suitability are the common factors to be considered when 
choosing from these different methods for specific image 
processing application. The histogram equalization (HE) 
method is probably one of the most known contrast 
enhancement methods for graylevel images due to its 
simplicity and effectiveness [1]-[4]. In principle, the 
histogram equalization method increases the contrast of 
the image by transforming its histogram into a uniform 
one that spans the full graylevel range. This is based on 
the assumption that for maximum transfer of information, 
the perceived distribution (histogram) of graylevels in an 
image should be uniform. It can be easily shown that the 
for discrete 8-bit grayscale images, the HE method 
achieves this by using the transformation function  

 [0, 255]
r

i

w=0

s = T(r)  = 255 h (w) dw = 255 CDF (r) , r × × ∈∑     (1)  

which is simply the cumulative distribution function 
CDF(r) of the normalized original image histogram hi(r) 
[1,2].  

Despite the simplicity and the implied definition of 
the transformation function in the histogram equalization 
method, there are some problems associated with it.  
First, the histogram equalization method results in a 
significant change of the mean brightness of the image. 
This is because the histogram equalization method 
reforms the original image histogram into a uniform 
distribution which has a mean at the middle of the 
graylevel range regardless of the original mean 
brightness value. Consequently, this may distort the 
original image outlook, especially for low contrast 
images. Second, the HE method may result in 
overenhancement and saturation artifacts due to the 
stretching of the graylevels over the full graylevel range. 
Third, the HE transformation function is capable of 
improving the global contrast of the image and may or 
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may not increase the local contrast since it is based on 
the global content of the image. The problem of mean 
brightness change in the histogram equalization method 
has been addressed in [6]-[10]. Generally, these methods 
operate by dividing the graylevel range into two or more 
sections using some threshold values, and then they 
equalize each section independently using the histogram 
equalization method. Although they are proven to 
preserve the mean brightness to some extent, they are 
applied globally and they are still based on the original 
histogram equalization method, which means they may 
produce overenhancement and saturation artifacts within 
each graylevel section. To extend the method of 
histogram equalization for local enhancement, adaptive 
or local histogram equalization (LHE) was proposed 
[4,11,18]. In the LHE method, each pixel in the image is 
modified by initially defining a rectangular block of 
specific size in its neighborhood, such that the pixel is at 
the center of the block. Afterwards, the HE 
transformation function of that block is used to change 
the center pixel. This operation is repeated for all the 
pixels in the image by moving the center of the block. 
This extension of histogram equalization allows each 
pixel to adapt to its neighborhood, so that high contrast 
can be obtained for all locations in the image. However, 
the LHE method usually results in an unnatural 
modification in the processed image due to excessive 
noise amplification, especially in smooth regions. Also, 
the LHE method produces edge artifacts at sharp 
boundary points where the local transformation changes 
abruptly due to rapid change of the local histogram [19]. 
This is because the LHE method is only the local 
extension of the HE method, thus it inherits its 
overenhancement and saturation problems that mainly 
result from the absence of a limit on the amount of 
stretching of the graylevel values.  

The histogram matching (HM) is another method for 
contrast enhancement. In this approach, the contrast of 
the original image is modified by specifying the 
histogram of the desired image. Actually, the histogram 
equalization method can be viewed as a special case of 
histogram matching with the desired histogram being the 
uniform distribution. After the specification of the 
desired histogram, the original histogram is transformed 
to the desired one using the approach detailed in [1,2]. In 
this approach, each input graylevel r is mapped to the 
output graylevel s such that the difference between the 
corresponding values of the input and output cumulative 
distribution functions is minimized. In other words, for 
each  r we are looking to find a s such that    

[0, L]s = arg min  T(r)  -  G(s)  s  ∈       (2)  

where T(r) and G(s) are the cumulative distribution 
functions of the input and desired histograms, 
respectively, and L is the maximum available graylevel. 

Histogram matching is a powerful technique but with 
one major inherent issue; how to define the desired 
histogram? This is usually application dependent and 
requires user involvement which renders the HM method 
inefficient for automatic contrast enhancement. 

In this paper we propose a new method; Automatic 
Local Histogram Specification (ALHS), that 
automatically provides the optimal contrast enhancement 
with minimal distortion in the image appearance. 
Basically, the ALHE method is applied locally just like 
the LHE method. However, to modify the pixel at the 
center of the block, a desired output histogram for that 
block is specified then the histogram matching algorithm 
(HM) [1,2] is used to find the new value of the pixel. 
The core idea in the ALHS method is the specification of 
the desired histogram for each block. The ALHS method 
automatically defines this histogram such that it is the 
closest to the uniform distribution as in the HE method, 
and at the same time has a mean brightness with 
minimum deviation from the mean brightness of the 
original block. These requirements are formulated into a 
mathematical optimization problem whose solution 
specifies the desired histogram in an analytic expression 
that is a function of the block original mean brightness. 
The rationale behind this approach is that preserving the 
mean brightness of the block when modifying central 
pixels enhances the image contrast, preserves its global 
outlook, and minimizes the introduction of noise and 
overenhancement artifacts The ALHS method was 
compared to the HE and LHE methods by processing a 
set of benchmark images and using visual assessment 
and two quantitative measures. The evaluation results 
proved the ALHS method to be better than the HE and 
LHE methods.  

The rest of this paper is organized as follows. In 
Section 2, we study the formulation of the objective 
function in the ALHS method and its solution. Section 3 
presents some experimental results and section 4 
concludes the paper. 

2. The ALHS Method 

The enhancement of image quality is tricky in the sense 
that it should require minimum user involvement and 
improve the image details without modifying its outlook 
and introducing artifacts. According to the discussion in 
the introduction section, this is not achievable using the 
HE or HM methods separately. However, it sounds 
intuitive to use the principles from both methods to 
design a proper enhancement method. This is the basic 
idea for our method, the Automatic Local Histogram 
Specification (ALHS), where we first exploit the idea of 
the histogram equalization method to automatically 
specify the desired block histogram hd(s) that would 
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preserve the block original mean at each pixel in the 
image, and then we apply the histogram matching to 
perform the required graylevel transformation. In the 
following two subsections we will discuss the details of 
the ALHS method.  

2.1 Specifying the Desired Block Histogram hd(s) 

The specified histogram for the image blocks should 
have comparable enhancement capabilities as the HE and 
LHE methods and at the same time preserves the visual 
quality of the original image.  Accordingly, we propose 
that the desired block histogram should be as close as 
possible to the uniform distribution but with mean value 
that is equal to block original mean. We claim that this 
approach will result in a histogram that is able to limit 
the amount of graylevel stretching, thus it will able to 
reduce the overenhancement artifacts and noise 
amplification while enhancing the image contrast and 
details. Mathematically, let’s assume that the input and 
output graylevels, r and s, respectively, can be 
represented as continuous random variables that have 
been normalized, i.e. 0 ≤ r ,s ≤ 1. Then, the desired block 
histogram should have the following properties: (i) the 
mean or the expected value of the desired block 
histogram µd is equal the original block mean brightness 
µo, that is   

1
d d o 0

 μ s h (s) ds = μ= ∫                       (3) 

(ii) The total difference between the desired block 
histogram hd(s) and the uniform distribution  

[0,1] uh  (s)  = 1  ,  s  ∀ ∈            (4)  
is minimum. In other words, the expression   

1  2
d  u0

 (h (s)  h  (s))  ds−∫                        (5)  

should be minimized. (iii) The desired block histogram 
should satisfy the two basic properties of the probability 
density functions, which are  

[0,1]dh (s)  0 ,  s  ≥ ∀ ∈            (6) 
1

d0
h (s) ds =  1 ∫                          (7) 

Accordingly, we formulate the following objective 
function  

1 2
d d  u0

1 1
1 d  2 d o0 0

J(h (s)) = (h (s) - h (s))  ds  +

 λ h (s) ds - 1 + λ s h (s) ds - μ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫

∫ ∫
       (8)  

with λ1 and λ2 being the Lagrange multipliers associated 
with the constraints in (7) and (3), respectively. The 
optimal desired block histogram hd(s) is the one that 
minimizes the functional J(hd(s)) defined in (8). This can 
be solved directly using the calculus of variations; 

however, the global point-wise inequality constraint in 
(6) makes the direct use of the Euler-Lagrange multiplier 
theorem inapplicable. Instead, we have to use the 
principle of the slack functions [21], which starts by 
finding the optimal solution of the objective function 
without considering the inequality constraint, and then it 
checks if this solution satisfies that constraint. If this is 
the case, then no further actions are required and the 
solution represents the desired block histogram that we 
are looking for. On the other hand, if the inequality 
constraint is not satisfied by the given solution, a special 
procedure is followed to define a composite extremum 
curve consisting of pieces of arcs along which the usual 
Euler-Lagrange equation holds and pieces of arcs along 
which the inequality constraint holds. Based on this, let’s 
first ignore the inequality constraint and use the calculus 
of variations and the Euler-Lagrange equation  

h 'hd d

dJ  - ( J ) 0
dr

=                             (9) 

to minimize the functional in (8). The term 
hd

J  is the 

partial derivative of J with respect to hd. Similarly, 'hd
J  

is the partial derivative of J with respect to the first 
derivative of hd. Accordingly, we obtain the general 
solution for hd(s) to be  

[0,1]d 1 2h ( s ) = 1 - 0.5( s ) , s  − ∈λ λ             (10) 
Next, applying the constraints in (3) and (7) to (10), we 
can find the values for λ1 and λ2 and define the desired 
block histogram as  

[0,1]d oh ( s ) = 1 + 6( 0.5)(2s-1) , s  − ∈μ        (11) 
Next, we have to check if this expression is positive, i.e. 
satisfies the inequality in (6), over the full graylevel 
range [0,1] and for all possible values of original block 
mean brightness µo. This can be done easily by some 
mathematical manipulation where we solve for the 
values of µo that would make (10) less than zero. 
Unfortunately, this manipulation reveals that the 
specified histogram in (10) violates the inequality in (6) 
when the original block mean µo is in the range of (0,1/3) 
or (2/3,1). Let’s refer to these two cases as Case 1 and 
Case 3, respectively. On the other hand, when µo falls in 
the interval [1/3,2/3] (call it Case 2), the solution for the 
desired histogram is always positive in the range [0,1], 
thus the inequality is not violated. Figure 1 demonstrates 
how part of the desired block histogram is negative for 
Case 1 and Case 3, but it is not for Case 2.  
Consequently, we have to find the solution for Case 1 
and Case 3 as a composite curve that would clip the 
negative portion of the desired histogram to zero. Based 
on Figure 1, the composite desired histogram in Case 1 
will be defined as defined as  
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d
1

 h (s)  , 0 s
y (s) =  

 0       , s  
≤ ≤⎧

⎨ ≥⎩

δ
δ

                  (12) 

Similarly, the desired histogram in Case 2 is given by 

2
d

 0       , 0 s
y (s) =  

 h (s)  , s  
≤ ≤⎧

⎨ ≥⎩

θ
θ

                   (13)  

with δ and θ being the cutoff point between the two 
portions of the composite curves. The values of these 
two constants will be found based on the constraints in 
(3) and (7) once the solution is found. Now, according to 
the Lagrange multiplier theorem, at least the following 
condition  

d d i i d d
i

J(h (s), h (s)) = K ( h (s), h (s))δ λ δ∑       (14)  

has to be satisfied for an extremum to exist, with δJ and 
δKi are the variations for the functional J and the ith 

constraint Ki, respectively. So, we can now solve for the 
desired block histogram in Case 1 and Case 3 separately 
by plugging the definitions of the composite histograms 
for Case 1 and Case 3 in (14) and using the definition of 
the variation  

d d d d
0

dF(h (s), h (s)) = F(h (s), h (s)) 
d =ε

δ ε
ε

  (15)  

for any functional F. Accordingly, the general shape of 
the desired block histogram in both cases will be  

2 )d 1h (s) = 1 + 0.5( s+λ λ                     (16)  
over the interval [0,δ] and [θ,1] in Case 1 and Case 3, 
respectively. Next, if apply the constraints in (3) and (7) 
over the specified interval in each case, we get the 
expression for the desired block histogram in for Case 1 
and Case 3 as listed in Table 1 (the reader is encouraged 
to check [21] for more details). As a result, given any 
normalized value for the block mean brightness falling in 
the range (0,1), we can now automatically provide a 
mathematical expression for the desired block histogram 
in the ALHS method. For the case when the block 
contains only one graylevel (this includes the cases when 
the mean brightness is 0 or 1), it is obvious that the pixel 
value at the center of the block should not be changed in 
order to preserve the original mean value. This implies 
the desired block histogram hd(s) would be the original 
block histogram ho(s) as shown in Case 4 of Table 1.   

The desired block histogram in the ALHS method is 
a straight line segment that either covers the entire 
domain, s ∈[0,1], as in case 2, or part of it as in cases 1 
and 3. If the mean block brightness is equal to 0.5, the 
desired block histogram reduces to a uniform distribution 
as in the histogram equalization method. The parameter δ 
in Case 1 and θ in Case 3 determine the cut-off point 
after (or before for Case 3) which the desired histogram 
hd(s) is clipped to zero. This situation happens because 
the mean of the input block is too low (Case 1) or too 

high (Case 3) to spread the original histogram of the 
block over the entire graylevel. This clipping property of 
ALHS and the dependence of the desired histogram on 
the original mean value enable the ALHS method to 
preserve the block mean brightness and reduce the 
amount of stretching. This is reflected on the output 
image by minimum change in its appearance and reduced 
noise amplification and overenhancement artifacts.  

 

Figure 1. The shape of the desired block histogram for different values 
of µo. 

2.2. Digitization and Histogram Matching  

The derivation of the desired block histogram in the 
previous section was under the assumption that the 
output domain s is a continuous random variable. 
However, this is not true for digital images. Thus, it is 
necessary to digitize the specified histogram before we 
proceed to the histogram matching step. This can be 
achieved using one of the methods described in [22]. In 
our implementation, we used the Equal Width Interval 
approach to digitize the s domain into 256 discrete levels 
(number of levels in 8-bit grayscale images).  

Once the discrete version of the desired histogram 
for the block is available, the histogram matching 
algorithm is carried out to define the transformation 
function that is to be used to modify the value of the 
pixel at the block center. However, the algorithm 
discussed in [1,2] requires that the cumulative 
distribution function of the desired histogram to be 
strictly monotonically increasing to avoid one-to-
multiple graylevel mappings. Apparently, the histograms 
specified in Case 1 and Case 3 violate this requirement. 
Accordingly, we have modified the original histogram 
matching algorithm intuitively such that for any input 
graylevel r* that could be mapped to more than one 
graylevel, it is mapped using one of the four rules listed 
in Table II, where s* represents the output graylevel. We  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007 

 

5

   
Table 1. The mathematical expressions of the desired histogram for  

the three different cases in the in ALHS method based on the original block mean uo. 
 

Case No. Condition Desired Block Histogram 

1 
 uo   ∈  (0, 1/3) 

2
d

 -  -2δ ( s - δ ) , s  δh (s) = 
  0   ,  otherwise

⎧⎪ ≤
⎨
⎪⎩

 

where o= 3 δ μ  

2 uo  ∈  [1/3, 2/3] 

 

[0,1]
d o

 

h (s)= 1 + 6 ( μ - 0.5 ) ( 2s - 1 ) 
           ,  s  ∈

 

 

3 uo  ∈  (2/3, 1) d  -2

  0    , s  θ 
h  (s) = 

  2 ( θ - 1 )  ( s - θ ) , otherwise

≤⎧⎪
⎨
⎪⎩

 

where o= 3  - 2 θ μ  

4 
uo = {0,1} or the 
block contains a 
single graylevel 

d oh (s) = h (r),  r = s  ∀  

Table 2. Rules added to the histogram matching algorithm to solve  
the problem of one-to-multiple mappings. 

Case No. Rule
No. Rule 

1 I If r* ≤  δ then s* = δ
 II If r*  > δ then s*  = r*

3 III If r*≤  θ  then s* = r*

 IV If r* > θ then s*  = θ 
 
chose these rules such that overstretching and compression 
of graylevels is avoided. The only concern here is how 
these modifications will affect the performance of the 
ALHS method in preserving the appearance of the image?  
Actually, the pixel count of such levels compromise a 
small percentage in low contrast images, especially when 
operating at the pixel level, so even if they are mapped to 
the cutoff point (rules I and IV) or kept unchanged (rule II 
and III), their effect will be minimal and may not be 
detected by the human eye. 

3. Experimental Evaluation  

In this section we present some simulation results for the 
proposed ALHS method and compare it to the HE and 
LHE methods in terms of the level of contrast 
enhancement and the preservation of the original image 
appearance. The comparison between the three methods is 
done through the use of two quantitative measures 
supplemented with visual inspection. The first measure is 
the Absolute Mean Brightness Error, which is defined as  

 

 
p oAMBE = | μ  - μ  |                       (17) 

and it simply measures the deviation of the processed 
image mean µp from the input image mean. The AMBE 
provides a sense of how the image global appearance has 
changed, with preference to lower values [9]. The second 
measure that we used is the discrete entropy H,  

255

2
s=0

H = h(s)log h(s) , h(s)  0∀ ≠∑              (18) 

where h(s) is the global normalized histogram of the 
processed image. Entropy has been used to measure the 
content of the image [23], with higher values indicating 
images that are richer in details. In addition to these two 
measures, we have also compared the three methods in 
terms of processing time requirements.  

Our evaluation involved the processing of a large set 
of images obtained from [24] using a 1.3 GHz Pentium ® 
4 processor with 1 GB memory. Three representative 
examples for the images: Airport, Village, and Pirate are 
shown in Figures 2-4.  The size of these images is 512 x 
512 pixels and the block size used in the implementation 
of the LHE and ALHS methods was 100 x 100 pixels. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007 

 

6 

Visual assessment of the processed images showed that 
the ALHS method has the ability of enhancing both the 
global and local details in the image better than the HE 
method with negligible saturation and overenhancement 
problems. When compared to the LHE method, the new 
method performed in a comparable fashion in terms of 
enhancing the details, but with the advantage of lower 
noise amplification. Also, it is clear from the results that 
the ALHS method resulted in a minimum change in the 
image outlook. Let’s take for example the processing 
results for the Airport image. The HE method resulted in 
saturation and overenhancement in the planes and the top 
of the buildings and thus reduced the smaller details in 
these regions. In the LHS method, the local details are 
better than the HE method in these regions, however, the 
processed image looks unnatural due to noise 
amplification in the background. These problems were less 
pronounced in the ALHS method where we can see the 
enhanced details on the top of the buildings with reduced 
noise amplification in the background. Also, the ALHS 
method did not modify the global outlook of the image 
like the HE and LHE methods.   

The visual assessment is supported by the computed 
AMBE and entropy values listed in Tables 3 and 4. Side 
by side comparison of the AMBE values for the three 
methods revealed that the ALHS method always 
outperformed both the HE method and the LHE method 
by having the lowest AMBE values. This is easily justified 
by the fact that ALHS modifies the block central pixel 
with the transformation function that would preserve the 
block mean if it is applied to the entire block, and 
effectively this helps preserving the general outlook of the 
image. The ALHS method is theoretically supposed to 
produce zero AMBE values when used in the continuous 
domain. This was not the case in our discrete domain 
study here which involves quantization errors. For the 
entropy values, the ALHS method increased the image 
content better than HE. Actually, the entropy values for 
the HE method are always less than the original value, 
because as we said earlier the HE method is global and 
thus results in reduction in the details. Comparing the 
ALHS method to the LHE method we see that the ALHS 
method has slightly lower values. This is because the 
ALHS method constrains the enhancement to avoid 
overstretching and noise amplification for the sake of 
preserving the image appearance. However, combining the 
visual assessment for the ALHS method with its AMBE 
and entropy values definitely makes it better than the LHE 
method that has higher entropy but degraded image 
outlook. In summary, we can say that the ALHS method 
outperforms the HE and LHE methods in enhancing the 
quality of grayscale images. Specifically, it is better than 
the HE method in terms of enhancing the local details and 

preserving the image outlook with negligible saturation 
and overenhancement artifacts. Also, it is capable of 
enhancing local details in a similar manner to the LHE 
method but with lower levels of noise amplification.  

In terms of processing time, the HE, LHE, and ALHS 
methods required on average 50 ms, 119 s, and 203 s, 
respectively to process the 512x512 images. It is apparent 
that the HE method has the least processing time. This is 
because it is applied in a global fashion, in contrast to the 
other two methods that are applied locally. The difference 
in processing time between the ALHS and LHE methods 
is due to the additional steps required in the ALHS method 
for histogram matching and discretization. Nonetheless, 
this should not be an issue in non real-time image 
processing applications that demand images with high 
quality.  

Table 3. AMBE values for the processed images. 
 

 Airport Village Pirate
ALHS-Processed Image 0.73 0.51 2.04 

HE-Processed Image 55.58 14.23 16.88
LHE-Processed Image 55.64 16.79 18.65

Table 4. Discrete entropy values for the original and processed images. 
 

 Airport Village Pirate
Original Image 4.73 5.18 7.24 

ALHS-Processed Image 5.34 5.51 7.96 
HE-Processed Image 4.62 5.05 7.14 

LHE-Processed Image 5.53 5.53 7.98 

4. Conclusion 

We have developed a new method called Automatic 
Local Histogram Specification (ALHS) for local contrast 
enhancement of graylevel images. The method 
automatically specifies the desired histogram that provides 
the optimal enhancement and preserves the mean 
brightness of the block around each pixel in the image. 
The ALHS method is proven through simulation to 
provide enhancement results that balance well between 
details enhancement and the preservation of the original 
image appearance - an objective that is difficult to achieve 
using the histogram equalization or local histogram 
equalization methods. 
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