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Summary 
This paper presents two new multi-signature schemes which aim 
at providing data authenticity, integrity, and non-repudiation. The 
proposed signing/verifying schemes are extensions of 
standardized algorithms, such as DSA (Digital Signature 
Algorithm) and ECDSA (Elliptic Curve DSA) algorithms. These 
schemes are faster than repeated individual signature (RDSA) 
using DSA or ECDSA (RECDSA) to generate a multi-signature. 
The final multi-signature of a message can be verified 
individually for each signer or collectively for a subgroup or 
entire group as well. Moreover, these schemes can also be used 
for group membership authentication. Finally, the proposed 
schemes can be used in E-commerce and E-government 
application. The security of the proposed schemes corresponds to 
the security of DSA and ECDSA algorithms respectively. 
 
Key words: Multi-signature, DSA, ECDSA 

1. Introduction 

A digital signature is a bit pattern that depends on the 
message being signed, to prove the source of the data and 
protect against forgery. Digital signatures are dependent on 
public-key cryptography algorithms for their operation. 
Public-key cryptography relies on the availability of a pair 
of different but related keys: a private signing key x and a 
public verification key y. Several public-key 
cryptosystems [1]-[4], such as RSA [2], ElGamel [3][22], 
DSA or ECDSA’s schemes [4][22], provide the necessary 
tools for accomplishing private and authenticated 
communication, and for performing secure and 
authenticated transactions over the internet as well as other 
open networks. Electronic layer-style organizations require 
the need to replace handwritten signatures by electronic 
ones. Legal electronic documents (contracts, cheque, etc) 
may require the signature of one party or several ones, 
which lead to multi-signatures [8-19]. Some multi-
signature schemes do not require a pre-defined signing 
order. Such schemes are called Multi-signature schemes 
with undistinguished signing authorities. Other schemes 
require a pre-defined signing order and are called Multi-
signature schemes with distinguished authorities. The 
signing process can be serial by repeating the selected 
scheme many times or parallel [15]. Finally, some signers 

can delegate proxies to sign a document on their behalf. 
This approach leads to Multi-signatures with proxy [21].  
 
For most of the multi-signature schemes described in the 
literature, the following observations need to be 
mentioned: 

- There are no official approved standards defining 
multi-signatures. Most of the schemes are specific 
for some E-applications [15]. 

- Several published multi-signature schemes have 
been proven un-secure and require additional 
modifications to reach an acceptable security 
level [30]. 

 
In our research work, we show how DSA and ECDSA 
standards can be modified to derive related multi-signature 
algorithms, while keeping the same level of security. The 
proposed two schemes belong to the class of Multi-
signature schemes with undistinguished signing 
authorities. They will be referred as Digital Multi-
signature Algorithm (DMSA) and Elliptic Curve Digital 
Multi-signature Algorithm (ECDMSA). Results show the 
superiority of the proposed schemes over conventional 
repeated DSA (RDSA) and repeated ECDSA (RECDSA).  
The rest of the paper is divided as follows. Section 2 and 
section 3 describe the mathematical background of the 
proposed DMSA and ECDMSA respectively. Section 4 
discusses the security aspects of the proposed schemes. 
Section 5 presents the results and achieved performance 
over conventional DSA and ECDSA schemes respectively. 
Section 6 concludes the paper. 
 
 
2. DSA-based Multi-Signature Scheme 
 
2.1 Common Parameters 
 
The common parameters are similar to those defined in 
[22, 24] for DSA standard to which we have added the 
group dimension.  Assuming a group of n  signers, where 
signer1 is the group manager GM, the following 
parameters are defined: 
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- qp, : Two large prime numbers such that )1( −pq  as 
defined in Digital Signature Algorithm [22]. 
- g : Generator of the cyclic group of order q  in 

*
pZ (selects an element *

pZh∈  and computes 

phg qp mod/)1( −=   such that 1≠g ). 

 - nxxx ,,, 21 K : Group members' secret keys such 
that qxi <<1 , ix  is selected randomly and known only 
by the member iP . Adding/deleting a member j  requires 

adding/deleting the corresponding jx  by the GM. 

- nyyy ,,, 21 K : Group members’ public keys such that 

pgy ix
i mod=  is computed and published by the group 

members iP . Adding/deleting a member j  requires 

adding/deleting the corresponding jy  by the GM. 
 - (.)H : a cryptographic strong hash function (one-way 
function) such as SHA-1 or SHA-2 [6-7]. 

2.2 Signature Generation 

The scheme requires the group manager GM and other 
signing group members to carry out an exchange of data 
during the signature generation process. The signature 
process for the manager is similar to the standard process 
described in [22] and [24] for one signer only. 
- GM computes mMH =)(  ( M  is the message to be 
signed) and make the bit string m  an integer. 
- GM chooses a random integer 1k , ( qk << 11 ) and 
computes: 

qpga k mod)mod( 1
1 =  (repeat until 01 ≠a ) and 

qk mod1
1
− , where 1

1
−k  is the multiplicative inverse of 

1k ; i.e., qkqkk <<=⋅ −− 1
1

1
11 0,1mod . 

- GM computes qxamkb mod)( 11
1

1 += −   (repeat until 

0≠b ) and qbs mod1−= .          
- GM sends M   and }s,a{)M(Sign 11 =  to other signers 
(and keep 1k  secret). 
 
Each other 1, ≠iSigneri , checks the signature of the 
manager as follows: 
- Verify that ),( 1 sa  are integers less than q  and not equal 
to zero, 
- Compute mMH =)(  and make m  an integer less 
than q , 
- Compute qsmu mod⋅=  and qsav mod1 ⋅= , 
- Use public key of GM to check if the following equation 
is true: 

   11 mod)mod( aqpyg vu =⋅                       (1)                  

Theorem 1 If equation (1) is true, then signature 
},{)( 11 saMSign =  of message M  is valid. 

 
Proof of Theorem 1 
We have 
- qbsqxamkb mod,mod)( 1

11
1

1
−− =+= and 
qkqxamsk modmod)( 1111 =+= . Using modular 

arithmetic properties, we obtain: 
nqwnqqxsaqsmk +=++= mod)(mod)( 111 ,   

Where qxsaqsmw mod)(mod)( 11+= .Therefore:

pggpgpg nqwnqwk modmodmod1 == + .  
Based on  Fermat's little theorem, which implies that 

1modmod )1( == − phpg pq , the previous equation can be 

rewritten as pgpg wk modmod1 = . Let us rewrite w  
as 1vxuw += . We have: 

 pygpggpgpg vuvxuwk modmodmodmod 1
11 ===  , 

which leads to: 

1111 mod)mod(mod)mod( 1 aqpygqpg vuk == . 
End of proof. 
 
Then each 1, ≠iSigneri  computes: 

- qxamsk ii mod)( 1+= and qpga ik
i mod)mod(=  

(Change ix  or repeat steps 1 to 5 until 0≠ia ). 
- Each 1, ≠iSigneri  sends }{)( ii aMsign =  to the 
manager (and keeps ik  secret). 
- GM  checks collectively or individually the group’s 
members signature using the verification procedure as 
described in sub-section C  for group signature 
authentication or membership authentication and sends the  
message M  and its complete group signature 

},,,,{)( 21 saaaMgsign nK= to the final destination. Table 
1 shows a comparison between RDSA and DMSA for 
signature generation in case of group authentication, 
assuming N signers. It shows advantages of JGSS in term 
of signature size and the number of random numbers 
generated by both algorithms.  However, (DMSA & 
RDSA) schemes are almost equivalent and major 
differences will appear only for large group sizes. 
 
 
 
 
 
 
 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007 
 

 

13

 

Table 1: DMSA Scheme vs. RDSA scheme for group authentication  
             (Signing process) 

Number of Operations Parameter 
DMSA RDSA RDSA - DMSA

Number of components 
in signature 

N+1 2N (N-1) 

Exponentiations N N 0 
Products of 2 elements. 2N 2N 0 
Inversion mod q 2 1 -1 
Random numbers k 1 N N-1 
Modulus 2(N+1) 2N -2 
 

2.3 Signature Verification 

Prior to verifying the signature of a signed message, the 
parameters ),,,( iygqp  are made available to the verifier 
in an authenticated manner. This assertion is also true for 
the manager.  The scheme provides four ways to verify the 
signature:  
1- Verification that all members of the group have signed 
the message (or group signature authentication and non-
repudiation). 
2- Verification that a sub-group of group members 
(including the GM) has signed the message (or subgroup 
signature authentication and non-repudiation). 
3- Verification that a member of group has signed the 
message (or group membership authentication).  
4- Verification that the manager has signed the message. 
In all cases, the verifier performs the following: 
- Verifies that ),( sai  are integers less than q  and not 
equal to zero. 
- Computes mMH =)(   and make m  an integer less 
than q , 
- Computes qsmu mod×= , and  qsav mod1 ×=  
 
a- Group signature authentication 

The verifier computes: ∏=
=

n

i
i qaa

1
mod)(  and checks if 

the following equation holds: 

 aqpyg v
i

un

i
=∏

=
mod)mod(

1
                        (2)                                                                                 

Theorem 2 If equation (2) is true, then the group signature 
},,,,{)( 21 saaaMgsign nK=  is valid. 

 
Proof of Theorem 2 
The proof of theorem 1 can be reused by just replacing 

),( 11 xk by ),( ii xk , and 1a by ia respectively to prove 

that: i
v

i
u aqpyg =⋅ mod)mod( .   Since 

∏=
=

n

i
i qaa

1
mod)(  then 

∏ ⋅=
=

n

i

v
i

u qqpyga
1

mod)mod)mod((  and 

finally ∏ ⋅=
=

n

i

v
i

u qpyga
1

mod)mod( . 

End of proof. 
 
Remarque1: to implement this case only, the value a can 
be calculated during signature generation, and the group 
signature is reduced to },,{)( 1 saaMgsign = . Therefore, 
the group signature size is reduced to three elements and 
the verification process is accelerated. A comparison 
between RDSA and DMSA for signature verification in 
case of group authentication, assuming N signers, is 
presented in table 2. 
 
Table 2: DMSA scheme vs. RDSA for group authentication 
              (Verification process) 

Number of operations Parameter 
DMSA RDSA RDSA - DMSA

Exponentiations N+1 2N N-1 
Products of 2 elements. 2N 3N N 
Inversion mod q 0 1 1 
Modulus 2N+1 3N N-1 

 
Table 2 shows major advantages of DMSA over RDSA for 
message verification in term of exponentiations, products 
and modulus operations. The performance gain in case of 
message verification is therefore higher compared to the 
gain that can be achieved in case of message signing. This 
advantage is essential since in most applications, message 
verification occurs much more often than message signing; 
a message is usually signed once and verified several 
times. 
 
b- Sub-group signature authentication (Including the 
manager) 
The verification here works like for group authentication. 

We replace  ∏
=

n

i 1
 by ∏

=

t

ri
and follow the same 

procedure. 
 
c- Group membership authentication. 
The verifier checks only that the following equation holds: 

i
v

i
u

aqpyg =mod)mod(                           (3)                

Theorem 3 If equation (3) is true, then signature 
},,{)( 1 saaMsign ii = of the sent message M is valid. 

 
Proof of Theorem 3 
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The verification works like for theorem 1, where  iyy =1  . 
All equations hold. 
End of proof. 
. 
 
3. ECDSA-based Multi-Signature Scheme  
 
3.1 Common Parameters 
 
The common parameters are similar to those defined in 
[22, 24] for ECDSA standard to which we have added the 
group dimension. Assuming a group of n  signers, the 
following parameters are defined: 
- A field size q, where q=p a large prime number 
with 163≥p , or mq 2=  with 155≥m ; 
- An indication FR (field representation) of the 
representation used for the elements of qF . 

- Two field elements  a  and b in qF  which define the 

equation of the elliptic curve E over qF  (i.e.,   

baxxy ++= 32  in the case of qp = , and 

baxxxyy ++=+ 232   in the case mq 2= ); 
- Two field elements Gx and Gy which define a finite point 

),( GG yxG = of prime order in ( qF ). 

- The order n  with 1602n > and q4n > ;  
- The co-factor nFEh q /)(#= . 
- (.)H : a cryptographic strong hash function (one-way 
function) such as SHA-1 or SHA-2. 
- n21 d,,d,d K : Group members' secret keys such 
that nd1 i << , id  is selected randomly and known only 
by the group member iP . Adding/deleting a member j  
requires adding/deleting the corresponding jd by the GM. 
- n21 Q,,Q,Q K : group members public keys such that 

GdQ ii =  is computed, validated as it is described in [24] 
and published by the group members iP . A signer key pair 

)Q,d( ii  should be associated 
with )h,n,G,b,a,FR,q(D = , a valid elliptic curve domain 
parameters and the corresponding signer i. This 
association can be assured with certificates. 
Adding/deleting a member j  requires adding/deleting the 
corresponding jQ by the GM. 

3.2 Signature Generation 

As for the DSA-Based approach, this scheme requires 
signer1 (the group manager GM) and other signing group 
members to carry out an exchange of data during the 

signature generation process. The manager signature 
process is similar to the standard process described in [22] 
and [24] for one signer only. 
 
GM computes mMH =)(  ( M  is the message to be 
signed), and make this bit string to an integer. 
GM chooses a random integer k , ( nk1 << ) and 
computes: 
- )y,x(kG 11=  and convert 1x  to an integer 1x ;  
- nmodxa 11 = . If 0a1 = then go to step 2.           

- nmodk 1−                                   
GM computes: 
- nmod)adm(kb 11

1 += − . If 0b =  then go to step 2.    

- nmodbs 1−=                                

GM sends M   and }s,a{)M(Sign 11 =  to other signers 
(and keep k  secret). Each other 1, ≠iSigneri , checks the 
signature of the manager as follows: 
- Verify that ),( 1 sa  are integers less than n  and not equal 
to zero, 
- Compute mMH =)( , and make m  an integer less 
than n , 
- Compute nmodsmu ⋅= and nmodsav 1 ⋅= , 
- Compute 1vQuGP += . If Ο=P , reject the signature.  
- Convert the x-coordinate Px of P  to an integer Px  and 
compute nmodxw P= . 
- Check if the following equation is true: 

 1aw =                                               (4)                 

Theorem 4 If equation (4) is true, then signature 
}s,a{)M(Sign 11 =  of message M  is valid. 

 
Proof of Theorem 4 
We have 
-  nmodbs,nmod)dam(kb 1

11
1 −− =+= . Then 

nmod)dam(sk 11+=   

-  nmod)nmoddsanmodsm(k 11+= , which leads to 
nmod)vdu(k 1+= . 

Therefore, GvduGvQuGP 11 +=+=  . By factoring G , 
we obtain xxGkG)vdu(P p11 =⇒=+= . We 
get 1aw = . 
End of proof. 
 
6. Then each 1, ≠iSigneri  computes 

nmod)dam(sa i1i +=                  
7.  Each 1, ≠iSigneri  sends }{)( ii aMsign =  to the 
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manager (and keeps id  secret). 
8. The group manager GM checks collectively or 
individually the group members' signature using the 
verification procedure for group signature authentication 
or membership authentication and sends to the final 
destination: M  and },,,,{)( 21 saaaMgsign nK= . 
 
A comparison between repeated ECDSA and ECDMSA 
for signature generation in case of group authentication 
assuming N signers is presented in table 3.  It shows great 
advantages of ECDMSA in term of signature size, point 
additions, modulus calculation and random number 
generation. These factors will lead to faster 
implementations. 
 
Table 3: ECDMSA Scheme vs. RECDSA for group authentication 
             (Signing process) 

Number of operations Parameter 
ECDMSA RECDSA RECDSA -

ECDMSA
Number of components  
in signature 

N+1 2N (N-1) 

Point Addition k (K1+k2+…)~kN k(N-1)
Products of 2 el. 2N 2N 0 
Inversion mod q 2 1 -1 
Random k generation. 1 N N-1 
Modulus N+2 2N N-2 

3.3 Signature Verification 

The ECDSA-based scheme provides three ways to verify 
the signature: group signature authentication, subgroup 
signature authentication and group membership 
authentication.  In all cases, the verifier performs the 
following: 
- Verify that ),( 1 sa  are integers less than n  and not equal 
to zero, 
- Compute: mMH =)( , and make m  an integer less than 
n , 
- Compute:  nmodsmu ⋅= , and nmodsav 1 ⋅= , 
 
a- Group signature authentication 

The verifier computes )vQuG(P i

N

1i
+= ∑

=
, and GaR i

N

1i
∑
=

= , 

N is the number of signers. If Ο=P  or Ο=R  , reject the 
signature. 
- Convert the x-coordinate Px of P  to an integer Px  and 
computes nmodxw P1 = . 
- Convert the x-coordinate Rx of R  to an integer Rx  and 
computes nmodxw R2 = . 
- Check if the following equation is true: 

 21 ww =                                               (5)                

 
Theorem 5 If equation (5) is true, then signature 

},,,,{)( 21 saaaMgsign nK=  is valid. 
 
Proof of theorem 5 

We have ∑∑ +=+=
=

)GvduG()vQuG(P ii

N

1i
. By 

replacing )v,u( , we 

get ∑∑ ==+=
N

i
i

N

i
i1 RGaG)dsasm(P . This leads 

to 21 ww = . 
End of proof. 
 
Remarque2: to implement this case only, 1wa = can be 
calculated during signature generation, and the group 
signature is reduced to },,{)( 1 saaMgsign = . Therefore, 
the size of group signature is reduced to three elements 
and the verification process is accelerated. A comparison 
between RECDSA and ECDMSA for signature 
verification in case of group authentication assuming N 
signers is presented in table 4. It shows advantages of 
ECDMSA in term of point additions, products and 
modulus calculations. 
 
Table 4: ECDMSA Scheme vs. RECDSA for group Authentication 
              (Verification process) 

Number of operations Parameter 
ECDMSA RECDSA RECDSA - ECDMSA

Point 
Addition 

N(v+1)+uN(u+v) N(u-1)-u 

Products of 
2 elements 

2 2N 2N-2 

Inversion 
mod q 

0 1 1 

Modulus 4 3N 3N-4 

 
b- Sub-group signature authentication (Including the 
group manager) 
 
Using the group signature authentication described in a), 
sub-group signature authentication is achieved by 

replacing  ∑
=

N

1i
 with ∑

=

t

ri
. 

c- Group membership authentication. 
- The verifier computes ivQuGP += , and GaR i= ,   
if Ο=P  or Ο=R ,   reject the signature.  
- Convert the x-coordinate Px of P  to an integer Px  and 
compute nmodxw P1 = . 
- Convert the x-coordinate Rx of R  to an integer Rx  and 
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compute nmodxw R2 = . 
- Check if the following equation is true: 

 21 ww =                                               (6)                                                                                 

                       
Theorem 6 If equation (6) is true, then signature 

}s,a,a{)M(gsign i1=  is valid. 
 
Proof of theorem 6 
We have GvduGvQuGP ii +=+= .  By replacing )v,u( , 
we get RGaG)dsasm(P ii1 ==+= . This leads 
to 21 ww = . 
End of proof. 
 
4. Security Considerations 
 
Unforgeability is a required property for any basic 
signature scheme. In other words, it must be infeasible to 
compute the signature of a message with respect to a 
public key without knowing the corresponding secret key. 
The security of the public-key schemes is based on the 
assumption that there exists a hard problem that is difficult 
to be solved by the cryptanalyst, such as Factorization 
Problem, Discrete Logarithm Problem (DLP) [23] in finite 
group or Elliptic Curve DLP (ECDLP)[27]. Based on this 
problem and a trap door function, a secure public-key 
system can be constructed. By DLP we mean the problem 
of determining the least positive integer x , if it exists, 
which satisfies the equation: 

)(mod pxαβ ≡ , where p  is a large prime number, and  
α ,β are nonzero integers pmod . By ECDLP, we mean the 
problem of determining the least positive integer x , if it 
exists, which satisfies the equation: 

xPQ = ,    where P  and  Q  are two points on a prime 
elliptic curve pE  with p  a large prime number or binary 

elliptic curve mE2   

4.1 DSA-based Scheme 

In the proposed scheme, the system parameters are similar 
to those used in DSA signature, which provides the same 
security level as DSA algorithm if the signature 
verification during the exchange process between the 
manager and other group members is done as it is 
indicated in the scheme. Secret keys ix and numbers ik   
should be kept secret. Security issues of DSA are 
explained in [24] and can be extended to our scheme. The 
security of the DSA-based multi-signature scheme relies 
on two distinct but related Discrete Logarithm (DL) 
Problems, pgy ix

ii mod=  and qpga ik
ii mod)mod(= . 

The first one is the Discrete Logarithm Problem in *
PZ  

where the number field sieve algorithm applies [25]. This 
algorithm has a sub-exponential running time: 

 )))pLnLn()pLn)(1(Oc(exp((O 3/23/1+             (7)                

Where 923.1≅c  and pLn  denotes the natural logarithm 
function. If 1024=p -bit prime, then equation (7) 
represents an infeasible amount of computation [24]. The 
second Discrete Logarithm Problem works to the base 
g in the subgroup of order q  in *

PZ .  For a large p  
( 1024p ≥  bits), the best known algorithm for this 
problem is the Pollard’s rho method [26], which requires a 
number of steps S given by:  

π)2/q(S =                                     (8)                

If 1602≅q ( 160=q -bit prime), equation (8) represents an 
infeasible amount of computation [24]. 

4.2 ECDSA-based Scheme 

In the proposed scheme, the system parameters are similar 
to those used in ECDSA signature, which provides the 
same security level as ECDSA algorithm if the signature 
verification during the exchange process between the GM 
and other group members is done as it is indicated in the 
scheme. Secret keys id and number k   should be kept 
secret. If the elliptic curve is chosen carefully, or as it is 
recommended by NIST [22], and under the assumption 
that the hash function employed is collision resistant, 
ECDSA has been proven secure [27,28]. The best attacks 
known use the Pollard’s rho method [26], which requires a 
number of steps S given by: 

 π)2/n(S =                                        (9)                 

With 1602n > , the order of the elliptic curve, equation (9) 
yields an infeasible amount of computation [24].  
 
5. Simulation Results 
 
In this section we will present results showing the 
performance of DMSA approach compared to RDSA. 
Both algorithms have been coded in C++ and run on a 
Pentium 4 processor clocked at 1 GHz. The worst case has 
been simulated, where all members of the group have to 
sign/verify the message. The simulations have taken into 
account two parameters: the size of the group, and the 
number of bits used to generate the common parameters 
(160 and 256 bits respectively). 
 
Figures 1 and 2 show the execution times corresponding to 
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the signing process, while figures 3 and 4 show the 
execution times corresponding to the verifying process.   
 
 

Fig. 1. DMSA vs. RDSA (160 bits Signing) 
 

Fig. 2. DMSA vs. RDSA (256 bits Signing). 
 
 
Figures 1 and 2 show that the superiority of DMSA over 
RDSA increases with the group size. However, both 
approaches are almost equivalent for small group sizes. 
This confirms the estimates presented in table 1.  
 

Fig. 3. DMSA vs. RDSA (160 bits Verification) 
 
Figures 3 & 4 show the superiority of DMSA over RDSA 
in terms of execution times. They also show that 
increasing the size group has less impact on DMSA than 
RDSA, which is more sensitive as a result of the additional 
complexity. Figures 5 and 6 show the speed-up of DMSA 
over RDSA.  
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Fig. 4. DMSA vs. RDSA (256 bits Verification). 
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Fig. 6. Speed-up of DMSA over RDSA (Signing) 

 

 

6. Conclusion 

In this paper, two new multi-signature schemes are 
presented. These schemes provide data authenticity, 
integrity, and non-repudiation. The signature security is 
based on the security of DSA and ECDSA. The signature 
can be verified individually for one signer (or group 
membership authentication), for a subgroup of signers (or 
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subgroup authentication), or for all signers of the group 
(group authentication). These schemes are faster than 
repeated DSA or ECDSA. The performance gain is more 
significant in the case of signature verification, since a 
message is usually signed once and verified several times. 
Furthermore the group signature elements are connected 
together, which enhances the robustness of the proposed 
schemes against forgery. The new schemes can be directly 
used in many applications, such as E-Business for a joint 
signature of a contract between two or more organizations, 
or E-Government to sign an electronic legal document by 
many higher authorities, or in membership for access right 
authentication. 
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