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Summary 
This paper proposes a structural analysis approach for 
mathematical expressions based on the Attribute String Grammar 
and the Baseline Tree Transformation approaches. The approach 
consists of geometrical feature extraction, parsing structure and 
expression analysis steps. The algorithm for structure parsing 
uses baselines, which are represented by geometrical features to 
recursively decompose the hierarchical levels. During a 
hierarchy decomposition of an expression, it predicts the 
relationships along the symbols, and then groups the symbols 
into a number of sub-expressions and a set of basic units. The 
basic units are added into the tree and the same parsing process is 
performed on these sub-expressions. Once all sub-expressions 
are parsed, expression analysis is carried out to translate the tree 
into any desired syntax (e.g. Latex, Lisp). The experiments are 
performed to test the efficiency of this proposed structural 
analysis approach. 
Key words: 
Online handwritten mathematical expression recognition, 
Structural analysis, Baseline, Multilayer Perceptron Neural 
Networks, Support Vector Machines.  

1. Introduction 

One of the advantages of pen-based interfaces (e.g. 
pocket PC, digital tablet) is that they allow users to 
handwrite mathematical expressions on an electronic 
tablet into the word processors. Consequently, unlike 
traditional input interfaces, such as keyboards, pen-based 
interfaces are much more preferred by users for producing 
mathematical documents.  

The process of mathematical expression recognition 
generally consists of three steps: segmentation, symbol 
recognition and structural analysis. The segmentation is 
used to separate symbols of an expression. Several 
approaches have been proposed for segmentation and 
symbol recognition. More details about segmentation and 
symbol recognition techniques and their challenges can be 
found in the literature [13-16, 23, 26, 27, 29, 30]. This 
paper focuses mainly on structural analysis. 

In online handwritten mathematical expressions, the 
structural analysis is very challenging problem. Unlike a 
linear word, a mathematical expression is a two 

dimensional structure. For instance, a mathematical 
expression consists of a number of symbols, which are 
connected by some spatial relations, such as super and 
sub-scripts. The spatial relationships among the symbols 
are of different types, because the symbols’ sizes and 
placements characterising them vary a lot. In addition, 
there are different types of symbols; each type has its own 
grouping rules. For instance, digits and letters can be 
grouped together to represent a specific meaning (e.g. 
123.05 and sin); since binding operators (e.g. ∑, ∫) 
dominate the sub-expressions around them, these sub-
expressions should be grouped as individual units. For all 
these reasons, it is not easy to define a structural analysis 
technique for handwritten mathematical expressions. Few 
techniques for structural analysis were introduced in the 
literature and major ones are outlined below. 

The Projection Profile Cutting [22, 28] projects pixels 
of an expression onto x- and y-axes to form x- and y-
histograms, then it divides the expression into a number of 
components along the histograms. Although this method 
can quickly parse the structure of an expression, it fails in 
detecting some scripts (e.g. super/sub-scripts).  

The Structure Specification Scheme [8] uses a tree to 
represent a mathematical expression, based on the 
definition of operator range, precedence and dominance. 
But it also cannot deal with subscripts and superscripts as 
operators.  

The basic idea of the Graph grammar [11] was used 
for mathematical expressions by Lavirotte and Pottier [19]. 
They defined a set of rules in graph grammars to match a 
given condition. These rules describe the mathematical 
relationships and they apply a bottom-up parsing 
algorithm to obtain a hierarchical tree.  

The Stochastic grammar [9] finds the likely parse tree 
of an expression. He defined that the pixels are the only 
terminal symbols in his grammar. For mapping non-
terminal symbols to pixels, he used Hamming distance to 
compare the rectangle arrays of pixels at each location of 
the image to their corresponding templates in the font 
dictionary, and obtained their associated probability. 
Finally, the probability of a parse tree can be obtained by 
multiplying the probabilities for all production rules used 
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in a successful parse. This approach does not need 
segmentation, but it is computationally expensive.  

Lee et al. [21, 20] introduced the Procedural 
translation to recognize the structure of an expression.  
Their algorithm starts by grouping the symbols, which 
deviate from the centre of an expression into a number of 
units, and then re-orders this set of the units along with the 
remaining symbols according to the y-coordinate of the 
centre point of the units or symbols. Thus, the output 
string can be obtained by iteratively using this group-order 
procedure. However, this approach is not easy to maintain 
and extend. 

 Chan and Yeung [6] proposed the hierarchical 
decomposition method based on definite clause grammar 
(DCG), the left-factored rules and binding symbol pre-
processing. However, this approach has a difficulty of 
dealing with high-level mathematical expressions, 
especially expressions with brackets, matrixes, etc.  

The approach of the Attributed String Grammars 
(ASG) [2] iteratively groups the symbols of an expression 
from top to bottom. The idea is to divide an expression 
into a number of sub-expressions by comparing the 
symbol's position to the centre line. This process is 
iteratively applied to all of the sub-expressions and outputs 
a parsing tree. The resulting tree is put through a 
semantics checking process and transformed into a desired 
syntax. Recently, Zanibbi et al. [25] introduced a Baseline 
Tree Transformation approach (BST), which is based on 
the String Attribute Grammar approach. They parse the 
hierarchical levels by recursive baselines (called layout 
pass) in such a way as to construct a tree. 

Among all these methods, the ASG technique is the 
most complete and popular for analysing the structure of a 
mathematical expression. In addition, it easily maintains 
any operations in such a way as to reduce the errors. 
However, This ASG approach depends heavily on the 
symbol recognition. Their spatial functions used to 
calculate the spatial relations between the symbols assume 
that these symbols are correctly recognised and some 
threshold values of these functions are not easy to set.  

In this paper we propose an efficient structural 
analysis approach based on the Attributed String Grammar 
approach. We extract geometrical features of the symbols. 
Then we use a Multilayer Perceptron Network (MLP) or 
Support Vector Machine (SVM) to recursively find the 
baselines and parse the structure of an expression from left 
to right and from top to bottom. Finally, the obtained 
parsing tree is passed through an expression analyser that 
includes the syntax checking and semantic analysis. 

2. Structural Analysis Approach 

Alternatively, based on the ASG and BST approaches, 
we propose a structural analysis approach. Our approach 

consists of geometrical feature extraction, parsing 
structure and expression analysis stages as shown in 
Figure 1(b). Given an expression the geometrical feature 
extraction not only extracts the bounding boxes of 
symbols and the centers of the boxes, but also extracts the 
mass centers of the symbols. In the parsing structure step, 
the new approach parses the hierarchy of the expression 
and simultaneously performs lexical checking, based on 
the Attribute String Grammars with the Neural Network 
and Support Vector Machine. Finally, the new approach 
performs the expression analysis. Figure 1(a) shows the 
BST approach [25], which consists of geometrical feature 
extraction, hierarchical parsing or layout pass, lexical 
checking and expression analysis steps.  

In contrast to the BST, the new approach uses the 
mass points instead of the labels of symbols for predicting 
the spatial relationships, and our approach uses the MLP 
or SVM instead of using the function with a set of the 
thresholds for predicting the relationships between the 
symbols. Therefore, obtained prediction accuracy by the 
MLP/SVM is higher than the one obtained by using 
thresholds. Thus, the new approach can reduce 
dependency on the symbol recognition. In addition, the 
new approach integrates hierarchical parsing and lexical 
checking steps into one step -- the parsing structure phase 
in such a way as to avoid the errors that will take place in 
future parsing process.  For the final steps of the both 
approaches, the functionality and methods of the 
expression analysis are the same. The details of each step 
of the new structural analysis approach are described in 
the following sections.   

An Expression An Expression

Geometrical feature
extraction

Geometrical feature
extraction

Lecical checking

Expression analysis
Expression analysis

output string output string

( a ) ( b )

Parsing structure (ANN
or SVM with baseline

latest symbols)

Hierachical parsing
(the  threshods with

baselines)

 
Fig. 1 (a) represents the Baseline Tree Transformation approach, (b) 

represents our approach. 

2.1 Geometrical feature extraction 

The input data to structure analysis is a set of the symbols 
from segmentation and symbol recognition steps. They are 
sorted from left to right and from top to bottom. The first 
operation of this structural analysis is to extract the 
geometrical features of the symbols of an expression. 
Assume that a symbol consists of N points, 
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s={p1(x1,y1),…,pN(xN,yN)}, the geometrical features vs of 
the symbol can be calculated as follows:  
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Given two symbols si and si+1, the spatial relationship 
between them depends on their geometrical features 

},{
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geometrical feature set is },...,,{
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2.2 Parsing Structure 

There are two very important tasks that are often 
performed and can affect the efficiency of the whole 
parsing process: the determination of spatial relationships 
between two symbols and the grouping symbols. 
Therefore, the approaches to achieve these tasks are 
described before giving the details of the algorithm of 
parsing structures. 
 
2.2.1 Determination of spatial relationships 
 

The relationship between two symbols depends on 
the spatial relation between them, which is "RIGHT-UP", 
"RIGHT-DOWN", or "RIGHT", etc. Figure 2 shows nine 
types of spatial relationships based on the centre symbol, 
which is highlighted by the red box (e.g., for x , the 
spatial relationship between the symbols ‘x’ and  is 
“INTER”).  

 
Fig.2 The layout locations: the black boxes 1, 2, 3, 4, 5, 6, 7, 8 and 9  

represent that spatial relationships of "RIGHT-UP", "RIGHT", "RIGHT-
DOWN", "DOWN", "LEFT-DOWN", "LEFT", "LEFT-UP", "UP" and 

"INNER", with respect to the red box, respectively. 
 

Given the geometrical features of two symbols, one must 
predict their relationship and return one of the 9 spatial 
relationships. However, due to the ambiguous position of 
the symbols, it is not an easy task. Most of the approaches 
use linear functions with thresholds to inspect the 
horizontal and vertical displacements. However, the size 
of the symbols needs to be considered and also if the 

symbols were not recognised correctly the functions with a 
set of thresholds more likely give wrong spatial 
relationships. In addition, when using the geometrical 
features, the baseline function is not suitable for 
calculating the relationship between two symbols. MLP 
[24] has been successfully applied in pattern recognition. 
More recently, SVM, which is one of elegant machine 
learning methods [4, 5], has proven to be very efficient. 
Therefore, our structural analysis approach uses the MLP 
and SVM as spatial function G(.) to calculate the spatial 
relationships between two symbols.  
 

 Multilayer Perceptron Networks  
 
The MLP has been widely used in pattern 

recognition. The standard MLP is a supervised feed-
forward neural network, which consists of one input 
layer, a number of hidden layers and one output layer. 
Generally, the activation function is a sigmoid 
function and it uses the Back-Propagation (BP) 
learning algorithm for training. More details about 
MLP can be found in [24]. 
 
 Support Vector Machines 

 
An SVM classifier can be trained by finding a 

maximal margin hyper-plane in terms of a linear 
combination of subsets (support vectors) of the 
training set. If the input feature vectors are 
nonlinearly separable, SVM maps the data into a high 
dimensional feature space by using the kernel trick [4] 
and then classifies the data by the maximal margin 
hyper-plane using the following function: 

( ) ⎟
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where M is the number of samples in the training set, 
xi is a support vector with αi > 0, φ is a kernel 
function, x is  an unknown sample feature vector, and 
δ is a threshold.  

The parameters {αi}, can be obtained by solving 
a convex quadratic programming problem subject to 
linear constraints [5]. In practice polynomial kernels 
and Gaussian radial basis functions (RBF) are usually 
used for kernel functions. δ can be obtained by taking 
into account the Karush-Kuhn-Tucker condition [5], 
and choosing any i for which αi > 0 (i.e. support 
vectors). However, it is safer in practice to take the 
average value of δ over all the support vectors. 

Although SVM was originally developed for 
binary classification, it was also used successfully to 
solve multi-classification problems. The experiments 
given in [12] indicated that the one-versus-one 
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method developed in [18] was more suitable for 
practical use than the other methods. 

2.2.2 Grouping Symbols 
 
In order to reduce the errors in interpreting the 

symbols, and to simplify the complexity of parsing of 
mathematical expression hierarchies, the definition of 
grouping symbol is traditionally made for digits, strings, 
function names, and special symbols [3,7]. In this study, in 
order to convert the 2-D expression into its equivalent 1-D 
representation, the definition of grouping symbol is 
extended for any symbol. A group of symbols is defined 
as a set of consecutive symbols, with a specific meaning, 
according to the lexicons and the spatial relationships 
between the centre symbol and its neighbours. The spatial 
relationships is predicted by the function G(.) as detailed 
in the sub-section 2.2.1. If a unit represents a specific 
meaning, it is called a basic unit. If the spatial 
relationships along these consecutive symbols or are 
"RIGHT", it indicates that they are in the same horizontal 
line. For instance, 96 is only one basic unit due to the 
spatial relationship "RIGHT" between them; but 96 
consists of two basic units: 9 and 6, because the spatial 
relationship between them is an operator “POWER”. 
Similarly, some letters together may form one function 
name as a basic unit, such as ‘cos’, ‘log’, ‘ln’, etc. For 
example, 1

2
+
+
x
ia  can be grouped into two groups based on 

the symbol a: {x+1} in "RIGHT-UP" and {i+2} in 
"RIGHT-DOWN".  

 

2.2.3 Algorithm 
 
Unlike linear words, the structures of 2-D 

mathematical expressions are complex. The symbols of an 
expression are of different hierarchical levels, each of 
which is corresponded by a baseline. If a baseline is 
detected, the symbols on this baseline can be grouped as a 
traditional word. The lexical checking is performed by 
dividing these symbols into a number of basic units, which 
will be added into the tree. If the branches of these 
symbols exist, each of them is treated as a sub-expression. 
Thus, the whole structure of an expression can be parsed 
by recursively finding the baselines, and consequently the 
expression is represented by the tree. 

Most of the baseline approaches [2,25] use the 
functions with thresholds to compare the y-centre (on y-
axes) values of the symbol's bounding boxes. However, 
the baselines of the symbols not only rely on the y-centre 
values, but also depend on the coordinates, centre and 
mass points of symbols. Therefore, an expression might be 
incorrectly divided into a number of sub-expressions.  

In order to improve the ASG or BST approaches, our 
approach uses the geometrical features (bounding boxes, 
centre and mass points) to represent the baselines, and  
uses the MLP or SVM to calculate the spatial relationships 
between the symbols and to detect the branches (grouping 
symbols). The detection of the symbols along a baseline 
does not only depend on the y-centre of the bounding box 
of the, but  also on the geometrical features. If a number of 
symbols are on the same baseline, the spatial relationship 
among these symbols (from left to right) is "RIGHT". The 
basic algorithm of the our approach for parsing the 
structure of an expression can be described as follows: 
initially, consider the first symbol as the centre symbol 
and use its attributes to present the baseline, then use 
spatial function (MLP or SVM) to calculate the spatial 
relationships between the centre symbol and other symbols 
and identify the relationship between its neighbourhood. 
Secondly, group the symbols (excluding the centre symbol 
and the symbols that share the relationship "RIGHT" with 
the centre symbol) into different groups according to the 9 
types of spatial relationships, and treat each of these 
groups as a sub-expression. Thirdly, the symbol that 
shares the relationship "RIGHT" with the centre symbol is 
treated as the centre symbol (change centre symbol) and 
the lexical checking is carried out between the former and 
current centre symbols, and add them to the tree. Fourthly, 
the same process is performed on the remaining symbols 
until all the symbols inputted so far have been processed. 
Finally, the same process (the above four steps) is applied 
to parse all of the sub-expressions. Consequently, the 
expression is represented by a parsing tree when all the 
sub-expressions are completed. 

 
Fig. 3. The process of parsing the structure of an expression. 

 
 
Figure 3 details the parsing structure component 

shown in Figure 1. It consists of one queue and one table. 
The queue stores a number of expressions and sub-
expressions. The elements in the queue are accessed based 
on the first-in-first-out rule. The symbols of an expression 
with their geometrical features are stored in the table from 
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left to right. The symbols along with their geometrical 
features of an entire expression, which have already been 
recognised in previous steps, are inserted into the queue. 
Before initiating the parsing process one has to read one 
expression or sub-expression into the table. The output of 
this process is a parsing tree. This tree is composed of a 
number of nodes and each node consists of a set of 
symbols S, one spatial relationship representing a baseline, 
and a set of children nodes V = {v1,v2,v3,v4,v5,v6,v7,v8,v9}. 
These children nodes are used to collect the branches, so 
that they are called branch nodes. The nodes v1, v3, v4, v5, 
v7, v8, and v9 are used to collect the symbols of the block 1, 
3, 4, 5, 7, 8 and 9, respectively (see Fig. 2). Thus, any sub-
expression is represented by a node. The process of 
parsing the structure of an expression can be described by 
two phases and they are described below: 
 

  Phase one (Preparation Phase): 
 

When an expression is ready to be parsed, a new 
node is created to record its symbols and submitted to 
the queue. If the expression is not sub-expression, its 
node is considered as the root. The process starts by 
selecting one node from the queue and stores its 
symbols along with its geometrical features in the 
table, from left to right. 

 
 Phase two (Parsing Tree Construction): 

 
The aim of this phase is to detect all the 

hierarchical levels of an expression by identifying all 
the branches of the tree and to perform lexical 
checking. The symbols with the geometrical features 
are sequentially explored from left to right in the table. 
The centre symbol Sc is defined and well as its 
neighbours. Initially, Sc is the first written symbol of 
the expression. If the relationship with one of its 
neighbours is "RIGHT", then that symbol becomes 
the centre. If one of the special symbols (e.g. divide) 
shares the relationship "DOWN" with the centre, the 
centre symbol Sc becomes a branch symbol, and the 
special symbol becomes the centre Sc. The symbols in 
the main hierarchical level (baseline) are grouped into 
several basic units and added to the parse tree. Each 
branch is treated as a sub-expression and submitted to 
the queue so that the process will restart again from 
the first phase. Assume that the centre symbols are 
stored in a list W. In order to clearly describe the 
algorithm for parsing an expression, we explain in the 
following the steps of the algorithm without 
considering the special symbols (e.g. divide,  ∑, ∫ and 
√ ) and then extend it to any special symbol: 

          

1) For the initialisation, the first symbol in the table is 
selected as the centre Sc.  

2) Add the symbol Sc to the list w . If Sc is the last 
symbol, go to step 4. If Sc is not the last symbol, the 
symbols after the centre Sc are sequentially selected 
to calculate the spatial relationships with the centre 
symbol Sc, until the symbol Sr that shares 
relationship "RIGHT" with the centre symbol Sc is 
found (or the end of the symbol list Se is reached).  

3) If there is any symbol between Sc and Sr (or from 
the symbol after Sc to Sr, according to the spatial 
relationships, the symbols between Sc and Sr (or 
from the symbol after Sc to Se) are grouped into 
block 1, 3, 4, 5, 7, 8 and 9 respectively (see Fig. 2). 
Then go to step 4. If there is no symbol between Sc 
and Sr, then Sr becomes the centre and go to step 2. 

4) Group the symbols in w  into basic units according 
to a given lexicon. Thus, new nodes are created 
(one for each unit) to load these basic units. The 
spatial relationship "RIGHT" is assigned for these 
nodes. The parent of the new nodes is the node 
from which the symbols were attached to (centre 
symbol). If a new node that holds the last basic unit 
is used to represent that unit, then the list W is 
empty, and Sr becomes the centre symbol and go to 
step 2. Simultaneously, these children nodes are 
submitted into the queue during the first phase. 
Consequently, the process will recursively 
decompose the next hierarchical level of the 
expression. 

 
Fig.4. Parsing the structure of an expression that has no special symbols. 

(a) is the online handwritten expression; (b), (c), (d) and (e) are the 
instant trees. The symbols "R" and "RU" represent the spatial 

relationship "RIGHT" and "RIGHT-UP", respectively.  
 

The process is used to decompose the hierarchical levels 
of the expressions without any special symbols. Fig. 4 
shows that the expression yx bt 763 2 −+ is decomposed 
and its hierarchy is represented by a parse tree. 
According to phase 1, a root is created (see Fig. 4(b)), 
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and all the symbols {6, 3, x, 2, t, +, b, -, 7, y} are moved 
into the table. In phase 2, according to steps 2 and 3, 
sequentially select the symbols "6, 3", and "x" as the 
centres, and add them to the list w ( w ={63x}). When 
x is the centre, the symbols "2, t, +", and "b" that are 
between x and – are identified as superscript. According 
to step 4, based on the given lexicon, the symbols "63x" 
are grouped into two basic units: "63" and "x". Two new 
nodes are then created to load these two basic units (see 
Fig. 4 (c)). Therefore, a child of the node that contains 
the symbol x is created to hold the superscript "2t+b". 
The nodes that contain the basic units are the children of 
the root. Similarly, the remaining symbols "-7y" define 
three basic nodes and are added to the root as children 
(see Fig. 4(d)). Consequently the hierarchical level that 
consists of those basic units is detected. Other levels are 
found by submitting the sub-expression using the same 
process recursively. Fig. 4(e) shows the whole parsing 
tree that represents the hierarchy of the given expression.   

 
Fig.5. Two examples of expression where the special symbol "-" 
was written after the numerators. (a) the superscript of x and the 

numerator "-" are separated. (b) the hierarchical level of the 
numerator "63x" is swapped with the hierarchical level of the 

symbol "-". 
 
However, when an expression has special symbols, 

the above process cannot be directly used to decompose 
the hierarchy of the expression, because the special 
symbols have their own grouping rules, which are 
different from the other symbols. If the numerator or max-
limitation is written before the special symbol (e.g. "-", “∫”, 
“√” or “∑”) in an expression, the above process will 
incorrectly group the symbols, resulting in wrong 
hierarchical levels of the parsing tree. The expressions in 
which the numerator was written before the symbol "-", 
Fig. 5(a) shows that the superscript of the symbol "x" will 
contain the numerator that actually belongs to the symbol 
"-", and Fig. 5(b) shows that the expression will be 
incorrectly decomposed. Therefore, the above process has 
to be modified to handle special symbols. This can be 
achieved by modifying step 2 as follows: 

2)   When the centre symbol Sc is determined, it is firstly 
added to the list w . If Sc is the last symbol, go to step 4. 
Otherwise, the special relationships between its 
neighbours are identified. During the identification of 
the centre neighbours, the following steps are 
performed: 

a) If the end of the symbol list Se is reached, go to step 3. 

b)  If the symbol Sr that shares relationship "RIGHT" 
with the centre symbol Sc is found, and Sr is not the 
special symbol "-" or "∑", go to step 3. 

c) When the symbol Sr that shares relationship "RIGHT" 
with the centre symbol Sc is found, and Sr is the 
special symbol "divide" or ∑", move the location of Sr 
in the table before the symbols that actually shares 
relationship "ABOVE" with Sr so that it can correctly 
be grouped with the centre symbol Sc. The location of 
special symbol Sr in the table is moved before the 
symbols and it is dealt with as follows: Firstly, 
according to the spatial relationships, find the set of 
the symbols Ssa that contains the symbols, which 
actually belong to the symbol Sr neighbourhood. 
Secondly suppose that Sr is the centre and use G(.) to 
calculate the spatial relationships between the symbol 
Ssa. Finally place the location of Sr before the symbols 
that share the spatial relationship "ABOVE" with Sr 
(see Fig. 6(c)). Change the location of the symbol Sr in 
the table, go to step 3. 

d) If the symbol Sr is a special symbol (e.g. "divide", “∫” 
or "∑") and it is located under the centre symbol Sc, 
create two new nodes to swap the hierarchical levels. 
One new node is a child of the other. For these two 
new nodes, suppose that the parent and the child 
nodes are np and nc respectively, and let the parent of 
the node which contains the centre symbol be Pc. The 
procedure of swapping hierarchical levels is as 
follows: Firstly, the special symbol is assigned to 
node np, the spatial relationships "RIGHT" and "UP" 
are assigned to node np and nc respectively. Secondly, 
move all of the children from node Pc to node nc as 
children. Thirdly, let node np become a child of the 
parent of node Pc. Fourthly, select this special symbol 
as the centre Sc, and go back to the start of the 
procedure.   

By replacing the old step 2 by the new step, we obtained 
a robust process for decomposing an expression and 
constructing its corresponding parsing tree. Fig. 6 gives 
an example for decomposing the hierarchy of a 
mathematical expression that is written from left to right 
and from top to bottom. Fig. 6(a) is an online handwritten 
mathematical expression. Fig. 6 (c) shows that the 
position of symbols "7" and "-" in the table are swapped, 
when the symbol "x" that shares the spatial relationship 
"RIGHT" with the symbol "-" is found. Consequently, 
the symbol "-" is located earlier than symbol "7", and the 
symbols are easily separated into two parts: "2t+b" and 
"7", which belong to the symbol "x" and "-" respectively 
(see Fig. 6(d) and 6(e)). Fig. 6(d) shows the node that 
contains the symbols "2t+b" is a child of the node that 
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contains the symbol "x". Fig. 6(e) shows that the node 
that contains the symbol "-" is the same hierarchical level 
with the node that contains "x". Fig. 6(f) shows that the 
hierarchy of the sub-expression "2t+b" is parsed and 
translated into a tree. Fig. 6(g) shows that the whole 
hierarchical tree of the expression, and the node that 
contains the symbol "-" is the grandparent for the nodes 
that contain "63", "x" or "-". Therefore, the hierarchical 
level that "-" locates is higher than the one for the 
numerator 

y
x bt

7
63 2 +  . 

 

 

Fig.6. Parsing the structure of an expression with special symbols. (a) is 
the online handwritten expression. (c) shows the order of the symbols 

from the old table to the new one. (b), (d), (e), (f) and (g) are the instant 
trees. In the first field of the nodes, the symbols "R", "RU", "D" and "U" 

represent the spatial relationships "RIGHT", "RIGHT-UP", "DOWN" and 
"UP" respectively. 

2.3 Expression analysis 
 
In practice, poorly written and joined characters are 

common in a mathematical expression. To achieve an 
acceptable recognition rate, the contextual knowledge has 
to be used for online handwritten mathematical expression 
recognition, including syntactical and semantic knowledge. 

After the parsing structure, the 1-D representation is 
converted into a parsing tree and then the whole 
expression is analysed, which includes syntax checking 
and semantic analysis. In the current research, the 
completely established parsing tree is converted into Latex 
format [1]. At present, only a small set of grammar 
expressions for Latex is created. However, this set can be 
easily extended by adding new rules to the grammar. 

3. Experimental results and Discussion 

Two datasets are used in the experiments: one dataset 
is used to train the spatial functions (the SVM and MLP), 
the other is used to verify the whole structural analysis 
approach. These two datasets were collected by four 
researchers using a Trust tablet 200 connected to a Dell 
Optiplex GX620 PC. The dataset for training the spatial 
functions contains 1422 patterns (called spatial relation 
data). The other dataset consists of 112 expressions (40 
short expressions and 72 long expressions). These 112 
expressions are not only used to verify the efficiency of 
the proposed parsing approach, they are also used to 
generate 1822 spatial relation patterns for testing the 
efficiency of the spatial functions. These 1822 patterns are 
obtained by segmenting the symbols of the expressions. In 
the following, we introduce the segmentation and symbol 
recognition approaches used the experiments. This is 
followed by the experimental results outlining both the 
efficiency of our technique as well as comparing it to the 
existing approaches. 
 
3.1 Segmentation and Symbol Recognition 
 

Initially, an expression consists of a number of 
strokes, and each stroke is simply represented by a 
sequence of points. Symbol recognition that includes 
segmentation and identifies symbols was carried out first. 
In this paper, segmentation and symbol identification are 
simultaneously performed. The segmentation groups the 
strokes into a number of symbols by observing the centre 
points and the output confidence of the recognizer. 
Generally, a symbol consists of less than 4 strokes. 
Therefore, every 4 consecutive strokes are taken into 
consideration. The process of the stroke grouping is 
carried out as following: (1) calculate the bounding box 
with the centre point of each stroke according to Eq.1, (2) 
select two consecutive strokes 1stroke +i  and 

2stroke +i
 from 

the left. If the centre point of one stroke is inside the 
bounding box of the other stroke, or the two centre points 
of the two strokes are near the same location, the two 
strokes are combined into one hypothetical symbol Sone. If 
the centre of the third stroke strokei+3 is inside the 
bounding box of the hypothetical symbol Sone or the 
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bounding box of the stroke 3stroke +i  covers the centre of 
the symbol Sone, the third stroke strokei+3 is merged into 
the symbol Sone. When bounding boxes of the strokes do 
not cover the stroke strokei+3  are different symbols, the 
highest confidence (probability) from HMM-SNN outputs 
is selected to group the strokes {strokei, i=1,2,3,4} into a 
number of symbols. This technique of grouping strokes 
into symbols by selecting the highest confidences can be 
found in [30]. When the symbol is found, the next four 
stokes will be considered. Thus the recursive segmentation 
process is used to group all the strokes in an expression 
into a number of symbols. Once the segmentation is done, 
the HMM-SNN method is used to identify the unknown 
symbols. The detail of the HMM-SNN method is given in 
[13, 14]. The symbol recognizer based on HMM-SNN can 
classify English characters, digits, common mathematical 
Greek symbols and operators. The information and the 
label of classes of symbols are passed from the symbol 
recognition stage to the structure analysis stage. 
 
3.2 Experiments of Structural Analysis 
 
The MLP and SVM were used as the spatial functions to 
predict the spatial relationships between the symbols of 
expressions, which is detailed in Section 2.2.1. The MLP 
with one hidden layer was trained based on the 1422 
patterns. The number of input neurons is as the same as 
the number of the dimensions of a geometrical feature 
vector. The number of output neurons is the number of 
classifications of the spatial relationships. The number of 
hidden neurons of the MLP is equal to the average of the 
numbers of input and output neurons. 16, 13 and 9 are the 
numbers of the input, hidden and output neurons, 
respectively. The sigmoid function is selected as the 
activation function for the MLP. BP learning algorithm 
with the learning rate 0.3 and the maximum 500 cycles 
was used to train the MLP. The 4 folds for the Cross-
Validation [10] were used to stop training the MLP. The 
highest cross-validation accuracy of 96.19% was achieved. 

 With the training data and 4 folds for the Cross-
Validation, the SVM were trained to find the separating 
decision hyperplane that maximizes the margin of the 
classified training data. Two sets of values: the 
regularization term { }-578 2,...,2,2C∈ and { }-478 2,...,2,2∈σ  of 
RBF were attempted to find the best parameters for multi-
classification of the spatial relationships between symbols. 
All together, 169 combinations of C andσ were evaluated 
in the experiment. The optimal parameter set 

),( σC yielding a maximum classification accuracy was 
)2,(2 62 . The achieved accuracy of the Cross Validation 

is 95.98%.  

     The 1822 testing patterns were used to test the MLP, 
the SVM and the threshold function of Zanibbi et. al. [25]. 
the MLP, the SVM and the threshold function achieved 
the accuracy of 92.81%, 95.77% and 81.28%, respectively 
(See the Table 4). The confusion matrixes of the 
classification of spatial relations are showed in the Tables 
1, 2 and 3. These tables were obtained by the MLP, the 
SVM and the spatial function with the thresholds, 
respectively. In the tables, the spatial relationships 
"RIGHT-UP", "RIGHT-DOWN", "LEFT", "RIGHT", "DOWN", 
"LEFT-UP", "LEFT-DOWN", "UP" and "INNER" are 
represented by 1, 2, 3, 4, 5, 5, 6, 7, 8 and 9, respectively 
(as in Figure 2). The shows what spatial relationships are 
used often. The spatial relationships "RIGHT-UP", "RIGHT", 
"DOWN", "UP" and "RIGHT-DOWN" are the most often 
used. The spatial relationships "LEFT-UP" and "LEFT-
DOWN" are not often used. The tables also show that what 
spatial relation are easily identified into the wrong one by 
the spatial functions.  

Table 1. Confusion Matrix (rows: teaching input, columns: 
classification) obtained by the MLP. 

C 1 2 3 4 5 6 7 8 9
1 335 3 0 22 0 0 0 0 0
2 1 401 0 62 0 0 1 0 1
3 0 0 43 1 0 1 2 0 0
4 2 13 0 561 0 0 0 0 0
5 1 0 0 0 160 0 0 8 0
6 0 0 0 0 0 2 0 0 0
7 0 0 0 0 0 0 0 0 0
8 0 0 0 1 8 3 0 148 0
9 0 0 0 1 0 0 0 0 41

Table 2. Confusion Matrix (rows: teaching input, columns: 
classification) obtained by the SVM. 

C 1 2 3 4 5 6 7 8 9
1 342 3 0 15 0 0 0 0 0
2 9 451 0 4 0 0 0 0 2
3 0 0 45 1 0 0 1 0 0
4 3 16 0 556 0 0 0 0 1
5 0 0 0 0 163 0 0 6 0
6 0 0 0 0 0 2 0 0 0
7 0 0 0 0 0 0 0 0 0
8 0 0 0 0 16 0 0 144 0
9 0 0 0 0 0 0 0 0 42

 
Table 3. Confusion Matrix (rows: teaching input, columns: 

classification) obtained by the baseline function with the thresholds. 
C 1 2 3 4 5 6 7 8 9
1 115 4 0 19 0 0 0 222 0
2 41 411 0 10 1 0 1 0 2
3 0 0 43 1 0 3 0 0 0
4 4 12 0 556 3 0 0 0 1
5 0 2 0 0 165 1 1 0 0
6 0 0 0 0 0 2 0 0 0
7 0 0 0 0 0 0 0 0 0
8 1 1 0 0 3 7 0 148 0
9 0 0 0 0 0 0 0 1 41
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     The above results were obtained by the MLP and SVM 
for the determination of the spatial relationship between 
only two symbols. However, they do not show mean that 
two-dimensional expressions can be correctly converted 
into their equivalent one-dimensional representation with 
the same high recognition rates (92.81% and 95.77%). 
Therefore, each entire expression in testing dataset was 
used to verify the efficiency of the proposed approach. 
Each expression data was converted into its equivalent 
one-dimensional syntactical representation that is the 
Latex text. Figure 7 shows some idea examples of 
expressions that are used for testing and training. Unlike 
the above classification problem, it is very difficult to use 
machines to verify the structure of an entire expression. 
Therefore, we directly verify whether the expression is 
correctly parsed by the proposed approach here. 
 

 
Fig. 7.Samples for correct recognition results 

 
Table 4. The recognition results by different analysis approaches. 

40 Short 
Expressi

ons 

72 Long 
Expressio

ns 

Total 112 
Expressi

ons 
Method

s 

spatial 
Functions 

G(.) 
Rates % Rec. 

Rates %
Rec. 

Rate % 
Rec. 

Rate % 

BST 81.28 72.50 63.89 66.96 
ASG-
MLP 92.81 90.00 83.33 85.71 
ASG-
SVM 95.77 97.50 86.11 90.18 

 
      The BST of Zanibbi et. al. [25] and our proposed 
structural analysis approach with the spatial functions 
(them MLP and SVM) were used to recognize the 
structures of the 112 expressions. The recognition results 
of the approaches are showed in Table 4. In the Table 4, 
the recognition rates from our approach are higher than the 
one from BST approach (85%, 90.18% > 66.96%). From 
this table, the approaches more successfully recognize the 
short (or simple) expressions than the long (or complex) 
ones. This table shows that the spatial functions can 
influence or affect the entire the analysis process (e.g. 
structural parsing). For the new proposed approach, if the 
spatial function can achieve higher recognition rate of the 

spatial relationships between symbols, the entire approach 
can also achieve higher recognition rate of the expression's 
structures. For example, the analysis approach with the 
SVM (AGS-SVM) achieved higher accuracy than the one 
with the MLP (AGS-MLP). Because a single incorrect 
spatial relationship between two symbols can cause 
incorrect recognition of the whole structural of an 
expression, the recognition rates of 85.71% and 90.18% 
on the expressions are less than the recognition rates of 
92.81% and 95.77% on the spatial relation data. 

3. Conclusion 

In this paper we propose an approach for structural 
analysis of online handwritten mathematical expressions 
to reduce the limitation of Attribute String Grammar and 
the Baseline Tree Transformation approaches, which 
strongly depend on the symbol recognition. Given an 
expression, the proposed approach extraction attributes 
(bounding boxes and mass points) of the symbols in the 
expression, then parse the structure of the expression to 
build up a tree, and finally perform expression analysis to 
translate the tree into any syntax desired language. In the 
parsing structure stage which is the most important 
process, the algorithm finds the centre symbols on the 
baselines which are presented by centre symbol's attributes, 
then uses the MLP or SVM to predict the relationships 
between the centre symbol and other symbols, and groups 
these symbols into a number of sub-expressions 
(branches) and a number of basic units. Finally, the basic 
units added to the tree and the sub-expressions are 
recursively decomposed by this process. The capability of 
this approach is demonstrated in terms of the achieved 
recognition rate on the created datasets from the tablet. 
The experimental results show the approach is well suited 
for structural analysis of online handwritten mathematical 
expressions. 
      Further research should use a huge dataset to evaluate 
the effectiveness of this approach. Comparative study with 
other algorithms will be pursued in the near future. More 
new rules to the expression grammar (e.g. based on Latex 
representation) should be added to this structural analysis 
system. In addition, further research should focus on the 
segmentation. 
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