
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

47

Manuscript received July 5, 2007

Manuscript revised July 25, 2007

A Structural Analysis Approach for Online Handwritten
Mathematical Expressions

B.Q. Huang† and M-T. Kechadi

School of Computer Science and Informatics,
University College Dublin, Belfield, Dublin 4, Ireland

Summary
This paper proposes a structural analysis approach for
mathematical expressions based on the Attribute String Grammar
and the Baseline Tree Transformation approaches. The approach
consists of geometrical feature extraction, parsing structure and
expression analysis steps. The algorithm for structure parsing
uses baselines, which are represented by geometrical features to
recursively decompose the hierarchical levels. During a
hierarchy decomposition of an expression, it predicts the
relationships along the symbols, and then groups the symbols
into a number of sub-expressions and a set of basic units. The
basic units are added into the tree and the same parsing process is
performed on these sub-expressions. Once all sub-expressions
are parsed, expression analysis is carried out to translate the tree
into any desired syntax (e.g. Latex, Lisp). The experiments are
performed to test the efficiency of this proposed structural
analysis approach.
Key words:
Online handwritten mathematical expression recognition,
Structural analysis, Baseline, Multilayer Perceptron Neural
Networks, Support Vector Machines.

1. Introduction

One of the advantages of pen-based interfaces (e.g.
pocket PC, digital tablet) is that they allow users to
handwrite mathematical expressions on an electronic
tablet into the word processors. Consequently, unlike
traditional input interfaces, such as keyboards, pen-based
interfaces are much more preferred by users for producing
mathematical documents.

The process of mathematical expression recognition
generally consists of three steps: segmentation, symbol
recognition and structural analysis. The segmentation is
used to separate symbols of an expression. Several
approaches have been proposed for segmentation and
symbol recognition. More details about segmentation and
symbol recognition techniques and their challenges can be
found in the literature [13-16, 23, 26, 27, 29, 30]. This
paper focuses mainly on structural analysis.

In online handwritten mathematical expressions, the
structural analysis is very challenging problem. Unlike a
linear word, a mathematical expression is a two

dimensional structure. For instance, a mathematical
expression consists of a number of symbols, which are
connected by some spatial relations, such as super and
sub-scripts. The spatial relationships among the symbols
are of different types, because the symbols’ sizes and
placements characterising them vary a lot. In addition,
there are different types of symbols; each type has its own
grouping rules. For instance, digits and letters can be
grouped together to represent a specific meaning (e.g.
123.05 and sin); since binding operators (e.g. ∑, ∫)
dominate the sub-expressions around them, these sub-
expressions should be grouped as individual units. For all
these reasons, it is not easy to define a structural analysis
technique for handwritten mathematical expressions. Few
techniques for structural analysis were introduced in the
literature and major ones are outlined below.

The Projection Profile Cutting [22, 28] projects pixels
of an expression onto x- and y-axes to form x- and y-
histograms, then it divides the expression into a number of
components along the histograms. Although this method
can quickly parse the structure of an expression, it fails in
detecting some scripts (e.g. super/sub-scripts).

The Structure Specification Scheme [8] uses a tree to
represent a mathematical expression, based on the
definition of operator range, precedence and dominance.
But it also cannot deal with subscripts and superscripts as
operators.

The basic idea of the Graph grammar [11] was used
for mathematical expressions by Lavirotte and Pottier [19].
They defined a set of rules in graph grammars to match a
given condition. These rules describe the mathematical
relationships and they apply a bottom-up parsing
algorithm to obtain a hierarchical tree.

The Stochastic grammar [9] finds the likely parse tree
of an expression. He defined that the pixels are the only
terminal symbols in his grammar. For mapping non-
terminal symbols to pixels, he used Hamming distance to
compare the rectangle arrays of pixels at each location of
the image to their corresponding templates in the font
dictionary, and obtained their associated probability.
Finally, the probability of a parse tree can be obtained by
multiplying the probabilities for all production rules used

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

48

in a successful parse. This approach does not need
segmentation, but it is computationally expensive.

Lee et al. [21, 20] introduced the Procedural
translation to recognize the structure of an expression.
Their algorithm starts by grouping the symbols, which
deviate from the centre of an expression into a number of
units, and then re-orders this set of the units along with the
remaining symbols according to the y-coordinate of the
centre point of the units or symbols. Thus, the output
string can be obtained by iteratively using this group-order
procedure. However, this approach is not easy to maintain
and extend.

 Chan and Yeung [6] proposed the hierarchical
decomposition method based on definite clause grammar
(DCG), the left-factored rules and binding symbol pre-
processing. However, this approach has a difficulty of
dealing with high-level mathematical expressions,
especially expressions with brackets, matrixes, etc.

The approach of the Attributed String Grammars
(ASG) [2] iteratively groups the symbols of an expression
from top to bottom. The idea is to divide an expression
into a number of sub-expressions by comparing the
symbol's position to the centre line. This process is
iteratively applied to all of the sub-expressions and outputs
a parsing tree. The resulting tree is put through a
semantics checking process and transformed into a desired
syntax. Recently, Zanibbi et al. [25] introduced a Baseline
Tree Transformation approach (BST), which is based on
the String Attribute Grammar approach. They parse the
hierarchical levels by recursive baselines (called layout
pass) in such a way as to construct a tree.

Among all these methods, the ASG technique is the
most complete and popular for analysing the structure of a
mathematical expression. In addition, it easily maintains
any operations in such a way as to reduce the errors.
However, This ASG approach depends heavily on the
symbol recognition. Their spatial functions used to
calculate the spatial relations between the symbols assume
that these symbols are correctly recognised and some
threshold values of these functions are not easy to set.

In this paper we propose an efficient structural
analysis approach based on the Attributed String Grammar
approach. We extract geometrical features of the symbols.
Then we use a Multilayer Perceptron Network (MLP) or
Support Vector Machine (SVM) to recursively find the
baselines and parse the structure of an expression from left
to right and from top to bottom. Finally, the obtained
parsing tree is passed through an expression analyser that
includes the syntax checking and semantic analysis.

2. Structural Analysis Approach

Alternatively, based on the ASG and BST approaches,
we propose a structural analysis approach. Our approach

consists of geometrical feature extraction, parsing
structure and expression analysis stages as shown in
Figure 1(b). Given an expression the geometrical feature
extraction not only extracts the bounding boxes of
symbols and the centers of the boxes, but also extracts the
mass centers of the symbols. In the parsing structure step,
the new approach parses the hierarchy of the expression
and simultaneously performs lexical checking, based on
the Attribute String Grammars with the Neural Network
and Support Vector Machine. Finally, the new approach
performs the expression analysis. Figure 1(a) shows the
BST approach [25], which consists of geometrical feature
extraction, hierarchical parsing or layout pass, lexical
checking and expression analysis steps.

In contrast to the BST, the new approach uses the
mass points instead of the labels of symbols for predicting
the spatial relationships, and our approach uses the MLP
or SVM instead of using the function with a set of the
thresholds for predicting the relationships between the
symbols. Therefore, obtained prediction accuracy by the
MLP/SVM is higher than the one obtained by using
thresholds. Thus, the new approach can reduce
dependency on the symbol recognition. In addition, the
new approach integrates hierarchical parsing and lexical
checking steps into one step -- the parsing structure phase
in such a way as to avoid the errors that will take place in
future parsing process. For the final steps of the both
approaches, the functionality and methods of the
expression analysis are the same. The details of each step
of the new structural analysis approach are described in
the following sections.

An Expression An Expression

Geometrical feature
extraction

Geometrical feature
extraction

Lecical checking

Expression analysis
Expression analysis

output string output string

(a) (b)

Parsing structure (ANN
or SVM with baseline

latest symbols)

Hierachical parsing
(the threshods with

baselines)

Fig. 1 (a) represents the Baseline Tree Transformation approach, (b)

represents our approach.

2.1 Geometrical feature extraction

The input data to structure analysis is a set of the symbols
from segmentation and symbol recognition steps. They are
sorted from left to right and from top to bottom. The first
operation of this structural analysis is to extract the
geometrical features of the symbols of an expression.
Assume that a symbol consists of N points,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

49

s={p1(x1,y1),…,pN(xN,yN)}, the geometrical features vs of
the symbol can be calculated as follows:

 Bounding box:
 iNi

xx
≤≤

=
1min min , iNi

yy
≤≤

=
1min min

 iNi
xx

≤≤
=

1max max , iNi
yy

≤≤
=

1max max (1)

 The centre point pc(xc,yc): the centre position of
the bounding box

2

)(maxmin xxxc
+

= ,
2

)(maxmin

c
yyyc

+
= (2)

 Mass centre point:

N

y
y

N

i i
m
∑ == 1 ,

N
x

x
N

i i
m

∑ == 1 (3)

Given two symbols si and si+1, the spatial relationship
between them depends on their geometrical features

},{
1+

=
ii ss VVF . For an expression S= {si, si+1,…, sM}, the

geometrical feature set is },...,,{
21 Msss VVVF = .

2.2 Parsing Structure

There are two very important tasks that are often
performed and can affect the efficiency of the whole
parsing process: the determination of spatial relationships
between two symbols and the grouping symbols.
Therefore, the approaches to achieve these tasks are
described before giving the details of the algorithm of
parsing structures.

2.2.1 Determination of spatial relationships

The relationship between two symbols depends on
the spatial relation between them, which is "RIGHT-UP",
"RIGHT-DOWN", or "RIGHT", etc. Figure 2 shows nine
types of spatial relationships based on the centre symbol,
which is highlighted by the red box (e.g., for x , the
spatial relationship between the symbols ‘x’ and is
“INTER”).

Fig.2 The layout locations: the black boxes 1, 2, 3, 4, 5, 6, 7, 8 and 9

represent that spatial relationships of "RIGHT-UP", "RIGHT", "RIGHT-
DOWN", "DOWN", "LEFT-DOWN", "LEFT", "LEFT-UP", "UP" and

"INNER", with respect to the red box, respectively.

Given the geometrical features of two symbols, one must
predict their relationship and return one of the 9 spatial
relationships. However, due to the ambiguous position of
the symbols, it is not an easy task. Most of the approaches
use linear functions with thresholds to inspect the
horizontal and vertical displacements. However, the size
of the symbols needs to be considered and also if the

symbols were not recognised correctly the functions with a
set of thresholds more likely give wrong spatial
relationships. In addition, when using the geometrical
features, the baseline function is not suitable for
calculating the relationship between two symbols. MLP
[24] has been successfully applied in pattern recognition.
More recently, SVM, which is one of elegant machine
learning methods [4, 5], has proven to be very efficient.
Therefore, our structural analysis approach uses the MLP
and SVM as spatial function G(.) to calculate the spatial
relationships between two symbols.

 Multilayer Perceptron Networks

The MLP has been widely used in pattern

recognition. The standard MLP is a supervised feed-
forward neural network, which consists of one input
layer, a number of hidden layers and one output layer.
Generally, the activation function is a sigmoid
function and it uses the Back-Propagation (BP)
learning algorithm for training. More details about
MLP can be found in [24].

 Support Vector Machines

An SVM classifier can be trained by finding a

maximal margin hyper-plane in terms of a linear
combination of subsets (support vectors) of the
training set. If the input feature vectors are
nonlinearly separable, SVM maps the data into a high
dimensional feature space by using the kernel trick [4]
and then classifies the data by the maximal margin
hyper-plane using the following function:

() ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

M

i
iii xxyxf δφα ,sgn)((4)

where M is the number of samples in the training set,
xi is a support vector with αi > 0, φ is a kernel
function, x is an unknown sample feature vector, and
δ is a threshold.

The parameters {αi}, can be obtained by solving
a convex quadratic programming problem subject to
linear constraints [5]. In practice polynomial kernels
and Gaussian radial basis functions (RBF) are usually
used for kernel functions. δ can be obtained by taking
into account the Karush-Kuhn-Tucker condition [5],
and choosing any i for which αi > 0 (i.e. support
vectors). However, it is safer in practice to take the
average value of δ over all the support vectors.

Although SVM was originally developed for
binary classification, it was also used successfully to
solve multi-classification problems. The experiments
given in [12] indicated that the one-versus-one

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

50

method developed in [18] was more suitable for
practical use than the other methods.

2.2.2 Grouping Symbols

In order to reduce the errors in interpreting the

symbols, and to simplify the complexity of parsing of
mathematical expression hierarchies, the definition of
grouping symbol is traditionally made for digits, strings,
function names, and special symbols [3,7]. In this study, in
order to convert the 2-D expression into its equivalent 1-D
representation, the definition of grouping symbol is
extended for any symbol. A group of symbols is defined
as a set of consecutive symbols, with a specific meaning,
according to the lexicons and the spatial relationships
between the centre symbol and its neighbours. The spatial
relationships is predicted by the function G(.) as detailed
in the sub-section 2.2.1. If a unit represents a specific
meaning, it is called a basic unit. If the spatial
relationships along these consecutive symbols or are
"RIGHT", it indicates that they are in the same horizontal
line. For instance, 96 is only one basic unit due to the
spatial relationship "RIGHT" between them; but 96
consists of two basic units: 9 and 6, because the spatial
relationship between them is an operator “POWER”.
Similarly, some letters together may form one function
name as a basic unit, such as ‘cos’, ‘log’, ‘ln’, etc. For
example, 1

2
+
+
x
ia can be grouped into two groups based on

the symbol a: {x+1} in "RIGHT-UP" and {i+2} in
"RIGHT-DOWN".

2.2.3 Algorithm

Unlike linear words, the structures of 2-D

mathematical expressions are complex. The symbols of an
expression are of different hierarchical levels, each of
which is corresponded by a baseline. If a baseline is
detected, the symbols on this baseline can be grouped as a
traditional word. The lexical checking is performed by
dividing these symbols into a number of basic units, which
will be added into the tree. If the branches of these
symbols exist, each of them is treated as a sub-expression.
Thus, the whole structure of an expression can be parsed
by recursively finding the baselines, and consequently the
expression is represented by the tree.

Most of the baseline approaches [2,25] use the
functions with thresholds to compare the y-centre (on y-
axes) values of the symbol's bounding boxes. However,
the baselines of the symbols not only rely on the y-centre
values, but also depend on the coordinates, centre and
mass points of symbols. Therefore, an expression might be
incorrectly divided into a number of sub-expressions.

In order to improve the ASG or BST approaches, our
approach uses the geometrical features (bounding boxes,
centre and mass points) to represent the baselines, and
uses the MLP or SVM to calculate the spatial relationships
between the symbols and to detect the branches (grouping
symbols). The detection of the symbols along a baseline
does not only depend on the y-centre of the bounding box
of the, but also on the geometrical features. If a number of
symbols are on the same baseline, the spatial relationship
among these symbols (from left to right) is "RIGHT". The
basic algorithm of the our approach for parsing the
structure of an expression can be described as follows:
initially, consider the first symbol as the centre symbol
and use its attributes to present the baseline, then use
spatial function (MLP or SVM) to calculate the spatial
relationships between the centre symbol and other symbols
and identify the relationship between its neighbourhood.
Secondly, group the symbols (excluding the centre symbol
and the symbols that share the relationship "RIGHT" with
the centre symbol) into different groups according to the 9
types of spatial relationships, and treat each of these
groups as a sub-expression. Thirdly, the symbol that
shares the relationship "RIGHT" with the centre symbol is
treated as the centre symbol (change centre symbol) and
the lexical checking is carried out between the former and
current centre symbols, and add them to the tree. Fourthly,
the same process is performed on the remaining symbols
until all the symbols inputted so far have been processed.
Finally, the same process (the above four steps) is applied
to parse all of the sub-expressions. Consequently, the
expression is represented by a parsing tree when all the
sub-expressions are completed.

Fig. 3. The process of parsing the structure of an expression.

Figure 3 details the parsing structure component

shown in Figure 1. It consists of one queue and one table.
The queue stores a number of expressions and sub-
expressions. The elements in the queue are accessed based
on the first-in-first-out rule. The symbols of an expression
with their geometrical features are stored in the table from

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

51

left to right. The symbols along with their geometrical
features of an entire expression, which have already been
recognised in previous steps, are inserted into the queue.
Before initiating the parsing process one has to read one
expression or sub-expression into the table. The output of
this process is a parsing tree. This tree is composed of a
number of nodes and each node consists of a set of
symbols S, one spatial relationship representing a baseline,
and a set of children nodes V = {v1,v2,v3,v4,v5,v6,v7,v8,v9}.
These children nodes are used to collect the branches, so
that they are called branch nodes. The nodes v1, v3, v4, v5,
v7, v8, and v9 are used to collect the symbols of the block 1,
3, 4, 5, 7, 8 and 9, respectively (see Fig. 2). Thus, any sub-
expression is represented by a node. The process of
parsing the structure of an expression can be described by
two phases and they are described below:

 Phase one (Preparation Phase):

When an expression is ready to be parsed, a new
node is created to record its symbols and submitted to
the queue. If the expression is not sub-expression, its
node is considered as the root. The process starts by
selecting one node from the queue and stores its
symbols along with its geometrical features in the
table, from left to right.

 Phase two (Parsing Tree Construction):

The aim of this phase is to detect all the

hierarchical levels of an expression by identifying all
the branches of the tree and to perform lexical
checking. The symbols with the geometrical features
are sequentially explored from left to right in the table.
The centre symbol Sc is defined and well as its
neighbours. Initially, Sc is the first written symbol of
the expression. If the relationship with one of its
neighbours is "RIGHT", then that symbol becomes
the centre. If one of the special symbols (e.g. divide)
shares the relationship "DOWN" with the centre, the
centre symbol Sc becomes a branch symbol, and the
special symbol becomes the centre Sc. The symbols in
the main hierarchical level (baseline) are grouped into
several basic units and added to the parse tree. Each
branch is treated as a sub-expression and submitted to
the queue so that the process will restart again from
the first phase. Assume that the centre symbols are
stored in a list W. In order to clearly describe the
algorithm for parsing an expression, we explain in the
following the steps of the algorithm without
considering the special symbols (e.g. divide, ∑, ∫ and
√) and then extend it to any special symbol:

1) For the initialisation, the first symbol in the table is
selected as the centre Sc.

2) Add the symbol Sc to the list w . If Sc is the last
symbol, go to step 4. If Sc is not the last symbol, the
symbols after the centre Sc are sequentially selected
to calculate the spatial relationships with the centre
symbol Sc, until the symbol Sr that shares
relationship "RIGHT" with the centre symbol Sc is
found (or the end of the symbol list Se is reached).

3) If there is any symbol between Sc and Sr (or from
the symbol after Sc to Sr, according to the spatial
relationships, the symbols between Sc and Sr (or
from the symbol after Sc to Se) are grouped into
block 1, 3, 4, 5, 7, 8 and 9 respectively (see Fig. 2).
Then go to step 4. If there is no symbol between Sc
and Sr, then Sr becomes the centre and go to step 2.

4) Group the symbols in w into basic units according
to a given lexicon. Thus, new nodes are created
(one for each unit) to load these basic units. The
spatial relationship "RIGHT" is assigned for these
nodes. The parent of the new nodes is the node
from which the symbols were attached to (centre
symbol). If a new node that holds the last basic unit
is used to represent that unit, then the list W is
empty, and Sr becomes the centre symbol and go to
step 2. Simultaneously, these children nodes are
submitted into the queue during the first phase.
Consequently, the process will recursively
decompose the next hierarchical level of the
expression.

Fig.4. Parsing the structure of an expression that has no special symbols.

(a) is the online handwritten expression; (b), (c), (d) and (e) are the
instant trees. The symbols "R" and "RU" represent the spatial

relationship "RIGHT" and "RIGHT-UP", respectively.

The process is used to decompose the hierarchical levels
of the expressions without any special symbols. Fig. 4
shows that the expression yx bt 763 2 −+ is decomposed
and its hierarchy is represented by a parse tree.
According to phase 1, a root is created (see Fig. 4(b)),

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

52

and all the symbols {6, 3, x, 2, t, +, b, -, 7, y} are moved
into the table. In phase 2, according to steps 2 and 3,
sequentially select the symbols "6, 3", and "x" as the
centres, and add them to the list w (w ={63x}). When
x is the centre, the symbols "2, t, +", and "b" that are
between x and – are identified as superscript. According
to step 4, based on the given lexicon, the symbols "63x"
are grouped into two basic units: "63" and "x". Two new
nodes are then created to load these two basic units (see
Fig. 4 (c)). Therefore, a child of the node that contains
the symbol x is created to hold the superscript "2t+b".
The nodes that contain the basic units are the children of
the root. Similarly, the remaining symbols "-7y" define
three basic nodes and are added to the root as children
(see Fig. 4(d)). Consequently the hierarchical level that
consists of those basic units is detected. Other levels are
found by submitting the sub-expression using the same
process recursively. Fig. 4(e) shows the whole parsing
tree that represents the hierarchy of the given expression.

Fig.5. Two examples of expression where the special symbol "-"
was written after the numerators. (a) the superscript of x and the

numerator "-" are separated. (b) the hierarchical level of the
numerator "63x" is swapped with the hierarchical level of the

symbol "-".

However, when an expression has special symbols,

the above process cannot be directly used to decompose
the hierarchy of the expression, because the special
symbols have their own grouping rules, which are
different from the other symbols. If the numerator or max-
limitation is written before the special symbol (e.g. "-", “∫”,
“√” or “∑”) in an expression, the above process will
incorrectly group the symbols, resulting in wrong
hierarchical levels of the parsing tree. The expressions in
which the numerator was written before the symbol "-",
Fig. 5(a) shows that the superscript of the symbol "x" will
contain the numerator that actually belongs to the symbol
"-", and Fig. 5(b) shows that the expression will be
incorrectly decomposed. Therefore, the above process has
to be modified to handle special symbols. This can be
achieved by modifying step 2 as follows:

2) When the centre symbol Sc is determined, it is firstly
added to the list w . If Sc is the last symbol, go to step 4.
Otherwise, the special relationships between its
neighbours are identified. During the identification of
the centre neighbours, the following steps are
performed:

a) If the end of the symbol list Se is reached, go to step 3.

b) If the symbol Sr that shares relationship "RIGHT"
with the centre symbol Sc is found, and Sr is not the
special symbol "-" or "∑", go to step 3.

c) When the symbol Sr that shares relationship "RIGHT"
with the centre symbol Sc is found, and Sr is the
special symbol "divide" or ∑", move the location of Sr
in the table before the symbols that actually shares
relationship "ABOVE" with Sr so that it can correctly
be grouped with the centre symbol Sc. The location of
special symbol Sr in the table is moved before the
symbols and it is dealt with as follows: Firstly,
according to the spatial relationships, find the set of
the symbols Ssa that contains the symbols, which
actually belong to the symbol Sr neighbourhood.
Secondly suppose that Sr is the centre and use G(.) to
calculate the spatial relationships between the symbol
Ssa. Finally place the location of Sr before the symbols
that share the spatial relationship "ABOVE" with Sr
(see Fig. 6(c)). Change the location of the symbol Sr in
the table, go to step 3.

d) If the symbol Sr is a special symbol (e.g. "divide", “∫”
or "∑") and it is located under the centre symbol Sc,
create two new nodes to swap the hierarchical levels.
One new node is a child of the other. For these two
new nodes, suppose that the parent and the child
nodes are np and nc respectively, and let the parent of
the node which contains the centre symbol be Pc. The
procedure of swapping hierarchical levels is as
follows: Firstly, the special symbol is assigned to
node np, the spatial relationships "RIGHT" and "UP"
are assigned to node np and nc respectively. Secondly,
move all of the children from node Pc to node nc as
children. Thirdly, let node np become a child of the
parent of node Pc. Fourthly, select this special symbol
as the centre Sc, and go back to the start of the
procedure.

By replacing the old step 2 by the new step, we obtained
a robust process for decomposing an expression and
constructing its corresponding parsing tree. Fig. 6 gives
an example for decomposing the hierarchy of a
mathematical expression that is written from left to right
and from top to bottom. Fig. 6(a) is an online handwritten
mathematical expression. Fig. 6 (c) shows that the
position of symbols "7" and "-" in the table are swapped,
when the symbol "x" that shares the spatial relationship
"RIGHT" with the symbol "-" is found. Consequently,
the symbol "-" is located earlier than symbol "7", and the
symbols are easily separated into two parts: "2t+b" and
"7", which belong to the symbol "x" and "-" respectively
(see Fig. 6(d) and 6(e)). Fig. 6(d) shows the node that
contains the symbols "2t+b" is a child of the node that

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

53

contains the symbol "x". Fig. 6(e) shows that the node
that contains the symbol "-" is the same hierarchical level
with the node that contains "x". Fig. 6(f) shows that the
hierarchy of the sub-expression "2t+b" is parsed and
translated into a tree. Fig. 6(g) shows that the whole
hierarchical tree of the expression, and the node that
contains the symbol "-" is the grandparent for the nodes
that contain "63", "x" or "-". Therefore, the hierarchical
level that "-" locates is higher than the one for the
numerator

y
x bt

7
63 2 + .

Fig.6. Parsing the structure of an expression with special symbols. (a) is
the online handwritten expression. (c) shows the order of the symbols

from the old table to the new one. (b), (d), (e), (f) and (g) are the instant
trees. In the first field of the nodes, the symbols "R", "RU", "D" and "U"

represent the spatial relationships "RIGHT", "RIGHT-UP", "DOWN" and
"UP" respectively.

2.3 Expression analysis

In practice, poorly written and joined characters are

common in a mathematical expression. To achieve an
acceptable recognition rate, the contextual knowledge has
to be used for online handwritten mathematical expression
recognition, including syntactical and semantic knowledge.

After the parsing structure, the 1-D representation is
converted into a parsing tree and then the whole
expression is analysed, which includes syntax checking
and semantic analysis. In the current research, the
completely established parsing tree is converted into Latex
format [1]. At present, only a small set of grammar
expressions for Latex is created. However, this set can be
easily extended by adding new rules to the grammar.

3. Experimental results and Discussion

Two datasets are used in the experiments: one dataset
is used to train the spatial functions (the SVM and MLP),
the other is used to verify the whole structural analysis
approach. These two datasets were collected by four
researchers using a Trust tablet 200 connected to a Dell
Optiplex GX620 PC. The dataset for training the spatial
functions contains 1422 patterns (called spatial relation
data). The other dataset consists of 112 expressions (40
short expressions and 72 long expressions). These 112
expressions are not only used to verify the efficiency of
the proposed parsing approach, they are also used to
generate 1822 spatial relation patterns for testing the
efficiency of the spatial functions. These 1822 patterns are
obtained by segmenting the symbols of the expressions. In
the following, we introduce the segmentation and symbol
recognition approaches used the experiments. This is
followed by the experimental results outlining both the
efficiency of our technique as well as comparing it to the
existing approaches.

3.1 Segmentation and Symbol Recognition

Initially, an expression consists of a number of
strokes, and each stroke is simply represented by a
sequence of points. Symbol recognition that includes
segmentation and identifies symbols was carried out first.
In this paper, segmentation and symbol identification are
simultaneously performed. The segmentation groups the
strokes into a number of symbols by observing the centre
points and the output confidence of the recognizer.
Generally, a symbol consists of less than 4 strokes.
Therefore, every 4 consecutive strokes are taken into
consideration. The process of the stroke grouping is
carried out as following: (1) calculate the bounding box
with the centre point of each stroke according to Eq.1, (2)
select two consecutive strokes 1stroke +i and

2stroke +i
 from

the left. If the centre point of one stroke is inside the
bounding box of the other stroke, or the two centre points
of the two strokes are near the same location, the two
strokes are combined into one hypothetical symbol Sone. If
the centre of the third stroke strokei+3 is inside the
bounding box of the hypothetical symbol Sone or the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

54

bounding box of the stroke 3stroke +i covers the centre of
the symbol Sone, the third stroke strokei+3 is merged into
the symbol Sone. When bounding boxes of the strokes do
not cover the stroke strokei+3 are different symbols, the
highest confidence (probability) from HMM-SNN outputs
is selected to group the strokes {strokei, i=1,2,3,4} into a
number of symbols. This technique of grouping strokes
into symbols by selecting the highest confidences can be
found in [30]. When the symbol is found, the next four
stokes will be considered. Thus the recursive segmentation
process is used to group all the strokes in an expression
into a number of symbols. Once the segmentation is done,
the HMM-SNN method is used to identify the unknown
symbols. The detail of the HMM-SNN method is given in
[13, 14]. The symbol recognizer based on HMM-SNN can
classify English characters, digits, common mathematical
Greek symbols and operators. The information and the
label of classes of symbols are passed from the symbol
recognition stage to the structure analysis stage.

3.2 Experiments of Structural Analysis

The MLP and SVM were used as the spatial functions to
predict the spatial relationships between the symbols of
expressions, which is detailed in Section 2.2.1. The MLP
with one hidden layer was trained based on the 1422
patterns. The number of input neurons is as the same as
the number of the dimensions of a geometrical feature
vector. The number of output neurons is the number of
classifications of the spatial relationships. The number of
hidden neurons of the MLP is equal to the average of the
numbers of input and output neurons. 16, 13 and 9 are the
numbers of the input, hidden and output neurons,
respectively. The sigmoid function is selected as the
activation function for the MLP. BP learning algorithm
with the learning rate 0.3 and the maximum 500 cycles
was used to train the MLP. The 4 folds for the Cross-
Validation [10] were used to stop training the MLP. The
highest cross-validation accuracy of 96.19% was achieved.

 With the training data and 4 folds for the Cross-
Validation, the SVM were trained to find the separating
decision hyperplane that maximizes the margin of the
classified training data. Two sets of values: the
regularization term { }-578 2,...,2,2C∈ and { }-478 2,...,2,2∈σ of
RBF were attempted to find the best parameters for multi-
classification of the spatial relationships between symbols.
All together, 169 combinations of C andσ were evaluated
in the experiment. The optimal parameter set

),(σC yielding a maximum classification accuracy was
)2,(2 62 . The achieved accuracy of the Cross Validation

is 95.98%.

 The 1822 testing patterns were used to test the MLP,
the SVM and the threshold function of Zanibbi et. al. [25].
the MLP, the SVM and the threshold function achieved
the accuracy of 92.81%, 95.77% and 81.28%, respectively
(See the Table 4). The confusion matrixes of the
classification of spatial relations are showed in the Tables
1, 2 and 3. These tables were obtained by the MLP, the
SVM and the spatial function with the thresholds,
respectively. In the tables, the spatial relationships
"RIGHT-UP", "RIGHT-DOWN", "LEFT", "RIGHT", "DOWN",
"LEFT-UP", "LEFT-DOWN", "UP" and "INNER" are
represented by 1, 2, 3, 4, 5, 5, 6, 7, 8 and 9, respectively
(as in Figure 2). The shows what spatial relationships are
used often. The spatial relationships "RIGHT-UP", "RIGHT",
"DOWN", "UP" and "RIGHT-DOWN" are the most often
used. The spatial relationships "LEFT-UP" and "LEFT-
DOWN" are not often used. The tables also show that what
spatial relation are easily identified into the wrong one by
the spatial functions.

Table 1. Confusion Matrix (rows: teaching input, columns:
classification) obtained by the MLP.

C 1 2 3 4 5 6 7 8 9
1 335 3 0 22 0 0 0 0 0
2 1 401 0 62 0 0 1 0 1
3 0 0 43 1 0 1 2 0 0
4 2 13 0 561 0 0 0 0 0
5 1 0 0 0 160 0 0 8 0
6 0 0 0 0 0 2 0 0 0
7 0 0 0 0 0 0 0 0 0
8 0 0 0 1 8 3 0 148 0
9 0 0 0 1 0 0 0 0 41

Table 2. Confusion Matrix (rows: teaching input, columns:
classification) obtained by the SVM.

C 1 2 3 4 5 6 7 8 9
1 342 3 0 15 0 0 0 0 0
2 9 451 0 4 0 0 0 0 2
3 0 0 45 1 0 0 1 0 0
4 3 16 0 556 0 0 0 0 1
5 0 0 0 0 163 0 0 6 0
6 0 0 0 0 0 2 0 0 0
7 0 0 0 0 0 0 0 0 0
8 0 0 0 0 16 0 0 144 0
9 0 0 0 0 0 0 0 0 42

Table 3. Confusion Matrix (rows: teaching input, columns:

classification) obtained by the baseline function with the thresholds.
C 1 2 3 4 5 6 7 8 9
1 115 4 0 19 0 0 0 222 0
2 41 411 0 10 1 0 1 0 2
3 0 0 43 1 0 3 0 0 0
4 4 12 0 556 3 0 0 0 1
5 0 2 0 0 165 1 1 0 0
6 0 0 0 0 0 2 0 0 0
7 0 0 0 0 0 0 0 0 0
8 1 1 0 0 3 7 0 148 0
9 0 0 0 0 0 0 0 1 41

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

55

 The above results were obtained by the MLP and SVM
for the determination of the spatial relationship between
only two symbols. However, they do not show mean that
two-dimensional expressions can be correctly converted
into their equivalent one-dimensional representation with
the same high recognition rates (92.81% and 95.77%).
Therefore, each entire expression in testing dataset was
used to verify the efficiency of the proposed approach.
Each expression data was converted into its equivalent
one-dimensional syntactical representation that is the
Latex text. Figure 7 shows some idea examples of
expressions that are used for testing and training. Unlike
the above classification problem, it is very difficult to use
machines to verify the structure of an entire expression.
Therefore, we directly verify whether the expression is
correctly parsed by the proposed approach here.

Fig. 7.Samples for correct recognition results

Table 4. The recognition results by different analysis approaches.

40 Short
Expressi

ons

72 Long
Expressio

ns

Total 112
Expressi

ons
Method

s

spatial
Functions

G(.)
Rates % Rec.

Rates %
Rec.

Rate %
Rec.

Rate %

BST 81.28 72.50 63.89 66.96
ASG-
MLP 92.81 90.00 83.33 85.71
ASG-
SVM 95.77 97.50 86.11 90.18

 The BST of Zanibbi et. al. [25] and our proposed
structural analysis approach with the spatial functions
(them MLP and SVM) were used to recognize the
structures of the 112 expressions. The recognition results
of the approaches are showed in Table 4. In the Table 4,
the recognition rates from our approach are higher than the
one from BST approach (85%, 90.18% > 66.96%). From
this table, the approaches more successfully recognize the
short (or simple) expressions than the long (or complex)
ones. This table shows that the spatial functions can
influence or affect the entire the analysis process (e.g.
structural parsing). For the new proposed approach, if the
spatial function can achieve higher recognition rate of the

spatial relationships between symbols, the entire approach
can also achieve higher recognition rate of the expression's
structures. For example, the analysis approach with the
SVM (AGS-SVM) achieved higher accuracy than the one
with the MLP (AGS-MLP). Because a single incorrect
spatial relationship between two symbols can cause
incorrect recognition of the whole structural of an
expression, the recognition rates of 85.71% and 90.18%
on the expressions are less than the recognition rates of
92.81% and 95.77% on the spatial relation data.

3. Conclusion

In this paper we propose an approach for structural
analysis of online handwritten mathematical expressions
to reduce the limitation of Attribute String Grammar and
the Baseline Tree Transformation approaches, which
strongly depend on the symbol recognition. Given an
expression, the proposed approach extraction attributes
(bounding boxes and mass points) of the symbols in the
expression, then parse the structure of the expression to
build up a tree, and finally perform expression analysis to
translate the tree into any syntax desired language. In the
parsing structure stage which is the most important
process, the algorithm finds the centre symbols on the
baselines which are presented by centre symbol's attributes,
then uses the MLP or SVM to predict the relationships
between the centre symbol and other symbols, and groups
these symbols into a number of sub-expressions
(branches) and a number of basic units. Finally, the basic
units added to the tree and the sub-expressions are
recursively decomposed by this process. The capability of
this approach is demonstrated in terms of the achieved
recognition rate on the created datasets from the tablet.
The experimental results show the approach is well suited
for structural analysis of online handwritten mathematical
expressions.
 Further research should use a huge dataset to evaluate
the effectiveness of this approach. Comparative study with
other algorithms will be pursued in the near future. More
new rules to the expression grammar (e.g. based on Latex
representation) should be added to this structural analysis
system. In addition, further research should focus on the
segmentation.

References

[1] http://www.latex-project.org/.
[2] R. H. Anderson. Syntax-directed recognition of hand

printed two-dimensional mathematics. Ph.D. dissertation:
Determent Eng. Appl. Phys., Harvard Univ., 1968.

[3] D. Blostein and A. Grbavec. Recognition of Mathematical
Notation, chapter 22. World Scientific Publishing Company,
1996.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

56

[4] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training
algorithm for optimal margin classifiers. In Pro. The 5th
Annual ACM Workshop on Computational Learning
Theory, pages 144-152, Pittsburgh, PA, July 1992. ACM
Press.

[5] C. J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discovery,
2(2):121-167, 1998.

[6] Kam-Fai Chan and Dit-Yan Yeung. Towards efficient
structural analysis of mathematical expressions. In
SSPR/SPR, pages 437-444, 1998.

[7] Kam-Fai Chan and Dit-Yan Yeung. Mathematical
expression recognition: a survey. IJDAR, 3(1):3-15, 2000.

[8] S. K. Chang. A method for the structural analysis of two-
dimensional mathematical expressions. Information
sciences, 2:253-272, 1970.

[9] P.A. Chou. Recognition of equations using a two
dimensional stochastic context-free grammar. In In SPIE11
Conference on Visual Communications and Image
Processing, volume 1199, pt. 2, pages 852-863, Philadel
phia, PA, 1989.

[10] Herwig Friedl and Erwin Stampfer. Cross-Validation. 2001.
http://citeseer.ist.psu.edu/article/friedl01crossvalidation.htm.

[11] A. Grbavec and D. Blostein. Mathematics recognition using
graph rewriting. In Document Analysis and Recognition,
Proceedings of the Third International Conference on,
volume 1, pages 417-421, Philadelphia, PA, Aug 1995.

[12] C.-W. Hsu and C.-J. Lin. A comparison of methods for
multi-class support vector machines. IEEE Transactions on
Neural Networks, 13:415-425, 2002.

[13] B. Q. Huang and M-T. Kechadi. An hmm-snn method for
online handwriting symbol recognition. In Interna tional
Conference on Image Analysis and Recognition, pages 897-
905, Povoa de Varzim, Portugal, Sept. 2006. LNCS 4142.

[14] B. Q. Huang and M-T. Kechadi. A hybrid hmm-svm
method for online handwriting symbol recognition. In The
6th International Conference on Intelligent Systems Design
and Applications (ISDA'06), pages 887-891, Jian, Shandong,
China, Oct. 2006. IEEE Computer Society.

[15] M. Koschinski, H.J. Winkler, and M. Lang. Segmentation
and recognition of symbols within handwritten
mathematical expressions. In ICASSP, pages 2439-2442,
1995.

[16] A. Kosmala, S. Lavirotte, L. Pottier, and G. Rigoll. On-line
handwritten formula recognition using hidden markov
models and context dependent graph grammars. In 5th
International Conference on Document Analysis and
Recognition, Bangalore, India, 1999.

[17] A. Kosmala and G. Rigoll. Recognition of online
handwritten formulas. In 6th Int. Workshop on Frontiers in
Handwriting Recognition (IWFHR), Taejon, Korea, 1998.

[18] U.H.G. Krebel. Pairwise classi¯cation and support vector
machines. In B. SchOlkopf, C.J.C. Burges, and A.J. Smola
(Eds.), editors, Advances in kernel methods: Support vector
learning, pages 255-268, Cambridge, MA, 1999. MIT Press.

[19] S. Lavirotte and L. Pottier. Optical formula recognition. In
In Proc. 4th Int. Conf. on Document Analysis and
Recognition, volume 1, pages 357-361, Ulm, Germany,
1995.

[20] His-Jain Lee and Jiumn-Shine Wang. Design of a

mathematical expression recognition system. In The 3rd
International conference on Document analysis and
recognition, pages 1084-1087, 1995.

[21] H.J. Lee and M.C. Lee. Understanding mathematical ex
pressions using procedure-oriented transformation. Pattern
Recognition, 27(3):447-457, 1994.

[22] N. Okamoto and A. Miuazawa. An experimental
implementation of a document recognition system for
papers containing mathematical expressions. In Structural
Document Image Analysis, pages 36-53, New York, 1992.
Springer Verlag.

[23] R. Plamondon and S. Srihari. Online and offline
handwriting recognition: A comprehensive survey. IEEE
PAMI, 22(1):63-84, 2000.

[24] D. E. Rumelhart and J. L. McClelland. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
volume 1 and 2. MIT Press, Cambridge, MA, 1986.

[25] R.Zanibbi, D. Blostein, and J.R. Cordy. Recognising
mathematical expressions using tree transformations. IEEE
Tran. on Pattern Analysis and Machine Intelligence, 24(11),
November 2002.

[26] J. Serra. An overview of character recognition focused on
off-line handwriting. IEEE Trans., 31(1):216-233, May
2001.

[27] C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of
the art in online handwriting recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 12(8):787-808, 1990.

[28] H. M. Twaakyondo and M.Okamoto. Structure analysis and
recognition of mathematical expressions. In Pro. of 3rd Int.
Conf. on Document Analysis and Recognition, volume 1,
Montreal, Canada, 1995.

[29] H. J. Winkler and M. Lang. Online symbol segmentation
and recognition in handwritten mathematical expressions.
Volume 4, pages 3377-3380, Munich, Germany, 1997.

[30] H.J. Winkler and M. Lang. Symbol segmentation and
recognition for understanding handwritten mathematical
expressions. In A. Dwnton and S. Impedovo, editors,
Progress in Handwriting Recognition, World Scientific,
volume 4, pages 407-412, Singapore, 1997.

