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Modeling and Formal Verification of Communication Protocols 
for Remote Procedure Call 

Abstract 
This paper presents the modeling and formal verification of some 
communication protocols for Remote Procedure Call (RPC). 
These protocols include Request (R) Protocol, Request Reply 
(RR) Protocol and Request-Reply-Acknowledgement (RRA) 
Protocol. We have modeled the above-mentioned protocols in 
Symbolic Model Verifier (SMV), a formal verification tool. In 
modeling of each protocol, each of the two agents (Client and 
Server) is modeled as a finite state machine. The common 
channel between these agents is modeled as a bounded queue of 
message. Some important features of modeled protocols are then 
formal verified using the SMV tools. 
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1. Introduction 

Finite state concurrent systems arise naturally in several 
areas of computer science such as in the design of digital 
circuits, communication protocols, distributed systems etc. 
Logical errors found late in the design phase of these 
systems are an extremely important problem for the circuit 
designers, protocol designer and the programmers. 

Simulation and testing [1] are some of the traditional 
approaches for verifying the finite state systems. 
Simulation and testing both involve making experiments 
before deploying the system in the field. While simulation 
is performed on an abstraction or a model of the system, 
testing is performed on the actual product. In the case of 
circuits and protocols, simulation is performed on the 
design of the circuit and on that of protocols, whereas 
testing is performed on the systems themselves. In both 
cases, these methods typically inject signals at certain 
points in the system and observe the resulting signals at 
other points. For software, simulation and testing usually 
involve providing certain inputs and observing the 
corresponding outputs. Besides, checking all of the 
possible interactions and finding potential pitfalls using 
simulation and testing techniques is not always possible. 

Formal verification [2], an appealing alternative to 
simulation and testing, conducts an exhaustive exploration 

of all possible behaviors of the system. Thus, when a 
design is marked correct by a formal verification method, 
it implies that all behaviors have been explored and the 
question of adequate coverage or a missed behavior 
becomes irrelevant. There are some robust tools for formal 
verification such as SMV, SPIN, COSPAN, VIS, SMART 
etc [2]. This paper presents the modeling and formal 
verification of some communication protocols for RPC. 
We have used SMV as the verification tool. 

2. Related Works 

People have researched formal verification of computer 
hardware and software for decades. Formal specification 
of bus protocols (for example, PCI local bus) have been 
studied widely and extensively [3,4,5,6]. The work in [6,7] 
promotes a specification style in which the bus protocol is 
described through an observer, which raises errors signals 
on the violation of the protocol. A formal verification of 
the Advanced Micro-controller Bus Architecture (AMBA) 
protocol from ARM has recently been studied [8]. This 
protocol has been formally verified using SMV. The 
Alternating Bit Protocol (ABP) has been verified using 
formal verification technique [9]. Formal Verification has 
been also applied to verify the Embedded HW-SW Shared 
Memory Systems [10]. The bus protocol of the Intel 
Intenium processor has been formally verified by the SMV 
model checker [7]. Besides, so many protocols and finite 
state concurrent systems are being verified using SMV 
model checker.  

3. Formal Verification 

Formal verification [2] is used to check if a system holds a 
property or not. The promise of verification is proving in 
the sense of mathematical proof, in contrast to 
conventional simulation and test, which can tell us only 
that nothing went wrong on the specific case we tried. 
Obviously, exhaustively trying every possible execution of 
a system is a valid proof. The formal verification can be 
viewed as giving the effect of this exhaustive simulation. 
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3.1 Model Checking 

To understand the term model, we need to be familiar with 
transition system and Kripke Structure. A transition 
system is a structure TS = (S, S0, R) where, S is a finite set 
of states; S0⊆ S is the set of initial states and R ⊆ S×S is 
a transition relation which must be total i.e. for every s in 
S there exists s1 in S such that (s, s1) is in R. On the other 
hand, M= (S, S0, R, AP, L) is a Kripke Structure; where (S, 
S0, R) is a transition system. AP is a finite set of atomic 
propositions (each proposition corresponds to a variable in 
the model) and L is a labeling function. It labels each state 
with a set of atomic propositions that are true in that state. 
The atomic propositions and L together convert a 
transitions system into a model. 

The foremost step to verify a system is to specify the 
properties that the system should hold. For example, we 
may want to show that some concurrent program never 
deadlocks. Once we know which properties are important, 
the second step is to construct a formal model for that 
system. The model should capture those properties that 
must be considered for the establishment of correctness. 

Each formula representing a property is either true or false 
in a given state of Kripke Structure. Its truth is evaluated 
from the truth of its sub formula in a recursive fashion, 
until one reaches atomic propositions that are either true or 
false in a given states. A formula is satisfied by a system if 
it is true for all the initial states of the system. 
Mathematically, say, a Kripke Structure K= (S, S0, R, AP, 
L) and a formula φ (specification of the property) are 
given. We have to determine if K | = φ holds (K is a model 
of φ) or not. K | = φ holds iff K, s | = φ for every s∈S0. If 
the property does not hold, the model checker generally 
produces a counter example that is an execution path that 
cannot satisfy that formula. 

3.2 Symbolic Model Verifier (SMV) 

SMV [11] is a formal verification tool that is used to 
automatically verify the properties of interacting finite 
state machines. In SMV, properties are specified in a 
notation called Computation Tree Logic (CTL), one kind 
of temporal logic. The input language of SMV allows us 
to describe each of the agents of a system as a module. In 
particular, the initial states and the transition relation of 
each of the modules can be specified. SMV constructs a 
global state transition graph of the entire system from the 
description of each module. The transition relation and 
sets of states are viewed as boolean functions. These are 
represented efficiently by a compact data structure called 
Binary Decision Diagram (BDD) [12] which involves 
structure sharing. 

3.2.1 Computation Tree Logic (CTL) Formula 

Atomic propositions, standard boolean connectives of 
prepositional logic (e.g., AND, OR, NOT) and temporal 
operators all together are used to build the CTL formula 
[13]. Each temporal operator is composed of two parts: a 
path quantifier (universal (A) or existential (E)) followed 
by a temporal modality (F, G, X, U) and are interpreted 
relative to an implicit “current state”. There are generally 
many execution paths (the sequences) of the state 
transitions of the system starting at the current state. The 
path quantifier indicates whether the modality defines a 
property that needs to hold on some paths (denoted by 
existential path quantifier E) or on all paths (denoted by 
universal path quantifier A). The temporal modalities 
describe the ordering of events in time along an execution 
path and have the following meaning. (i) F Ø (“reads ‘Ø’ 
holds sometime in the future”) is true in a path if there 
exists a state in that path where formula ‘Ø’ is true. (ii) G 
Ø (“reads ‘Ø’ holds globally”) is true in a path if ‘Ø’ is 
true at each and every state in that path. (iii) X Ø (“reads 
‘Ø’ holds in the next state”) is true in a path if ‘Ø’ is true 
in the state reached immediately after the current state in 
the path. (iv) Ø U φ (“reads ‘Ø’ holds until ‘φ’ holds”) is 
true in a path if ‘φ’ is true in some state in that path, and 
‘Ø’ holds in all preceding states. 

3.2.2 Specification of Properties in CTL 

CTL formulas are sometime problematical to interpret. For 
this, a designer may fail to understand what property has 
been actually verified. Here, we want to add some 
common constructs of CTL formula. (i) AG (Req → AF 
Ack): it is always the case that if the signal Req is true, 
then eventually Ack will also be true. (ii) AG (AF 
DeviceEnabled): DeviceEnabled holds infinitely often on 
every computation path. (iii) AG (EF Restart): from any 
state, it is possible to get to the Restart state. (iv) AG 
(Send → A (Send U Recv)): if Send holds, then eventually 
Recv is true, and until that time, Send remains true. (v) EF 
(~Ready ∧ Started): It is possible to get to a state where 
holds started, but ready does not hold. (vi) AG (in → AX 
AX AX out): Whenever in goes high, out will go high 
within three clock cycles. (vii) AG (~storage_coke → AX 
storage_coke): If the coke storage of a vending machine 
becomes empty, it gets recharged immediately. 

3.2.3 Fairness Constraints 

In verifying concurrent systems, we are occasionally 
interested only in correctness along fair execution. It is 
often necessary to introduce some notion of fairness. For 
example, if there are two processes trying to use a shared 
resource using an arbiter, we may wish to consider only 
those executions in which the arbiter does not ignore one 
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of its request inputs from either of the processors forever. 
Alternatively, we may want to consider communication 
protocols that no message is ever continuously transmitted 
but never received. A fairness constraint can be an 
arbitrary set of states, usually described by the formula of 
the logic. If fairness constraints are interpreted as a set of 
states, then a fair path must contain an element of each 
constraint infinitely often. If fairness constraints are 
interpreted as CTL formulas, then a path is fair if each 
constraint is true infinitely often along the path. The path 
quantifiers in the logic are then restricted to fair path. A 
fairness condition P restricts the system to only those 
paths where P is asserted infinitely often. Basically the 
fairness constraints are used to rule out undesired 
executions. 

4. Remote Procedure Call (RPC)  

RPC is a special case of the general message-passing 
model of Inter Process Communication (IPC). The 
primary motivations for developing RPC facility is to 
provide the programmers with a familiar mechanism for 
building distributed applications. The RPC mechanism is 
an extension of the local procedure call in the sense that it 
enables a call to be made to a procedure that does not 
reside in the address space of the calling process [14]. The 
remote procedure may be on the same computer as the 
calling process or on a different computer. 

In case of RPC, since the caller and the callee processes 
have disjoint address space, the remote procedure has no 
access to data and variables of the caller’s environment. 
Therefore, the RPC facility uses a message-passing 
scheme for information exchange between the caller and 
the callee processes. Fig. 1 shows a typical model of a 
remote procedure call. The client sends a request message 
to the server and waits for a reply message. After 
receiving the request message, the server starts execute the 
procedure and sends a reply message to the client and wait 
for next request message. When client receives the reply 
message, it resumes execution. 

Based on the needs of different systems, several RPC 
communication protocols already exist [15]. These are: (i) 
The Request Protocol (R Protocol) (ii) The Request /Reply 
Protocol (RR Protocol) and (iii) The Request /Reply/ 
Acknowledge-Reply Protocol (RRA Protocol). 

4.1 The Request Protocol 

This protocol is also known as the R (request) protocol. It 
is used in which the called procedure has nothing to return 
as the result of procedure execution and the client requires 
no confirmation that the procedure has been executed. The 

client normally precedes execution immediately after the 
sending the request message, as there is no need to wait 
for a reply message. The protocol provides call semantics 
and requires no retransmission of request messages. Fig. 2 
shows the message communication of R Protocol. The 
client sends request message to the server and the server 
executes the procedure after receiving the request. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.2 The Request/Reply Protocol 

This protocol is also known as the RR (request-reply) 
protocol. The protocol is based on the idea of using 
implicit acknowledgement to eliminate explicit 
acknowledgement messages. (i) A server’s reply message 
is regulated as an acknowledgement of the client’s request 
message. (ii) A subsequent call packet from a client is 
regarded as an acknowledgement of the server’s reply 
message of the previous call made by that client. To take 
care of lost message, timeout based retransmission 
technique is normally used along with RR protocol. A 
client retransmits request message if it does not receive the 
reply message within the predetermined timeout period. 
Servers can support exactly-once call semantics by 
keeping records of the replies in a reply cache that enables 
them to filter out duplicate request message and to 
retransmit reply messages without the need to reprocess a 
request. Fig. 3 shows the message communication of RR 
Protocol. The client sends a request message to the server 
and waits for a reply message. After receiving the request 
message, server executes the procedure and also sends a 
reply message to the client that serves as an 
acknowledgement for the previous request message. When 
client receives the acknowledgement from server, it sends 
next request message that serves as an acknowledgement 
of previous RPC. 

4.3 The Request/Reply/Acknowledge-Reply Protocol 

This protocol is also known as RRA 
(Request/Reply/Acknowledge-Reply) protocol. The RRA 
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protocol requires clients to acknowledge the receipt of 
reply messages. The server deletes information from its 
reply cache only after receiving an acknowledgement for it 
from the client. The RRA protocol provides exactly-once 
call semantics. In this protocol, there is a probability that 
the acknowledgement message itself gets lost. Therefore, a 
unique message identifier is associated with request 
message. This identifier is also associated with 
corresponding reply messages. Each acknowledgement 
message also contains same identifier.  
 

 

 

 

 

 

 

 

 
 
 
A client acknowledges reply message to the server only if 
it has received all previous requests replies. Upon 
reception of the client’s acknowledgement reply for a 
particular reply result, server deletes reply result entries of 
all previous requests. So, the loss of any acknowledgement 
message does not cause any harm to the system. Fig. 4 
shows the message communication of RRA Protocol. The 
client sends a request message to the server and waits for a 
request message. After receiving the request message, the 
server executes the procedure and sends a reply message 
to the client. When client receives the reply message, it 
sends a reply acknowledge message to the server. 

5. Modeling of The Communication Protocols 

The Cadence SMV has been used to formally verify the 
communication protocols for RPC. The aim of this 
modeling and verification is to check if the protocols hold 
all the desired properties and do not hold any undesired 
property. In order to verify any protocol formally, it is 
very much important to model that protocol carefully. In 
this section, we have discussed our modeling of protocols 
in SMV. 

5.1 Power Game Model of Network 

Firstly, each of the two agents (client and server) of each 
of the communication protocols (R, RR and RRA) is 
modeled as finite state machine. To establish 
communication between client and server for each 
protocol, a reliable communication channel is required. 
Here, this communication channel is modeled as a queue 
of message, which is the integral part of both client and 
server of each protocol.  
 
 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 5 shows the modeling of communication channel as a 
queue of request message. The request message is pushed 
through the tail of the queue from the client side and the 
request message is received from the head of the queue at 
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the server side. Fig. 6 shows the modeling of 
communication channel as a queue of reply message. The 
reply message is sent from the server side and it is 
received from the head of the queue at client side. The 
brief description of modeling of client and server of each 
of the protocols in SMV are given in the following 
sections. 

5.1.1 Modeling of R Protocol 

In R protocol, the communication channel is used only for 
sending request message from client to server. There is 
nothing about acknowledgement. The communication 
channel is modeled as a queue of fixed length. This queue 
is modeled as message queue. The client module and the 
server module of R protocol are described as follows. 

5.1.1.1 Client Module 

In the client, the tail and head of the queue are denoted as 
ch_tail_client and ch_head_server respectively. The 
variable full_channel in client module is used to check the 
status of the queue by statement (full_channel := 
((ch_tail_client + 1) mod Q_SIZE) = ch_head_server;). If 
the queue is full then the client has to wait until the queue 
is not free to send request message. Otherwise, the client 
sends request message increasing the tail. The state 
variable state_client can hold either of the value: {sending 
or sent}. The variable sending means that the client is in 
the state of sending message to server via queue. The 
variable sent means that the client is in the state that it 
already sends message to server through the queue. 
Initially, the client is in sending state. The client checks 
the statement state_client = sending & ~full_channel to 
send message. If it is true then the tail is increased by the 
statement next (ch_tail_client):= (ch_tail_client+1) mod 
Q_SIZE; and the client moves to state sent. After a fixed 
time period the client returns in state sending. Fig. 7 shows 
the states of client for request message. If the state of 
client is sent and the channel is not full, it changes its state 
from 1 to 0. On the other hand, if the state is sending and 
the channel is full, it remains at state 0, but if the channel 
is not full, it changes its state from 0 to 1. 

5.1.1.2 Server Module 

The server module maintains two variable ch_head_server 
and ch_tail_client for the queue. The variable 
empty_channel is used to check the status of the queue for 
the server by the statement (empty_channel := 
(ch_tail_client = ch_head_server );). If the queue is empty 
then the server does not change its state. The state variable 
of server is state_server that can hold either of the value: 
{received or receiving}. Initially, the server is in receiving 
state. The server checks the condition (state_server = 

receiving & ~empty_channel) to receive message from 
client. If it is true then the server executes the statements 
(next (ch_head_server) := (ch_head_server+1) mod 
Q_SIZE; and next (state_server):=received;). These mean 
that the message is received from the queue and the server 
changes its state to received. Fig. 8 shows the states of 
server for request message. If the state of server is 
received and the channel is not empty, it changes its state 
from 1 to 0. On the other hand, if the state is receiving and 
the channel is empty, it remains at state 0, but if the 
channel is not empty, it changes its state from 0 to 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1.2 Modeling of RR Protocol 

In RR protocol the communication channel is used for 
sending request message from client to server and for 
receiving reply message (acknowledgement) from server 
to client. The communication channel is modeled as a 
queue of fixed length for both request and reply message 
from client and server respectively. The client module and 
the server module of RR protocol are described as follows. 

5.1.2.1 Client Module 

The modeling client module of RR protocol is similar to 
that of R protocol in case of sending message from client 
to server. Here the message queue can hold only one 
message at a time. This ensures that one message can be 
sent at a time and the next message can be sent after 
having the acknowledgement for the previous one from 
the server. The client module of RR protocol uses two 
variables ack_ch_head_client and ack_ch_tail_server for 
the modeling of the queue of reply message. The client 
module uses the variable empty_ack_channel to check 
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whether the queue either full or not by the statement 
(empty_ack_channel := (ack_ch_head_client = 
ack_ch_tail_server );). The variable state_client_for_ack 
can either hold received or receiving. The client checks the 
condition (state_client_for_ack = receiving & 
~empty_ack_channel) to receive reply message. If it is true 
then the client pops the reply message by increasing the 
ack_ch_head_client and changes its state to received. Fig. 
9 shows the states of client for request message and Fig. 
10 shows the states of client for reply message. It is shown 
in Fig. 9 that if the state of client for send is sent and the 
channel is not full, it changes its state from 1 to 0. On the 
other hand, if the state is sending and the channel is full, it 
remains at state 0, but if the channel is not full, it changes 
its state from 0 to 1. It is also shown in Fig. 10 that if the 
state of client for acknowledgement is received and the 
acknowledgement channel is not empty, it changes its state 
from 1 to 0. On the other hand, if the state is receiving and 
the acknowledgement channel is empty, it remains at state 
0, but if the channel is not empty, it changes its state from 
0 to 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1.2.2 Server Module 

The modeling server module of RR protocol is similar to 
that of R protocol for receiving message. The server 
module uses the variable ack_ch_tail_server and 
ack_ch_head_client to indicate the tail and head of the 
queue of reply message. The full_ack_channel is used to 
check whether the queue is full or not by the statement 
(full_ack_channel:=((ack_ch_tail_server+1)mod Q_SIZE) 
=ack_ch_head_client;).The state_server_for_ack_send of 
server can hold either sent or sending state. The server 
checks the condition state_server_for_ack_send = sending 

& ~full_ack_channel. If the condition is true, the server 
increases the value of ack_ch_tail_server to indicate that 
the reply message is sent and changes its state to sent. 
Otherwise, it is in its same state. Besides this, the server is 
in sending state for any other condition. Fig. 11 shows the 
states of server for request message and Fig. 12 shows the 
states of server for reply message. It is shown in Fig. 11 
that if the states of server for receive is received and the 
channel is not empty, it changes its state from 1 to 0. On 
the other hand, if the state is receiving and the channel is 
empty, it remains at state 0, but if the channel is not empty, 
it changes its state from 0 to 1. It is also shown in Fig. 12 
that if the state of server for send is sent and the 
acknowledgement channel is not full, it changes its state 
from 1 to 0. On the other hand, if the state is sending and 
the acknowledgement channel is full, it remains at state 0, 
but if the channel is not full, it changes its state from 0 to 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1.3 Modeling of RRA Protocol 

In RRA protocol the communication channel is used for 
sending request message from client to server, for 
receiving reply message (acknowledgement) from server 
to client and for sending reply acknowledgement message 
from client to server. The communication channel is 
modeled as a queue of fixed length for request message, 
reply message and reply acknowledgement message. The 
client module and the server module of RRA protocol are 
described as follows. 

5.1.3.1 Client Module 

Fig. 9  States of client for request message 
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The modeling of request message and reply message of the 
RRA protocol is similar to that of the RR protocol. The 
client uses reply_ack_ch_tail_client and 
reply_ack_ch_head_server to indicate the tail and head of 
the queue of reply acknowledgement message. The 
modeling of this queue is like to the modeling of the 
message queue of R protocol. The variable 
full_reply_ack_channel is used to check that the queue is 
either full or not by statement 
(full_reply_ack_channel:=((reply_ack_ch_tail_client+1) 
mod Q_SIZE) = reply_ack_ch_head_server;). The 
variable state_client_for_reply_ack holds either sent or 
sending.  This module also uses two variables ack_test and 
reply_ack_test. The ack_test and reply_ack_test are used 
as flag variables for reply message and for reply 
acknowledgement message respectively. Fig. 13 shows the 
states of client for reply acknowledgement message. If the 
state of client for reply acknowledgement is sent and the 
acknowledgement channel is not full, it changes its states 
from 1 to 0. If the state of client for reply 
acknowledgement is receiving and the acknowledgement 
channel is empty, it remains 0 state, but if 
acknowledgement channel is not empty, it changes its state 
from 0 to 1. 
 
 
 
 
 
 
 
 
 
 
 

5.1.3.2 Server Module 

The modeling of receiving request message and sending 
reply message of the RRA protocol is similar to that of the 
RR protocol. The modeling of reply acknowledgement 
message of the server is similar to that of request message 
of the server. To do this, the server module uses the 
variables reply_ack_ch_head_server and 
reply_ack_ch_tail_client. The empty_reply_ack_channel 
checks whether the channel is either empty or not. The 
state variable is state_server_for_reply_ack. The server 
module uses the variable memory_cache that can take 
either full or free and a boolean variable cache_test for 
modeling of reply result of reply cache of server. After 
sending the reply message the server module changes the 
initial state of memory_cache to full for each request 
message and the boolean cache_test is set. When the 
server receives reply acknowledgement message from the 
client the memory_cache is free and cache_test is reset. 

Thus after having the reply acknowledgement the server 
deletes its reply cache. Fig. 14 shows the states of server 
for reply acknowledgement message. If the state of server 
for reply acknowledgement is received and the reply 
acknowledgement channel is not empty, it changes its 
states from 1 to 0. If the state of server for reply 
acknowledgement is receiving and the reply 
acknowledgement channel is empty, it remains 0 state, but 
if reply acknowledgement channel is not empty, it changes 
its state from 0 to 1. 
 
 
 
 
 
 
 
 
 
 

6. Formal Verification / Result 

The results of the verification of the protocols are stated 
below. 

6.1 Properties for R Protocol 

a) SPEC AG (client.state_client = sent → 
AF(server.state_server=received)); means that once the 
client sends the request message, eventually the server 
receives it. The SMV shows that this property holds. 
b) SPEC AG (client.state_client=sent → AF 
(server.state_server=received)); means that if the request 
message has been already sent, then eventually the server 
receives it. The SMV shows that this property holds. 
c)  SPEC AG server.empty_channel; means that the 
massage queue is always empty. The SMV shows that this 
property does not hold.  

Since the property does not hold, the SMV produces a 
counter example, which shows the main reason of not 
holding the property specified. The generated counter 
example by SMV is shown in Fig. 15. 
 

Fig. 13  States of client for reply acknowledgement message

Fig. 14  States of server for reply acknowledgement message

state_client_for_reply_ack 
= sending &  
full_reply_ack_channel 

state_client_for_reply_ack = 
sending & 
~full_reply_ack_channel 

state_client_for_reply_ack 
= sent & 

~full_reply_ack_channel 

(0)=sending 
(1)=sent 

0 

1 

state_server_for_reply_ack 
= receiving &  
empty_reply_ack_channel

state_server_for_reply_ack 
= receiving & 
~empty_reply_ack_channel

state_server_for_reply_ack
= received & 

~empty_reply_ack_channel

(0)=receiving
(1)=received

0 

1 
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The counter example shows two states of not holding the 
specified property. The client and server module of R 
protocol has several variables for modeling of the protocol. 
These variables take different signals. Here it is clear that 
when client will be in sending state, client.full_channel 
will not be full and server will be in receiving state. Then 
the client will send request message and the server channel 
will not be empty. Thus the specification is not true. This 
is shown in column 1 of Fig. 15. In the column 2 of Fig. 
15, when state of client will have been sent then the server 
channel will not be empty. 

d)     SPEC AF client.full_channel; means that the 
message queue will be full in every execution path at some 
time in future. The SMV shows that this property does not 
hold. 

Since the property does not hold, the SMV produces a 
counter example, which shows the main reason of not 
holding the property specified. SMV generates the 
following counter example as shown in Fig. 16. 
 

 
 
 
 
Here, it is clear that when server.empty_channel is true i.e. 
server channel is empty, state of client will be sending and 
state of server will be receiving. Then the client must send 
request message through the channel. Thus the client 
message queue is not always full in future. The result is 

shown in column 1 of Fig. 16. The remaining columns of 
the above figure shows that in future the message queue 
will not be always full because the client will send a 
request message by increasing client.ch_tail_client and 
this message will be received by the server. So, message 
queue will not be always full at sometime in future. 

6.2 Properties for RR Protocol 

a) SPEC AG ((client.state_client_for_send=sent & 
msg=message)→AF(client.state_client_for_ack=received)
); means that once the client sends the request message 
(msg), eventually it receives acknowledgement from the 
server. The SMV shows that this property holds. 

b) SPEC AG (client.state_client_for_ack=received& 
msg=ack_message)→AF(server.state_server_for_receive
= receiving & client.state_client_for_send=sent & 
msg=message); means that if the client receives 
acknowledgement (msg) and the client sends the next 
message, the server is eventually in receiving state for that 
message. The SMV shows that this property holds. 

6.3 Properties for RRA Protocol 

a) SPEC AG ((client.state_client_for_send=sent & 
msg=message)→AF(client.state_client_for_ack=received)
); means that once the client sends the request message 
(msg), eventually it receives acknowledgement from the 
server. The SMV shows that this property holds. 

b) SPEC AG ((client.state_client_for_send=sent & 
msg=ack_message&client.state_client_for_ack=received)
→ AF(server.state_server_for_reply_ack=received )); 
means that once if the client sends the request message 
and gets the reply message for that then the server receives 
reply acknowledgement from the client eventually. The 
SMV shows that this property holds. 

c)      SPEC AG ( server.state_server_for_reply_ack = 
received) → AF (server.memory_cache=free); means that 
once the server receives reply acknowledgement from the 
client then it deletes all previous results from its reply 
cache eventually. The SMV shows that this property holds. 

7. Conclusion 

Verification techniques are useful in automatically 
detecting subtle corner cases of the protocol specifications. 
In this paper, our experience in verification of the 
communication protocols for RPC using SMV is presented. 
Here, we have verified some most common properties of 
the communication protocols and found that the properties 
hold. Thus from our experience we can say that the 
protocols are reliable for communication in distributed 

Fig. 15:  Counter example for SPEC AG server.empty_channel 

Fig. 16:  Counter example for SPEC AF client.full_channel 
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system. Our next aim is to verify these protocols using 
other verification tool such as SPIN. Moreover, some 
timing constraints can also be imposed to verify the 
protocols. 
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