
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

63

Manuscript received July 5, 2007

Manuscript revised July 25, 2007

Modeling and Formal Verification of Communication Protocols
for Remote Procedure Call

Abstract
This paper presents the modeling and formal verification of some
communication protocols for Remote Procedure Call (RPC).
These protocols include Request (R) Protocol, Request Reply
(RR) Protocol and Request-Reply-Acknowledgement (RRA)
Protocol. We have modeled the above-mentioned protocols in
Symbolic Model Verifier (SMV), a formal verification tool. In
modeling of each protocol, each of the two agents (Client and
Server) is modeled as a finite state machine. The common
channel between these agents is modeled as a bounded queue of
message. Some important features of modeled protocols are then
formal verified using the SMV tools.
Key words:
Formal Verification, Symbolic Model Verifier, Remote
Procedure Call, Request protocol, Request Reply protocol,
Request Reply Acknowledgement protocol.

1. Introduction

Finite state concurrent systems arise naturally in several
areas of computer science such as in the design of digital
circuits, communication protocols, distributed systems etc.
Logical errors found late in the design phase of these
systems are an extremely important problem for the circuit
designers, protocol designer and the programmers.

Simulation and testing [1] are some of the traditional
approaches for verifying the finite state systems.
Simulation and testing both involve making experiments
before deploying the system in the field. While simulation
is performed on an abstraction or a model of the system,
testing is performed on the actual product. In the case of
circuits and protocols, simulation is performed on the
design of the circuit and on that of protocols, whereas
testing is performed on the systems themselves. In both
cases, these methods typically inject signals at certain
points in the system and observe the resulting signals at
other points. For software, simulation and testing usually
involve providing certain inputs and observing the
corresponding outputs. Besides, checking all of the
possible interactions and finding potential pitfalls using
simulation and testing techniques is not always possible.

Formal verification [2], an appealing alternative to
simulation and testing, conducts an exhaustive exploration

of all possible behaviors of the system. Thus, when a
design is marked correct by a formal verification method,
it implies that all behaviors have been explored and the
question of adequate coverage or a missed behavior
becomes irrelevant. There are some robust tools for formal
verification such as SMV, SPIN, COSPAN, VIS, SMART
etc [2]. This paper presents the modeling and formal
verification of some communication protocols for RPC.
We have used SMV as the verification tool.

2. Related Works

People have researched formal verification of computer
hardware and software for decades. Formal specification
of bus protocols (for example, PCI local bus) have been
studied widely and extensively [3,4,5,6]. The work in [6,7]
promotes a specification style in which the bus protocol is
described through an observer, which raises errors signals
on the violation of the protocol. A formal verification of
the Advanced Micro-controller Bus Architecture (AMBA)
protocol from ARM has recently been studied [8]. This
protocol has been formally verified using SMV. The
Alternating Bit Protocol (ABP) has been verified using
formal verification technique [9]. Formal Verification has
been also applied to verify the Embedded HW-SW Shared
Memory Systems [10]. The bus protocol of the Intel
Intenium processor has been formally verified by the SMV
model checker [7]. Besides, so many protocols and finite
state concurrent systems are being verified using SMV
model checker.

3. Formal Verification

Formal verification [2] is used to check if a system holds a
property or not. The promise of verification is proving in
the sense of mathematical proof, in contrast to
conventional simulation and test, which can tell us only
that nothing went wrong on the specific case we tried.
Obviously, exhaustively trying every possible execution of
a system is a valid proof. The formal verification can be
viewed as giving the effect of this exhaustive simulation.

Nilimesh Halder, A.B.M Tariqul Islam, Ju Bin Song

Telecomm. Lab, Dept. of Electronic & Radio Eng.,
Kyung Hee University, Korea

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

64

3.1 Model Checking

To understand the term model, we need to be familiar with
transition system and Kripke Structure. A transition
system is a structure TS = (S, S0, R) where, S is a finite set
of states; S0⊆ S is the set of initial states and R ⊆ S×S is
a transition relation which must be total i.e. for every s in
S there exists s1 in S such that (s, s1) is in R. On the other
hand, M= (S, S0, R, AP, L) is a Kripke Structure; where (S,
S0, R) is a transition system. AP is a finite set of atomic
propositions (each proposition corresponds to a variable in
the model) and L is a labeling function. It labels each state
with a set of atomic propositions that are true in that state.
The atomic propositions and L together convert a
transitions system into a model.

The foremost step to verify a system is to specify the
properties that the system should hold. For example, we
may want to show that some concurrent program never
deadlocks. Once we know which properties are important,
the second step is to construct a formal model for that
system. The model should capture those properties that
must be considered for the establishment of correctness.

Each formula representing a property is either true or false
in a given state of Kripke Structure. Its truth is evaluated
from the truth of its sub formula in a recursive fashion,
until one reaches atomic propositions that are either true or
false in a given states. A formula is satisfied by a system if
it is true for all the initial states of the system.
Mathematically, say, a Kripke Structure K= (S, S0, R, AP,
L) and a formula φ (specification of the property) are
given. We have to determine if K | = φ holds (K is a model
of φ) or not. K | = φ holds iff K, s | = φ for every s∈S0. If
the property does not hold, the model checker generally
produces a counter example that is an execution path that
cannot satisfy that formula.

3.2 Symbolic Model Verifier (SMV)

SMV [11] is a formal verification tool that is used to
automatically verify the properties of interacting finite
state machines. In SMV, properties are specified in a
notation called Computation Tree Logic (CTL), one kind
of temporal logic. The input language of SMV allows us
to describe each of the agents of a system as a module. In
particular, the initial states and the transition relation of
each of the modules can be specified. SMV constructs a
global state transition graph of the entire system from the
description of each module. The transition relation and
sets of states are viewed as boolean functions. These are
represented efficiently by a compact data structure called
Binary Decision Diagram (BDD) [12] which involves
structure sharing.

3.2.1 Computation Tree Logic (CTL) Formula

Atomic propositions, standard boolean connectives of
prepositional logic (e.g., AND, OR, NOT) and temporal
operators all together are used to build the CTL formula
[13]. Each temporal operator is composed of two parts: a
path quantifier (universal (A) or existential (E)) followed
by a temporal modality (F, G, X, U) and are interpreted
relative to an implicit “current state”. There are generally
many execution paths (the sequences) of the state
transitions of the system starting at the current state. The
path quantifier indicates whether the modality defines a
property that needs to hold on some paths (denoted by
existential path quantifier E) or on all paths (denoted by
universal path quantifier A). The temporal modalities
describe the ordering of events in time along an execution
path and have the following meaning. (i) F Ø (“reads ‘Ø’
holds sometime in the future”) is true in a path if there
exists a state in that path where formula ‘Ø’ is true. (ii) G
Ø (“reads ‘Ø’ holds globally”) is true in a path if ‘Ø’ is
true at each and every state in that path. (iii) X Ø (“reads
‘Ø’ holds in the next state”) is true in a path if ‘Ø’ is true
in the state reached immediately after the current state in
the path. (iv) Ø U φ (“reads ‘Ø’ holds until ‘φ’ holds”) is
true in a path if ‘φ’ is true in some state in that path, and
‘Ø’ holds in all preceding states.

3.2.2 Specification of Properties in CTL

CTL formulas are sometime problematical to interpret. For
this, a designer may fail to understand what property has
been actually verified. Here, we want to add some
common constructs of CTL formula. (i) AG (Req → AF
Ack): it is always the case that if the signal Req is true,
then eventually Ack will also be true. (ii) AG (AF
DeviceEnabled): DeviceEnabled holds infinitely often on
every computation path. (iii) AG (EF Restart): from any
state, it is possible to get to the Restart state. (iv) AG
(Send → A (Send U Recv)): if Send holds, then eventually
Recv is true, and until that time, Send remains true. (v) EF
(~Ready ∧ Started): It is possible to get to a state where
holds started, but ready does not hold. (vi) AG (in → AX
AX AX out): Whenever in goes high, out will go high
within three clock cycles. (vii) AG (~storage_coke → AX
storage_coke): If the coke storage of a vending machine
becomes empty, it gets recharged immediately.

3.2.3 Fairness Constraints

In verifying concurrent systems, we are occasionally
interested only in correctness along fair execution. It is
often necessary to introduce some notion of fairness. For
example, if there are two processes trying to use a shared
resource using an arbiter, we may wish to consider only
those executions in which the arbiter does not ignore one

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No. 7, July 2007

65

of its request inputs from either of the processors forever.
Alternatively, we may want to consider communication
protocols that no message is ever continuously transmitted
but never received. A fairness constraint can be an
arbitrary set of states, usually described by the formula of
the logic. If fairness constraints are interpreted as a set of
states, then a fair path must contain an element of each
constraint infinitely often. If fairness constraints are
interpreted as CTL formulas, then a path is fair if each
constraint is true infinitely often along the path. The path
quantifiers in the logic are then restricted to fair path. A
fairness condition P restricts the system to only those
paths where P is asserted infinitely often. Basically the
fairness constraints are used to rule out undesired
executions.

4. Remote Procedure Call (RPC)

RPC is a special case of the general message-passing
model of Inter Process Communication (IPC). The
primary motivations for developing RPC facility is to
provide the programmers with a familiar mechanism for
building distributed applications. The RPC mechanism is
an extension of the local procedure call in the sense that it
enables a call to be made to a procedure that does not
reside in the address space of the calling process [14]. The
remote procedure may be on the same computer as the
calling process or on a different computer.

In case of RPC, since the caller and the callee processes
have disjoint address space, the remote procedure has no
access to data and variables of the caller’s environment.
Therefore, the RPC facility uses a message-passing
scheme for information exchange between the caller and
the callee processes. Fig. 1 shows a typical model of a
remote procedure call. The client sends a request message
to the server and waits for a reply message. After
receiving the request message, the server starts execute the
procedure and sends a reply message to the client and wait
for next request message. When client receives the reply
message, it resumes execution.

Based on the needs of different systems, several RPC
communication protocols already exist [15]. These are: (i)
The Request Protocol (R Protocol) (ii) The Request /Reply
Protocol (RR Protocol) and (iii) The Request /Reply/
Acknowledge-Reply Protocol (RRA Protocol).

4.1 The Request Protocol

This protocol is also known as the R (request) protocol. It
is used in which the called procedure has nothing to return
as the result of procedure execution and the client requires
no confirmation that the procedure has been executed. The

client normally precedes execution immediately after the
sending the request message, as there is no need to wait
for a reply message. The protocol provides call semantics
and requires no retransmission of request messages. Fig. 2
shows the message communication of R Protocol. The
client sends request message to the server and the server
executes the procedure after receiving the request.

4.2 The Request/Reply Protocol

This protocol is also known as the RR (request-reply)
protocol. The protocol is based on the idea of using
implicit acknowledgement to eliminate explicit
acknowledgement messages. (i) A server’s reply message
is regulated as an acknowledgement of the client’s request
message. (ii) A subsequent call packet from a client is
regarded as an acknowledgement of the server’s reply
message of the previous call made by that client. To take
care of lost message, timeout based retransmission
technique is normally used along with RR protocol. A
client retransmits request message if it does not receive the
reply message within the predetermined timeout period.
Servers can support exactly-once call semantics by
keeping records of the replies in a reply cache that enables
them to filter out duplicate request message and to
retransmit reply messages without the need to reprocess a
request. Fig. 3 shows the message communication of RR
Protocol. The client sends a request message to the server
and waits for a reply message. After receiving the request
message, server executes the procedure and also sends a
reply message to the client that serves as an
acknowledgement for the previous request message. When
client receives the acknowledgement from server, it sends
next request message that serves as an acknowledgement
of previous RPC.

4.3 The Request/Reply/Acknowledge-Reply Protocol

This protocol is also known as RRA
(Request/Reply/Acknowledge-Reply) protocol. The RRA

Call and
wait for
reply

Receive
and start
procedure
execution

Caller
(Client process)

Caller
(Server process)

Resume
execution

Send reply
and wait for
next request
message

Request
Message

Reply
Message

procedure
execution

Client Server

procedure
execution

Request
Message

Request
Message

First RPC

Next RPC

Fig. 1 A typical model of Remote
Procedure Call

Fig. 2 The Request Protocol

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

66

protocol requires clients to acknowledge the receipt of
reply messages. The server deletes information from its
reply cache only after receiving an acknowledgement for it
from the client. The RRA protocol provides exactly-once
call semantics. In this protocol, there is a probability that
the acknowledgement message itself gets lost. Therefore, a
unique message identifier is associated with request
message. This identifier is also associated with
corresponding reply messages. Each acknowledgement
message also contains same identifier.

A client acknowledges reply message to the server only if
it has received all previous requests replies. Upon
reception of the client’s acknowledgement reply for a
particular reply result, server deletes reply result entries of
all previous requests. So, the loss of any acknowledgement
message does not cause any harm to the system. Fig. 4
shows the message communication of RRA Protocol. The
client sends a request message to the server and waits for a
request message. After receiving the request message, the
server executes the procedure and sends a reply message
to the client. When client receives the reply message, it
sends a reply acknowledge message to the server.

5. Modeling of The Communication Protocols

The Cadence SMV has been used to formally verify the
communication protocols for RPC. The aim of this
modeling and verification is to check if the protocols hold
all the desired properties and do not hold any undesired
property. In order to verify any protocol formally, it is
very much important to model that protocol carefully. In
this section, we have discussed our modeling of protocols
in SMV.

5.1 Power Game Model of Network

Firstly, each of the two agents (client and server) of each
of the communication protocols (R, RR and RRA) is
modeled as finite state machine. To establish
communication between client and server for each
protocol, a reliable communication channel is required.
Here, this communication channel is modeled as a queue
of message, which is the integral part of both client and
server of each protocol.

Fig. 5 shows the modeling of communication channel as a
queue of request message. The request message is pushed
through the tail of the queue from the client side and the
request message is received from the head of the queue at

Request
Message

Reply
Message

Serve as the
acknowledgement
for req. msg
First RPC

Procedure
execution

Request
Message

Serve as the ack. of
reply of prev. RPC
reply msg

Serve as the
acknowledgement
for req. msg
Next RPC

Procedure
execution

Client Server

Procedure
execution

Procedure
execution

Request
Message

Reply
Message

Reply Ack Message
First RPC

Request
Message

Reply
Message

Reply Ack
Message
Next RPC

Client Server

Fig. 3 The Request-Reply Protocol Fig. 4 The RRA Protocol

Ch_tail_client

Ch_tail_client+1 Ch_head_server+1

Ch_head_server

Request message
is received at the

server

Request message
is pushed from

the client

Client side Server side

Fig. 5 Modeling of communication channel as a queue of request message.

Fig. 6 Modeling of communication channel as a queue of reply message.

ack_ch_head_client

ack_ch_head_client+1 ack_ch_tail_server+1

ack_ch_tail_server

Reply message is
sent from the server

Reply message is
received at the client

Client side Server side

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No. 7, July 2007

67

the server side. Fig. 6 shows the modeling of
communication channel as a queue of reply message. The
reply message is sent from the server side and it is
received from the head of the queue at client side. The
brief description of modeling of client and server of each
of the protocols in SMV are given in the following
sections.

5.1.1 Modeling of R Protocol

In R protocol, the communication channel is used only for
sending request message from client to server. There is
nothing about acknowledgement. The communication
channel is modeled as a queue of fixed length. This queue
is modeled as message queue. The client module and the
server module of R protocol are described as follows.

5.1.1.1 Client Module

In the client, the tail and head of the queue are denoted as
ch_tail_client and ch_head_server respectively. The
variable full_channel in client module is used to check the
status of the queue by statement (full_channel :=
((ch_tail_client + 1) mod Q_SIZE) = ch_head_server;). If
the queue is full then the client has to wait until the queue
is not free to send request message. Otherwise, the client
sends request message increasing the tail. The state
variable state_client can hold either of the value: {sending
or sent}. The variable sending means that the client is in
the state of sending message to server via queue. The
variable sent means that the client is in the state that it
already sends message to server through the queue.
Initially, the client is in sending state. The client checks
the statement state_client = sending & ~full_channel to
send message. If it is true then the tail is increased by the
statement next (ch_tail_client):= (ch_tail_client+1) mod
Q_SIZE; and the client moves to state sent. After a fixed
time period the client returns in state sending. Fig. 7 shows
the states of client for request message. If the state of
client is sent and the channel is not full, it changes its state
from 1 to 0. On the other hand, if the state is sending and
the channel is full, it remains at state 0, but if the channel
is not full, it changes its state from 0 to 1.

5.1.1.2 Server Module

The server module maintains two variable ch_head_server
and ch_tail_client for the queue. The variable
empty_channel is used to check the status of the queue for
the server by the statement (empty_channel :=
(ch_tail_client = ch_head_server);). If the queue is empty
then the server does not change its state. The state variable
of server is state_server that can hold either of the value:
{received or receiving}. Initially, the server is in receiving
state. The server checks the condition (state_server =

receiving & ~empty_channel) to receive message from
client. If it is true then the server executes the statements
(next (ch_head_server) := (ch_head_server+1) mod
Q_SIZE; and next (state_server):=received;). These mean
that the message is received from the queue and the server
changes its state to received. Fig. 8 shows the states of
server for request message. If the state of server is
received and the channel is not empty, it changes its state
from 1 to 0. On the other hand, if the state is receiving and
the channel is empty, it remains at state 0, but if the
channel is not empty, it changes its state from 0 to 1.

5.1.2 Modeling of RR Protocol

In RR protocol the communication channel is used for
sending request message from client to server and for
receiving reply message (acknowledgement) from server
to client. The communication channel is modeled as a
queue of fixed length for both request and reply message
from client and server respectively. The client module and
the server module of RR protocol are described as follows.

5.1.2.1 Client Module

The modeling client module of RR protocol is similar to
that of R protocol in case of sending message from client
to server. Here the message queue can hold only one
message at a time. This ensures that one message can be
sent at a time and the next message can be sent after
having the acknowledgement for the previous one from
the server. The client module of RR protocol uses two
variables ack_ch_head_client and ack_ch_tail_server for
the modeling of the queue of reply message. The client
module uses the variable empty_ack_channel to check

Fig. 7 States of client for request message

Fig. 8 States of server for request message

state_client = sending
& full channel

state_client = sending
& ~full channel

state_client =
sent &

~full_channel

(0)=sending
(1)=sent

0

1

state_server = receiving
& empty_channel

state_server = receiving
& ~empty_channel

state_server =
received &

~empty_channel

(0)=receiving
(1)=received

0

1

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

68

whether the queue either full or not by the statement
(empty_ack_channel := (ack_ch_head_client =
ack_ch_tail_server);). The variable state_client_for_ack
can either hold received or receiving. The client checks the
condition (state_client_for_ack = receiving &
~empty_ack_channel) to receive reply message. If it is true
then the client pops the reply message by increasing the
ack_ch_head_client and changes its state to received. Fig.
9 shows the states of client for request message and Fig.
10 shows the states of client for reply message. It is shown
in Fig. 9 that if the state of client for send is sent and the
channel is not full, it changes its state from 1 to 0. On the
other hand, if the state is sending and the channel is full, it
remains at state 0, but if the channel is not full, it changes
its state from 0 to 1. It is also shown in Fig. 10 that if the
state of client for acknowledgement is received and the
acknowledgement channel is not empty, it changes its state
from 1 to 0. On the other hand, if the state is receiving and
the acknowledgement channel is empty, it remains at state
0, but if the channel is not empty, it changes its state from
0 to 1.

5.1.2.2 Server Module

The modeling server module of RR protocol is similar to
that of R protocol for receiving message. The server
module uses the variable ack_ch_tail_server and
ack_ch_head_client to indicate the tail and head of the
queue of reply message. The full_ack_channel is used to
check whether the queue is full or not by the statement
(full_ack_channel:=((ack_ch_tail_server+1)mod Q_SIZE)
=ack_ch_head_client;).The state_server_for_ack_send of
server can hold either sent or sending state. The server
checks the condition state_server_for_ack_send = sending

& ~full_ack_channel. If the condition is true, the server
increases the value of ack_ch_tail_server to indicate that
the reply message is sent and changes its state to sent.
Otherwise, it is in its same state. Besides this, the server is
in sending state for any other condition. Fig. 11 shows the
states of server for request message and Fig. 12 shows the
states of server for reply message. It is shown in Fig. 11
that if the states of server for receive is received and the
channel is not empty, it changes its state from 1 to 0. On
the other hand, if the state is receiving and the channel is
empty, it remains at state 0, but if the channel is not empty,
it changes its state from 0 to 1. It is also shown in Fig. 12
that if the state of server for send is sent and the
acknowledgement channel is not full, it changes its state
from 1 to 0. On the other hand, if the state is sending and
the acknowledgement channel is full, it remains at state 0,
but if the channel is not full, it changes its state from 0 to 1.

5.1.3 Modeling of RRA Protocol

In RRA protocol the communication channel is used for
sending request message from client to server, for
receiving reply message (acknowledgement) from server
to client and for sending reply acknowledgement message
from client to server. The communication channel is
modeled as a queue of fixed length for request message,
reply message and reply acknowledgement message. The
client module and the server module of RRA protocol are
described as follows.

5.1.3.1 Client Module

Fig. 9 States of client for request message

Fig. 10 States of client for reply message

Fig. 11 States of server for request message

Fig. 12 States of server for reply message

state_client_for_send =
sending & full_channel

state_client_for_send =
sending & ~full_channel

state_client_for_send =
sent & ~full_channel

(0)=sending
(1)=sent

0

1

state_client_for_ack =
receiving & empty_channel

state_client_for_ack = receiving
& ~empty_ack_channel

state_client_for_ack =
received &

~empty_ack_channel

(0)=receiving
(1)=received

0

1

state_server_for_receive =
receiving & empty_channel

state_server_for_receive =
receiving & ~empty_channel

state_server_for_receive =
received & ~empty_channel

(0)=receiving
(1)=received

0

1

state_server_for_ack_send =
sending & full_ack_channel

state_server_for_ack_send =
sending & ~full_ack_channel

state_server_for_ack_send
= sent & ~full_ack_channel

(0)=sending
(1)=sent

0

1

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No. 7, July 2007

69

The modeling of request message and reply message of the
RRA protocol is similar to that of the RR protocol. The
client uses reply_ack_ch_tail_client and
reply_ack_ch_head_server to indicate the tail and head of
the queue of reply acknowledgement message. The
modeling of this queue is like to the modeling of the
message queue of R protocol. The variable
full_reply_ack_channel is used to check that the queue is
either full or not by statement
(full_reply_ack_channel:=((reply_ack_ch_tail_client+1)
mod Q_SIZE) = reply_ack_ch_head_server;). The
variable state_client_for_reply_ack holds either sent or
sending. This module also uses two variables ack_test and
reply_ack_test. The ack_test and reply_ack_test are used
as flag variables for reply message and for reply
acknowledgement message respectively. Fig. 13 shows the
states of client for reply acknowledgement message. If the
state of client for reply acknowledgement is sent and the
acknowledgement channel is not full, it changes its states
from 1 to 0. If the state of client for reply
acknowledgement is receiving and the acknowledgement
channel is empty, it remains 0 state, but if
acknowledgement channel is not empty, it changes its state
from 0 to 1.

5.1.3.2 Server Module

The modeling of receiving request message and sending
reply message of the RRA protocol is similar to that of the
RR protocol. The modeling of reply acknowledgement
message of the server is similar to that of request message
of the server. To do this, the server module uses the
variables reply_ack_ch_head_server and
reply_ack_ch_tail_client. The empty_reply_ack_channel
checks whether the channel is either empty or not. The
state variable is state_server_for_reply_ack. The server
module uses the variable memory_cache that can take
either full or free and a boolean variable cache_test for
modeling of reply result of reply cache of server. After
sending the reply message the server module changes the
initial state of memory_cache to full for each request
message and the boolean cache_test is set. When the
server receives reply acknowledgement message from the
client the memory_cache is free and cache_test is reset.

Thus after having the reply acknowledgement the server
deletes its reply cache. Fig. 14 shows the states of server
for reply acknowledgement message. If the state of server
for reply acknowledgement is received and the reply
acknowledgement channel is not empty, it changes its
states from 1 to 0. If the state of server for reply
acknowledgement is receiving and the reply
acknowledgement channel is empty, it remains 0 state, but
if reply acknowledgement channel is not empty, it changes
its state from 0 to 1.

6. Formal Verification / Result

The results of the verification of the protocols are stated
below.

6.1 Properties for R Protocol

a) SPEC AG (client.state_client = sent →
AF(server.state_server=received)); means that once the
client sends the request message, eventually the server
receives it. The SMV shows that this property holds.
b) SPEC AG (client.state_client=sent → AF
(server.state_server=received)); means that if the request
message has been already sent, then eventually the server
receives it. The SMV shows that this property holds.
c) SPEC AG server.empty_channel; means that the
massage queue is always empty. The SMV shows that this
property does not hold.

Since the property does not hold, the SMV produces a
counter example, which shows the main reason of not
holding the property specified. The generated counter
example by SMV is shown in Fig. 15.

Fig. 13 States of client for reply acknowledgement message

Fig. 14 States of server for reply acknowledgement message

state_client_for_reply_ack
= sending &
full_reply_ack_channel

state_client_for_reply_ack =
sending &
~full_reply_ack_channel

state_client_for_reply_ack
= sent &

~full_reply_ack_channel

(0)=sending
(1)=sent

0

1

state_server_for_reply_ack
= receiving &
empty_reply_ack_channel

state_server_for_reply_ack
= receiving &
~empty_reply_ack_channel

state_server_for_reply_ack
= received &

~empty_reply_ack_channel

(0)=receiving
(1)=received

0

1

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

70

The counter example shows two states of not holding the
specified property. The client and server module of R
protocol has several variables for modeling of the protocol.
These variables take different signals. Here it is clear that
when client will be in sending state, client.full_channel
will not be full and server will be in receiving state. Then
the client will send request message and the server channel
will not be empty. Thus the specification is not true. This
is shown in column 1 of Fig. 15. In the column 2 of Fig.
15, when state of client will have been sent then the server
channel will not be empty.

d) SPEC AF client.full_channel; means that the
message queue will be full in every execution path at some
time in future. The SMV shows that this property does not
hold.

Since the property does not hold, the SMV produces a
counter example, which shows the main reason of not
holding the property specified. SMV generates the
following counter example as shown in Fig. 16.

Here, it is clear that when server.empty_channel is true i.e.
server channel is empty, state of client will be sending and
state of server will be receiving. Then the client must send
request message through the channel. Thus the client
message queue is not always full in future. The result is

shown in column 1 of Fig. 16. The remaining columns of
the above figure shows that in future the message queue
will not be always full because the client will send a
request message by increasing client.ch_tail_client and
this message will be received by the server. So, message
queue will not be always full at sometime in future.

6.2 Properties for RR Protocol

a) SPEC AG ((client.state_client_for_send=sent &
msg=message)→AF(client.state_client_for_ack=received)
); means that once the client sends the request message
(msg), eventually it receives acknowledgement from the
server. The SMV shows that this property holds.

b) SPEC AG (client.state_client_for_ack=received&
msg=ack_message)→AF(server.state_server_for_receive
= receiving & client.state_client_for_send=sent &
msg=message); means that if the client receives
acknowledgement (msg) and the client sends the next
message, the server is eventually in receiving state for that
message. The SMV shows that this property holds.

6.3 Properties for RRA Protocol

a) SPEC AG ((client.state_client_for_send=sent &
msg=message)→AF(client.state_client_for_ack=received)
); means that once the client sends the request message
(msg), eventually it receives acknowledgement from the
server. The SMV shows that this property holds.

b) SPEC AG ((client.state_client_for_send=sent &
msg=ack_message&client.state_client_for_ack=received)
→ AF(server.state_server_for_reply_ack=received));
means that once if the client sends the request message
and gets the reply message for that then the server receives
reply acknowledgement from the client eventually. The
SMV shows that this property holds.

c) SPEC AG (server.state_server_for_reply_ack =
received) → AF (server.memory_cache=free); means that
once the server receives reply acknowledgement from the
client then it deletes all previous results from its reply
cache eventually. The SMV shows that this property holds.

7. Conclusion

Verification techniques are useful in automatically
detecting subtle corner cases of the protocol specifications.
In this paper, our experience in verification of the
communication protocols for RPC using SMV is presented.
Here, we have verified some most common properties of
the communication protocols and found that the properties
hold. Thus from our experience we can say that the
protocols are reliable for communication in distributed

Fig. 15: Counter example for SPEC AG server.empty_channel

Fig. 16: Counter example for SPEC AF client.full_channel

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No. 7, July 2007

71

system. Our next aim is to verify these protocols using
other verification tool such as SPIN. Moreover, some
timing constraints can also be imposed to verify the
protocols.

References
[1] G. J. Myers. The Art of Software Testing. Wiley, 1979.
[2] Edmund M. Clakre, Jr. Orna GrumBerg and Doron A. Peled,
“ Book: Model Checking”, The MIT Press; Second Printing 2000.
[3] F. Aloul and K. Sakallah, “Efficient verification of the PCI
local bus using Boolean satisfiability”. International Workshop
on Logic Synthesis (IWLS), 2000.
[4] P. Chauhan, E. Clarke, Y. Lu and D. Wang, “Verifying IP-
core based System-on-Chip design”, IEEE ASIC SOC
conference, 1999.
[5] A. Mokkedem, R. Hosabettu, M. Jones and G. Gopalkrishnan,
“Formalization and analysis of a solution to the PCI 2.1 bus
transaction ordering problem”, Formal Methods in System
Design, 16, 2000.
[6] K. Shimuzu, D. Dill and A hu, “Monitor based formal
specificationof PCI”, International Conference on Formal
Methods in computer Aided Design (FMCAD), 2000.
[7] K. Shimuzu, D. Dill and C. T. Chou, “A specification
methodology by a collection of compact properties as pipelined
to the Intel Itanium processor bus protocol ”. Correct Hardware
design and Verification Methods (CHARME),LNCS 2144, 2001.
[8] Abhik Roychoudhury, Tulika Mitra and S. R. Karri , “ Using
formal techniques to the debug the AMBA system on chip Bus
Protocol”, IEEE/ACM conference on design automation and Test
in Europe (DATE), 2003.
[9] Kamrul Hasan Talukder, “ Formal verification of the
Alternating Bit Protocol”, 6th International Conference on
computer & Information Technology (ICCIT) 2003,
Dhaka,Bangladesh.
[10] Om Prakash Gangwal, Andre Nieuwland, Paul Lippens, “A
Scalable and Flexible Data Synchronzation Scheme For
Embedded HW-SW Shared Memory Systems.” Embedded
Systems Architectures on Silicon, Philips Research Laboratories,
The Netherlands.
[11] Cadence Berkeley Laboratories, Free download from http://
www-cad.eecs.Berkeley.edu/ ~kenmcmil/smv/, Califonia, USA.
The SMV Model Checker, 1999.
[12] R.Bryant, “Graph-based algorithms for boolean function
manipulation”, IEEE Transactions on Computers, C-35, No.8,
1986, pp.677-691.
[13] Kamrul Hasan Talukder and MD. Khademul Islam Molla,
“Computation Tree Logic in model checking”,3rd International
IT conference, Nepal, 2003.
[14] George Coulouris “Distributed Systems Concepts and
Design”, Pearson Education Asia.
[15] Birrell, A.D., and Nelson, B., “Implementing Remote
Procedure Calls”, ACM Transactions on Computer Systems, Vol.
2, No.1, pp. 35-39 (1984).

 Nilimesh Halder is currently a PhD
student and a member of Telecom.
Lab in the Dept. of Electronic and
Radio Eng. at Kyung Hee University.
He received the B.S. degree in
Computer Science and Engineering
from Khulna University, Bangladesh
in 2005. His research interests
include wireless communications,
ad-hoc mobile networks, radio
resource management, power
control & management, self-

organizing networks, cognitive radio and game theory.

A.B.M Tariqul Islam is currently
a PhD student and a member of
Telecom. Lab in the Dept. of
Electronic and Radio Eng. at
Kyung Hee University. He received
the B.S. degree in Computer
Science and Engineering from
Khulna University, Bangladesh in
2005. His research interests include
ad-hoc mobile networks, radio

resource management, wireless communications, wireless sensor
networks, cognitive radio and spectrum sensing.

 Ju Bin Song is currently a
professor in the Dept. of Electronic
and Radio Eng., Kyung Hee
University, from 2003. He received
BS and MS degree in 1987 and
1989, respectively and PhD degree
in the Department of Electronic and
Electrical Eng., University College
of London, UK in 2001. He was
senior researcher in ETRI from
1992 to 1997 and a research fellow

in UCL, 2001. He was a professor in Hanbat National University
from 2002 to 2003. His research interests include
telecommunications, mobile multi-hop networks, radio resource
management, next generation communications. He is a member
of IEEE, KICS and KIEE.

