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Summary 
Change of tag ownership compromises the security goals of 
Radio Frequency Identification (RFID).  When an attacker 
clones or steals an authorized subject’s tag, they are willingly 
granted access as RFID assumes the owner of a tag is always the 
authorized entity.   We present Deckard, a new approach to 
preventing change of tag ownership.  Deckard uses the principles 
of intrusion detection to look for anomalous behavior which may 
indicate a change of tag ownership has occurred.  We have 
evaluated its performance in detecting synthesized attacks inside 
a sanitized RFID proximity tag audit log.  The results suggest 
that intrusion detection systems can be used in RFID, although 
the weaknesses of statistical anomaly detection are also apparent 
when used on RFID data.  We conclude with a call to further 
research of intrusion detection in RFID systems.   
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1. Introduction 

Radio Frequency Identification (RFID) establishes the 
identity of subjects in the physical world using uniquely 
numbered electronic tags [1].  When a tag is attached to a 
subject such as a human, animal or a supply chain product, 
that subject is identified by its ownership of the tag.  The 
concept is analogous to the way a vehicle license plate 
identifies a vehicle.  However, as RFID assumes that the 
subject in possession of a tag is the authorized entity; a 
change of tag ownership, for example, when an attacker 
clones or steals a tag, can result in the attacker obtaining 
access to the assets which RFID is being used to protect.  
Consequently, a change of tag ownership compromises the 
security goals of an RFID system as attackers cannot be 
differentiated from authorized subjects. 

Change of tag ownership is a serious threat to the 
security of applications which use RFID.  The 
pharmaceutical industry, for example, has proposed that 
RFID will be used to track drugs through pharmaceutical 
supply chains.  By attaching RFID tags to drug packaging, 
they hope that RFID may curtail the USD $40 billion per 
year counterfeit drug market [2].  Change of tag 
ownership here may allow counterfeiters to bypass these 
security checks to introduce inferior counterfeit drugs.    
Moreover, RFID tags are being used in several countries' 

electronic passport (ePassport) schemes as a way of 
preventing passport forgery.  Change of tag ownership 
here may allow terrorists or illegal immigrants to enter 
country borders undetected.  Change of tag ownership is a 
serious security threat as it compromises the security goals 
of the RFID applications that use it. 

The security necessary to prevent change of tag 
ownership from occurring is difficult to implement 
because of the RFID industry’s desire to limit tag 
hardware functionality in order to produce tags that cost 
around five cents [3, 4].  The trade-off has meant several 
things.  Firstly, on-board the tag; power, storage, 
processing and gate resources available to low cost tags 
make it difficult to allow cryptography to be used 
effectively [5] to prevent tag’s from being cloned.  
Secondly, off-board the tag; passive tags are limited by the 
amount of power they can obtain from RFID readers.  As 
the transaction time between tags and readers is limited to 
less than 400 milliseconds in the United States, in order to 
supply cryptographic components with sufficient power, 
tags would need to be read from a shorter distance, which 
would degrade the read-rate of RFID readers [3].  
Consequently change of tag ownership is difficult to 
prevent at the tag layer.     

It is therefore not surprising that when the tag layer is 
the focus of research, as outlined in [6] and [7], that these 
proposals fail.  We believe these solutions fall short of 
being useful for several reasons.  Firstly, the security they 
propose is situated on the tag.  As tags are the weakest link 
in the chain due to their functional capabilities, an attacker 
with modest resources can break their security quite easily.  
Secondly, previous research has primarily focussed on 
preventing tag cloning from occurring. We believe that the 
real issue here is whether the subject a tag is attached to is 
actually the authorized entity, and so preventing an 
individual tag from being cloned is not a solution.  Our 
proposal improves upon previous research, as it goes 
beyond static defensive countermeasures, by detecting 
when change of tag ownership occurs.   

We have developed Deckard, a system that uses the 
principles of intrusion detection to detect change of tag 
ownership.  An intrusion detection system, much like a 
burglar alarm, monitors the activity occurring within an 
environment, and responds when it detects suspicious 
activity.  We assume that a subject exhibits their behaviour 
through their ownership of an RFID tag.  We use a tag’s 
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audit record’s to build a profile of normal behaviour, 
which can then be used to determine when subject 
behaviour significantly deviates.  We assume that a 
significant deviation away from normal behaviour is 
indicative of a change of tag ownership.  This system 
would be useful in detecting when an attacker starts using 
a cloned or stolen tag.  To illustrate, when Mallory steals 
or clones Alice’s tag, his tag usage will be different when 
compared to Alice’s tag usage.  Thus, a change in tag 
ownership is assumed to be visible by a significant 
deviation in a tag’s audit records.  Deckard is based on the 
intrusion detection system proposed by Denning [8] and 
partly inspired by the character in the 1982 Ridley Scott 
movie Blade Runner [9].  Our system aims to detect 
change of tag ownership which to defend against stolen or 
cloned tags from accessing an RFID system.   

The organisation of this paper is as follows.  Section 2 
will provide the motivation behind our research by briefly 
providing background information to RFID technology 
and the problem of change of tag ownership, with 
particular attention paid to the threat of tag cloning.  
Section 91 will discuss how our work is different to 
previous research.  Section 92 will present the design and 
operation of Deckard.  Section 93 will discuss our testing 
methodology.  Section 6 will present our results and 
analysis.  In section 7 we summarize our findings.  Finally, 
in section 8 we discuss future work that can be undertaken. 

2. Background 

Just like the barcode, RFID is regarded as an Automatic 
Identification and Collection (AIDC) technology [10].  
The main difference is that it establishes the identity of 
subjects in the physical world without requiring line-of-
sight, using uniquely identifiable electronic tags.  A tag 
typically contains a unique numeric identifier that can be 
read from a remote distance via an RFID reader device.  
Passive tags are powered by the reader device, whereas, 
active tags have their own on-board power supply.  When 
a reader is in range of a tag, a tag responds with its unique 
numeric identifier [1].  As RFID assumes that the subject 
to which a tag was initially attached to has not changed, 
when a tag is located, the original subject is also located in 
the physical world.  This association between the physical 
subject and the tag is managed by a middleware database.  
In essence, this is the concept behind typical RFID 
systems.   

The concept of RFID has existed for a long time.  The 
notion of identifying subjects via unique electronic 
transponders can be traced back to the 1940’s when the 
British air force developed the Identification Friend or Foe 
(IFF) system.  IFF was a means of identifying British 
aircraft from enemy aircraft.  Nowadays, the term RFID 

incorporates a number of non-contact integrated circuit 
technologies for identifying any thing from humans to 
animals via small electronic tags.  These tags operate on 
the following radio frequencies: < 135 KHz, 13.56 MHz, 
862-915 UHF, 2.45 GHz, and 5.8Ghz [11].  Tags which 
operate on these frequencies include: EPC, VeriChip, 
proximity tags, payment tokens like SpeedPass, and pet 
identification chips.  The EPC tag is the tag of choice for 
identifying supply chain products.  Wal-Mart uses this 
type of tag to track and trace products through its supply 
chain.  RFID improves on the efficiency of barcodes by 
not requiring line of sight contact when automating the 
identification and collection of data.   

Despite the benefits of RFID, it is essentially an 
insecure technology.  Just like the barcode or vehicle 
license plate, tags can easily be removed from their 
subjects.  To illustrate, in an RFID-enabled liquor store, 
Mallory can replace an expensive wine bottle’s tag with a 
tag from a cheap bottle of wine.  The reader located at the 
cash register will see the tag belonging to the cheap bottle 
of wine, which will be the wine that Mallory will end up 
paying for.  This is an example of change of tag ownership 
via tag stealing.  Although quite easy to perform, this form 
of change of tag ownership has poor scalability as 
attackers need access to the original tags during the attack 
phase.   

In contrast, tag cloning, when an attacker makes an 
exact copy of an RFID tag, is a more serious threat to 
security.  As the identifier data on the majority of tags is 
not kept secret [3], an attacker can simply obtain a tags 
unique identifier to make their own original tags that are 
indistinguishable from the originals.  Once legitimate tag 
data has been obtained, attackers can reproduce their 
cloned tags on a wide scale.  Tag cloning is the most 
widely reported and most serious form change of tag 
ownership as described below.     

There have been a number of well documented 
examples of tag cloning.  Firstly, Indala proximity tags, 
used by many organizations to control physical access to 
facilities, have been cloned [12].  With a budget of about 
USD $100 researchers have built a cloning device that is 
capable of obtaining an Indala tag identifier and replaying 
it back to a reader.  Cloning an Indala proximity tag can 
allow an attacker to gain access to a secure building.  
Secondly, the human implantable VeriChip tag has been 
cloned [13] using a cloning device called the Prox Mark II.  
The Mexican government was relying on VeriChip tags to 
protect access to a secure records room to just eighteen of 
its workers [14].  However, such attacks now mean an 
attacker can clone a VeriChip tag and gain access to the 
facilities that the Mexican government was trying to 
protect.  Thirdly, even though the majority of passive tags 
cannot support cryptography the Texas Instruments Digital 
Signal Transponder (TI-DST) is an exception.  
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Unfortunately, it too is vulnerable to tag cloning.  
Although the TI-DST is protected by a 40-bit secret 
cryptographic key, researchers have demonstrated that 
with modest resources, it is possible to capture enough TI-
DST data in a short space of time to crack its encryption 
key.  This is an example of why tag based security does 
not adequately work.  The Exxon-Mobil SpeedPass petrol 
payment system, which relies on TI-DST tags to 
authenticate its customers, has been shown to be 
vulnerable to this attack [15].  This may result in attackers 
being able to obtain free petrol at a customer’s expense.  
Finally, it has been proposed that RFID systems that 
assign tag identification numbers sequentially, non-
randomly, or using small number spaces, an attacker may 
simply guess a legitimate tag identification number which 
can then be replayed to a reader using a simulator device 
[13], in effect cloning a tag.  The EPC tag, a special type 
of RFID tag used in supply chains, such as the Wal-Mart 
supply chain, are vulnerable to this type of cloning [16].  
A cloning attack on EPC tags may allow counterfeit 
products to gain access to a supply chain.  Tag cloning can 
allow change of tag ownership to occur.     

Change of tag ownership, therefore, is serious threat to 
the security of RFID systems.  By simply removing a tag 
from a subject, an attacker can obtain access to those 
assets which RFID is being used to protect.  Tag cloning 
can allow an attacker to achieve this on a much wider 
scale.  Thus, change of tag ownership results in the 
security goals of an RFID system being compromised.  

3. Related Work 

Our approach is different to the previous research outlined 
in  [6] and  [7]  in a several of ways.  Firstly, our proposal 
goes beyond preventing tag cloning by actually 
determining whether the subject to which a tag is attached 
has changed.  It does not prevent a tag from being cloned, 
but can be used to detect when a clone or a stolen tag is 
used by an attacker. We believe this is more effective as it 
questions the legitimacy of the subject, not simply the tag 
itself.  Secondly, our proposal avoids the difficulties on-
board the tags, by situating itself within the middleware.  
As the reader and middleware components are typically 
accepted as the expensive components of RFID [17] our 
proposal is more practical.  Finally, our proposal controls 
the perimeter of an RFID system by moderating access 
through the readers.  When an attack has been detected, it 
can be configured to inform readers to block a tag’s access.  
Systems that carry out this function for other devices are 
known as intrusion detection systems.   

‘Intrusion detection is the process of identifying and 
responding to malicious activity targeted at computing and 
networking resources’ [18].  When anomalous behaviour 

is detected an alert is triggered that informs an 
administrator of a potential breach of security.  There are 
two established approaches to doing this.  Anomaly 
Detection flags abnormal behaviour, whereas, Signature 
Detection flags behaviour that is close to some previously 
defined attack definition.  Anomaly detection can detect 
unknown attacks but the result is typically a high false 
positive rate.  However, signature detection can only 
detect what it knows about, which means it cannot detect 
new attacks, but this results in a lower false positive rate.  
Intrusion detection systems are useful in detecting when 
an attacker has stolen a user’s password, or, when 
legitimate users abuse their privileges [19].     

The Intrusion Detection Expert System (IDES) by 
Denning [8] has been the inspiration for many intrusion 
detection systems, and is the inspiration behind Deckard.  
Although there have been significant advancements in the 
field of intrusion detection over the years [19], we have 
chosen to start with a simple approach, as this is the first 
time intrusion detection has been applied to RFID.  We 
believe that if a simple approach like Deckard works, then 
future research may consider investigating more 
sophisticated methods of detecting change of tag 
ownership in RFID systems.   

Briefly, IDES is a general purpose statistical anomaly 
detection system that monitors a system’s audit records to 
look for abnormal patterns of usage.  It observes the 
standard operations that occur within a target system to 
detect intrusions, such as logins or file accesses.  It uses 
standard deviation and mean statistics to measure subject 
behaviour which are categorized into discrete time periods 
called observations.  Observations of subject behaviour 
that significantly deviate from past observations are 
regarded as intrusions.  The system models each subject’s 
normal behaviour with regard to a profile built from object 
use.  A profile characterizes a subject’s past behaviour, 
based on audit log records.  The system then classifies a 
new observation as either normal, in that it fits the 
subject’s profile, or alternatively as abnormal, in which 
case it is regarded as an intrusion.  The IDES model 
proposed a profile called Location Frequency that 
measures the number of times a subject logs into a system 
at different locations.  This profile may be especially 
useful in detecting attackers that log in from locations that 
authorized subjects rarely use.   

The paradigm of intrusion detection may be useful in 
detecting change of tag ownership.  A system that can 
model the behaviour of authorized subjects within an 
RFID system may be capable of detecting when an 
attacker starts to use a cloned or stolen tag.  An RFID 
intrusion detection system like Deckard may secure an 
RFID system by preventing attackers from gaining access.       
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4. System Design and Operation 

In this section we discuss the design and operation of 
Deckard, our intrusion detection system for detecting 
change of tag ownership.  The essential components 
necessary to perform intrusion detection [18] exist within 
an RFID system. They are: 1. Target System, 2. Feed, 3. 
Audit Log, 4. Processing Engine, 5. Knowledgebase, and 
6. Activity Records.  We now discuss how they exist and 
how we have adapted them to Deckard.   
 
1. Target System: An RFID system that has assets 

worth protecting from change of tag ownership 
attacks.  For example, the SpeedPass payment system, 
proximity tag systems, or a product supply chain.  Our 
target system was the University of Tasmania’s 
School of Computing RFID proximity tag system.  
The target system ultimately determines the type of 
data that an intrusion detection system can utilize to 
form profiles.  Similarly, the subject to which tags are 
attached influences the nature of the data.  That is, 
supply chain products would exhibit different 
behavior when compared to humans.  In essence, 
Deckard may be regarded as a passive host based 
system, as it monitors RFID tag activity occurring at a 
reader after the fact and is positioned at the 
middleware level.   

2. Feed: The raw data traffic that is produced when a tag 
is read by a reader.  Conceptually, the RFID readers 
are like sensors, sensing when a tag is in range, 
reading it, and recording its observations into an audit 
log.  The feed data is encapsulated into an audit 
record with the following attributes: tag identifier, 
reader identifier, and timestamp.   

3. Audit Log:  The central repository of a system’s audit 
records produced by the feed.  Deckard used a flat 
text file for this purpose, although it could have easily 
been a database.   

4. Processing Engine: The controller responsible for 
executing all system tasks.  It periodically retrieves 
and updates each tag profile from the knowledgebase.  
After a profile’s model has been updated, it confirms 
whether or not a profile’s thresholds are still in check.  
Finally, it is responsible for generating activity 
records which alert a system administrator if a 
profile’s threshold has been exceeded.   

5. Knowledgebase: A collection of tag profiles which 
encapsulate the normal behavior of tags, and hence, 
the behavior of subjects to which the tags are attached.  
A profile encapsulates subject behavior using the 
following variables:  profile name, RFID operation 
(read/write), tag identifier number, reader identifier 
number, time-of-day/timestamp, value (measure of 

current observation), and threshold (measure of past 
observations).   

Deckard uses statistical methods to look for 
anomalies.  We developed a single profile called 
Location Frequency Profile (LFP) to look for 
behavior that may indicate change of tag ownership.  
It is necessary to remember, we assume a significant 
deviation away from normal behavior is indicative of 
a change in tag ownership.  Thus, the LFP defines an 
administrator controllable threshold called Deviations 
from Mean (DFM), to determine how “different” a 
current observation can be from the mean value, 
before an alert is triggered.  The system administrators 
can trade-off the detection rate against error rate using 
the DFM threshold.  Three DFM threshold levels 
were specified (σ1, σ2, σ3) in our tests as the data the 
system was tested on is normally distributed, and 
accordingly, it uses the statistical Empirical Rule [20].  
To illustrate, a threshold of σ1 allows a current 
observation to be ±1 deviation away from the mean of 
past observations in the LFP.  Finally, the window-
size parameter controls the trade-off between the 
number of audit records used to create an observation, 
system accuracy, and profile testing and training 
speed.  Using a large number of audit records to 
create an observation does not necessarily produce a 
better classification, and so the window-size was used 
to determine how old the audit records can be.  All of 
this information is encapsulated in a profile which is 
stored in the knowledgebase for each tag.  In essence, 
Deckard uses statistical anomaly detection to look for 
change of tag ownership.   

6. Activity Records:  These report the result of a profile 
update.  If a profile's threshold has been exceeded by 
a current observation, a negative activity record is 
generated which informs the administrator that it has 
detected suspicious behavior or an attack.  Conversely, 
positive activity records are simply discarded by the 
system as no suspicious behavior was detected during 
the profile update.   

 
With the six components of Deckard in mind, Deckard 
operates in the following manner.  Firstly, the reader 
records the details of an RFID reader’s “read” operation 
into an audit record.  This record is then stored inside an 
audit log.  Secondly, the processing engine periodically 
performs an update on each tag profile.  Each profile is 
retrieved in turn from the knowledgebase in conjunction 
with its associated audit records.  The window-size 
determines how old these audit records can be.  To 
determine the LFP, the mean number of times a tag has 
been used is calculated, and so is the acceptable range that 
it could normally be used in the current time period using 
the DFM threshold.  The DFM signifies the number of 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007 
 

 

93

deviations away from the mean a current observation can 
occur.  Finally, an activity record is produced to report the 
outcome of a profile update; negative if the profiles 
threshold has been exceeded by the current profile update 
or positive if no anomalous behaviour was detected.  Thus, 
Deckard uses a model of tag normal behaviour to detect 
change of tag ownership attacks within background RFID 
traffic.   

5. Performance Evaluation 

The ability of Deckard to detect change of tag ownership 
was evaluated in two testing phases using the LFP.  Phase 
One determined the systems performance when modelling 
the normal behaviour of tags by calculating the true error 
rate of the statistical classifier.  Given an audit log that 
does not contain any attacks; the LFP should not detect 
any attacks or anomalies in the data.  If the LFP can model 
when subjects are behaving normally, it can use that 
model to detect when subjects are misbehaving.  That is, 
when an attacker has obtained ownership of a subjects tag 
and started using it.  The ability to model a subject’s 
normal behaviour is an underlying requirement of 
anomaly detection [18].  Next, Phase Two determined the 
system’s performance at detecting synthesized attacks 
inside a sanitized audit log.  That is, whether the system 
could detect audit records relating to a change of tag 
ownership in an RFID system.  The results from each 
testing phase are presented in section 6. 

The testing phases used data from four sanitized RFID 
audit logs that were supplied by the School of Computing 
in the University of Tasmania.  The School operates an 
RFID proximity tag system that controls subject (student 
and staff) access to computer laboratories.  The system 
records when a subject uses their tag at a reader.  The 
audit logs represented the activity of 327 proximity tags 
and their subjects between 25/11/2004 to 02/06/2006.  
There were some 36,294 useable audit records.  Although 
our tests involved four RFID readers, our system is not 
dependent on the number of readers within a system, as a 
profile characterizes the behaviour of a subject at an 
individual reader.  We envisage our system being useful to 
a wide variety of RFID systems.   

The data was sanitized prior to being used to preserve 
the privacy of individual subjects.  The sanitization 
process changed every tag number to a pseudonym that 
was in no way related to the original tag number.  
Although sanitization may sometimes remove the content 
of the background activity and produce an unrealistic 
representation of the environment [21], this would not 
have occurred to these sanitized audit logs as the 
association between a subject and their audit records was 

not changed.  We now discuss the testing methodology 
used in each phase.   

5.1. Phase One: Performance of Classifying 
the Normal Behaviour of Tags 

The aim of Phase One was to determine the performance 
of the statistical classifier in modelling the normal 
behaviour of tags on an attack free data set.  The true error 
rate would indicate the system’s ability to do this.  A low 
true error rate is desirable as this would mean that the 
system can successfully model the normal behaviour of 
tags.  The standard way of predicting the true error rate 
and future performance of a learning procedure is using 
stratified ten fold cross validation [22].  As our data was 
time series dependent, we performed ten fold cross 
validation without stratification so that the underlying 
structure of the data would not be altered.  The data was 
then fed into the LFP to calculate the true error rate, in the 
following manner:   
 
1. The audit logs were partitioned into ten parts of 

approximately the same number of audit records 
ordered in time.     

2. Using the LFP, the first partition, called the test set, 
was held out, and then the remaining nine partitions 
in order of occurrence over time, called the training 
set, were fed into the LFP.  This determined the 
window-size that produced the lowest error rate, 
called the optimum window-size.   

3. After determining the optimum window-size on the 
training set, it was then applied to the test set to 
determine the error rate.  This process was repeated 
ten times, each time with a different test and training 
set.   

4. Finally, the ten error estimates were averaged to 
produce an estimate of the true error rate.  This 
estimated how well the classifier could model the 
normal behaviour of tags.   

 
The outcome of this would determine the feasibility of 
moving on to Phase Two which would determine the 
systems ability to detect attacks. 

5.2. Phase Two: Performance at Detecting 
Attacks 

The aim of Phase Two was to determine the system’s 
ability to detect change of tag ownership.  The system was 
designed on the assumption that change of tag ownership 
would be indicated by a change in a subject’s behaviour 
exhibited through their tag’s audit records.  Hence, the 
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question that needed to be answered here was: how 
different does an attacker’s behaviour need to be from an 
authorized subject’s normal behaviour so they can be 
detected?  To answer this question, we had to simulate 
attacker behaviour dispersed amongst normal background 
traffic.  As there have not actually been any reported cases 
of change of tag ownership, for example, tag cloning, we 
had to synthesize our attack data.  Synthesizing attack data 
is an accepted means of evaluating an intrusion detection 
system [23] [24] [25].  

We simulated an artificial stream of attacker behaviour 
in the following way.  Attacks, in the form of duplicate 
audit records, were copied and reinserted at known 
locations throughout the audit log.  Their amount, called 
attack intensity, and their occurrence over time, called 
attack frequency, were synthesized and then slowly 
increased to simulate an attacker that was escalating their 
usage of an authorized subject’s tag.  The attack frequency 
was used to ensure attack data was adequately distributed 
amongst the background traffic.  Once attacks had been 
inserted into the data, the system was allowed to make its 
classification using the LFP.  The LFP’s classifications 
were then verified against the known locations of the 
attacks.  This indicated the point at which an attacker’s tag 
usage could be detected from an authorized subject’s tag 
usage, and hence, whether the system could detect a 
change of tag ownership.   

Although [21] discusses the limitations in synthesizing 
attacks, we believe that our attacks are a realistic 
representation of the problem.  Unlike a computer system 
that can look for known traits of computer viruses, the 
characteristics of a change of tag ownership would only be 
detected by looking for a deviation in subject behaviour.  
By manipulating the attack intensity and attack frequency, 
our aim was to adequately represent a change in behaviour.   

We have assumed that our data set is free of pre-
existing attacks, and that the only attacks are those which 
we ourselves have inserted.  Although [21] discusses that 
pre-existing attacks may influence the detection rate, we 
believe that there would be very few, if any, pre-existing 
attacks.  Any bias within the audit logs, we believe, would 
have been minimized due to the large sample size of audit 
records used, and the cross-validation we performed on 
the test and training data sets.  We now present the results 
from each testing phase. 

6. Analysis and Results 

The results of each testing phase are now presented in the 
form of confusion matrices.  These summarize the 
performance at each possible configuration of the system 
using the LFP.  The system’s ability to detect attacks was 
measured as follows.  True positives and true negatives are 

correct classifications when the system correctly classified 
an observation as containing an attack or not containing an 
attack.  False positives and false negatives are incorrect 
classifications when the system misclassified an 
observation as either containing an attack, when in fact it 
did not, or when it failed to detect the presence of an 
attack [22].  An ideal intrusion detection system has a high 
true positive rate and a low false positive value.  As is 
most often the case, when one setting in an intrusion 
detection system is changed, the results that the system 
produces will vary.  Accordingly, we have used Pearson’s 
correlation coefficient (PCC) [20] to indicate the 
association between the system’s different settings.  
Together the results from each testing phase form our 
justification for using an intrusion detection system for 
RFID data.   

6.1. Phase One Results 

The results in Table 1 indicate that the system can model 
the normal behaviour of an authorized subject’s tag.  The 
average true error rate using DFM σ1 was 27.33% using 
92.5% of the data.  Conversely, using a less strict 
threshold DFM σ3, the average true error rate was 13.29% 
using 96.88% of the data.  Thus, there is a trade-off 
between the DFM threshold (strictness of what constitutes 
normal behaviour) and the window-size (amount of data 
used) to produce an accurate model of normal behaviour.    

Table 1.  Performance of Deckard using DFM threshold as lower and 
upper bound on tag usage. 

 Average Window-Size % True Error Rate % 

Reader σ 1 σ 2 σ 3 σ 1 σ 2 σ 3 

1 82.5 90 100 26.87 16.48 12.52

2 90 95 100 29.36 15.13 12.13

3 100 92.5 87.5 24.39 14.76 11.86

4 97.5 97.5 100 28.69 18.71 16.65

Averag
e 

92.5 93.75 96.88 27.33 16.27 13.29

 PCC of averages 0.97 PCC of averages -0.95 

 
Our initial instinct was to use the DFM threshold as a 
lower and upper bound on tag usage.  That is, to constrain 
the range a tag could allowably be used during an 
observation period.  To illustrate, Alice may have used her 
tag on average five times in the past.  As the DFM 
represents the number of deviations away from this 
average, a DFM of σ1, would allow an incoming 
observation to fall within ±1 deviation from this mean.  
Thus, increasing the DFM threshold makes the system less 
strict in its classification of what normal behaviour is, as 
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behaviour can be further away from the mean value of past 
observations.    

Having used the DFM threshold as a lower and upper 
bound on tag usage, it can be seen from Table 1, that PCC 
indicates that as the DFM moves from σ1 to σ3, the true 
error rate declines.  For example, for reader one, the true 
error rate falls from 26.87% to 12.52%.  Thus, the 
system’s ability to model normal behaviour improves as 
the definition of normal behaviour is made less strict.  

However, PCC also indicates that as the DFM 
threshold moves from σ1 to σ3, becoming less strict in its 
definition of normal behaviour, the system has to use more 
audit records to produce a lower true error rate, and hence, 
a better model of normal behaviour.  For example, looking 
at reader one, the average window-size starts at 82.5% and 
increases to 100%.  Thus, as the definition of normal is 
made less strict, the system uses more audit records to 
produce a more accurate classification.   

In summary, when the system uses the DFM threshold 
as a lower and upper bound on tag usage, it performs best 
at modelling the normal behaviour of subjects when it uses 
the least strict threshold DFM σ3.  Consequently, at DFM 
σ3, the system must use more audit log data to achieve a 
better model of normal behaviour. 

We refined Phase One in an attempt to improve these 
results.  We changed the DFM threshold so that it acted 
only as an upper bound on tag usage.  That is, when a tags 
usage exceeded this threshold, a negative activity record 
would be generated, indicating that an attack had been 
detected.  In a real world RFID application, this may 
represent the problem more adequately as an increase in 
tag usage would be more indicative of an attacker’s 
behaviour.  To illustrate, when Mallory clones Alice’s 
proximity tag, he may use it more frequently than Alice, or 
in locations that Alice has rarely used.  Furthermore, it 
may be more feasible to detect subjects whose tags were 
being misused on a regular basis as they may cause a 
greater loss to an RFID application.    

In Table 2, it can be seen that the association between 
the DFM threshold, window-size, and true error rate is still 
present.  When compared to using the DFM as a lower and 
upper bound on tag usage, however, the effect of 
removing the lower bound on the DFM threshold produces 
a lower true error rate, and the system does not need to use 
as much audit log data.  For example, at DFM σ1, the 
average true error rate is 18.52% using 68.75% of the data.  
A much better performance result when compared to the 
previous system configuration’s result of 27.33% average 
true error rate using 92.5% of the data.   

 
 
 
 

 

Table 2.  Performance of Deckard using DFM threshold as upper bound 
on tag usage. 

 Average Window-Size % True Error Rate % 

Reader σ1 σ2 σ3 σ 1 σ 2 σ3 

1 65 87.5 95 17.63 12.53 9.89 

2 75 80 92.5 20.38 12.73 9.76 

3 50 85 82.5 17.05 11.61 9.21 

4 85 97.5 100 19.03 14 11.94

Averag
e 

68.75 87.5 92.5 18.52 12.72 10.2 

 PCC of averages  0.95 PCC of averages -0.98 

 
In summary, a lower true error rate, hence, better model of 
normal behaviour, can be obtained when Deckard uses the 
DFM threshold as an upper bound on tag usage.  The 
systems performance at modelling the normal behaviour of 
tags improves when the DFM is relaxed from σ1 to σ3.  
Consequently, this would actually make it easier for an 
attacker to evade detection as the system is less strict in 
what it regards as an anomaly because its definition of 
normal is not very strict.    

6.2. Phase Two Results 

As Deckard assumes that a change of tag ownership is 
indicated by a change in tag behaviour, the system’s 
model of normal behaviour has been applied to a dataset 
with artificial attacks to see if it can detect them, and 
hence, detect change of tag ownership.  We decided to use 
the DFM threshold as an upper bound on tag usage as 
Phase One indicated this produced the best model of 
normal behaviour.  We now present the results from Phase 
Two testing.   

The system detected the greatest number of attacks 
using DFM σ1, as seen in Table 3.  The average true 
positive rate, which is a tag’s true positive rate of 
detection averaged, was 76.26%, compared to the average 
true positive rate of 62.97% using DFM σ2, and 46.30% 
using DFM σ3. At the same time, however, the system 
incorrectly detected authorized behaviour as attacks.  
Overall, DFM σ1 made the greatest number of incorrect 
classifications.  Its average false positive rate was 8.40%, 
compared to 3.69% using DFM σ2 and 2.52% using DFM 
σ3.  Thus, there is a trade-off between the true positive 
rate and false positive rate.  The system detected the 
greatest number of attacks using DFM σ1, but this setting 
also produced the greatest number of errors.   
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Table 3.  Performance of Deckard in detecting change of tag ownership 
attacks. 

 True Positive Rate % False Positive Rate % 

Attack Intensity σ1 σ2 σ3 σ1 σ2 σ3 

Attack Frequency 1 

1 63.64 63.64 63.64 10.77 4.71 2.66 

2 81.82 63.64 63.64 9.69 3.49 2.52 

3 81.82 81.82 72.73 7.04 3.01 2.39 

Average 75.76 69.70 66.67 9.17 3.74 2.52 

PCC 0.87 0.87 0.87 -0.97 -0.97 -1.00

Attack Frequency 2 

1 63.64 45.45 36.36 10.09 4.20 2.76 

2 81.82 63.64 36.36 7.65 3.61 2.48 

3 86.36 81.82 50.00 6.15 3.12 2.17 

Average 77.27 63.64 40.91 7.96 3.64 2.47 

PCC 0.94 1.00 0.87 -0.99 -1.00 -1.00

Attack Frequency 3 

1 63.64 36.36 24.24 10.29 4.35 2.88 

2 78.79 57.58 30.30 7.63 3.49 2.59 

3 84.85 72.73 39.39 6.33 3.23 2.27 

Average 75.76 55.56 31.31 8.08 3.69 2.58 

PCC 0.97 1.00 0.99 -0.98 -0.96 -1.00

Totals 

Overall averages 76.26 62.97 46.30 8.40 3.69 2.52 

PCC of averages 0.00 -1.00 -0.97 -0.82 -0.50 0.54 

 
It is equally important to consider the effect that attack 
intensity and attack frequency has on the system’s 
performance in detecting change of tag ownership.  PCC 
indicates that as attacker behaviour becomes more 
different from authorized behaviour (attack intensity 
increases), attacker behaviour becomes easier to detect.  
The true positive rate of DFM σ1 at an attack frequency of 
one, increases from 63.64% to 81.82% as attack intensity 
increases.  This association is the same for DFM σ2 and 
σ3; however, their true positive rates are slightly less than 
DFM σ1.  Thus, Deckard performs better at detecting 
change of tag ownership as attacker behaviour becomes 
more different (attack intensity increases). This is a 
desirable feature of an intrusion detection system.   

Another positive aspect of the results, PCC indicates 
that as attacker behaviour becomes more different from 
authorized behaviour (attack intensity increases); errors in 
the system fall.  The false positive rate at DFM σ1, at an 
attack frequency of one, falls from 10.77% to 7.04% as 
attack intensity increases.  Similarly, this association can 
be seen across DFM σ2 and σ3. Thus, as attacker 
behaviour becomes more different (attack intensity 
increases), Deckard produces fewer errors.   

The next variation that we tested was the effect of 
distributing attacks across the dataset.  As the number of 
attack periods increases (attack frequency increases), and 

attacker behaviour occurs more frequently throughout the 
dataset, PCC of averages indicates that the behaviour of an 
attacker is more consistently detected using DFM σ1.  
Table 3 indicates an average true positive rate starts at 
75.76% at an attack frequency of one, and returns to 
75.76% at an attack frequency of three. This means that 
Deckard’s ability to detect change of tag ownership 
remains relatively stable using DFM σ1.   

In contrast, PCC of averages indicates the true average 
true positive rate of DFM σ2 and σ3 decreases as attacker 
behaviour occurs more frequently. The average true 
positive rate starts at 69.70% for DFM σ2, and falls to 
55.66% at attack frequency three.  Thus, these DFM 
settings are influenced by frequency of attacks, and 
therefore, they detect fewer attacks as attacks occur more 
frequently and become incorporated as normal behaviour.  
This is a problem faced by all systems that aim to detect 
anomalous behaviour.   

At the same time, PCC of averages indicates that the 
false positive rate falls as attacks occur more frequently.  
The average false positive rate at DFM σ1 attack 
frequency one, starts at 9.17% and falls to 8.08% at an 
attack frequency of three.  Thus, the system makes fewer 
errors as attacks occur more frequently.  Although the 
average false positive rate of DFM σ1 is 8.40%, 
significantly higher than the other DFM settings, PCC of 
averages for false positive rate actually indicates that 
overtime this will perform better than DFM σ3.  Using 
DFM σ3, the false positive rate actually increases from 
2.52% to 2.58%. This means that DFM σ1 will produce 
fewer errors than the other DFM settings when attacks 
occur more frequently.   

In summary, the systems ability to detect change of tag 
ownership depends on the trade-off between the DFM 
threshold (strictness of what is classified as normal), 
attack intensity and attack frequency.  Overall, DFM σ1 
detected the greatest number of attacks, having produced 
the highest average true positive rate of 76.26%, but also 
the highest average false positive rate of 8.40%.  In an 
RFID system with no security to detect change of tag 
ownership, these results are promising.  At the same time, 
the false positive rate is Deckard’s Achilles heel.  Any 
security system that prevents its authorized subjects from 
carrying out their job is not good enough to be 
implemented in the real world.  

The performance of Deckard is on par with similar 
statistical anomaly detectors.  For example, [26] showed a 
statistical anomaly detection system based on the Chi-
Square statistic and standard deviation produced a 
detection rate of around 75%.  The high false positive rate 
produced by Deckard is typical of anomaly based data 
mining intrusion detection systems [23].  Thus, for 
systems such as this to be useable in real environments the 
false positive rate needs to be improved.   
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7. Conclusions  

We have shown that change of RFID tag ownership is a 
serious threat to the security of RFID systems which must 
be solved.  Our approach improves upon previous 
approaches as we detect when an attacker has obtained 
ownership of a tag.  This is more important than simply 
determining when a tag has been cloned.  In addition, our 
proposal avoids the limitations of placing security at the 
tag level, by instead placing security in the middleware.   

The system we built, Deckard, can detect synthesized 
attacks inside a sanitized audit log.  The results are 
promising as there is currently no system, to our 
knowledge, that can carry out this task for RFID systems.  
However, the false positive rate dominates the current 
system’s feasibility in the real-world.  To illustrate, the 
SpeedPass petrol payment system (see section 2) has over 
7 million customers.  A false positive rate of 8.40% in 
SpeedPass would cause the system to fail by preventing its 
authorized subjects from paying for petrol.  Nevertheless, 
in applications where there is a potential for more 
significant loss, like an ePassport system which is 
controlling access to country borders; the security that an 
RFID intrusion detection system like Deckard may offer 
may be better than no security at all.   

We believe that our results are sufficiently encouraging 
to suggest future research that may consider using more 
sophisticated methods in intrusion detection systems 
aimed at detecting change of RFID tag ownership.   

8. Future Work 

The following areas will be considered for further 
investigation:  

• Replace the statistical detector with a more 
sophisticated detection technique.   

• Incorporate contextual information of an RFID 
system into the detection process.  For example, 
distance between RFID readers.  These may form 
plausibility checks or signatures to enhance 
anomaly detection.       

• Model the normal behaviour of a specific RFID 
application and apply it to detecting attacks.   
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