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Summary 
Graph based visual languages are typically based on 

nodes, directed arcs and sub-graphs. Nodes represent function 
or actions, arcs carry data or control-flow signals, and sub-
graphs provide abstraction and modularization. Operations in 
graphs follow a firing rule which defines the conditions under 
which execution of node occurs. In the control flow based 
model, the firing rule is based solely on the availability of the 
control-flow signals on the node’s input arcs. In the data flow 
based model, the firing rule is based on the availability of the 
required data on the node’s input arcs. 

This paper discusses our partial evaluation of a  domain 
specific graph based visual language, called VRPML 
utilizing the well-known ISPW-6 benchmark problem as a 
case study. The focus of the evaluation is on the firing rule. 
Due to its control flow based firing rule, we observe that 
VRPML suffers from race condition problem, that is, two or 
more control-flow signals can inadvertently and erroneously 
compete to enable a particular activity node. This paper 
outlines our proposal to address the problem and enhance the 
language syntax and semantics. 
 
1. Introduction 
 
Visual programming languages have been around for 
quite some time now. The basic idea behind a visual 
programming language is that computer graphics (e.g. 
graphs consisting of icons, nodes, and arcs) are used 
instead of a textual representation. In fact, the central 
argument for a visual programming language is based 
on an observation that picture is better than text (i.e. a 
picture is worth a thousand words [5]). 
 
While a visual programming language may not be able 
to provide a silver bullet to solve every problem related 
to engineering a software system, a carefully chosen 
level of abstractions (e.g. by working at the same level 
of abstraction as the problem domain) coupled with 
easy to understand notations may help alleviate the 
low-level complexities offered by the textual 
counterpart.  Motivated by the abovementioned 
arguments, much research has been undertaken on 
visual languages over the last 20 years. Of interest to us 
is the graph based visual language [9][10][11] .  
 
Graph based visual languages are typically based on 
nodes, directed arcs and sub-graphs [1][2]. Nodes 
represent function or actions, arcs carry data or control-

flow signals, and sub-graphs provide abstraction and 
modularization. Operations in graphs follow a firing 
rule which defines the conditions under which 
execution of node occurs. In the control flow based 
model, the firing rule is based solely on the availability 
of the control-flow signals on the node’s input arcs. In 
the data flow based model, the firing rule is based on 
the availability of the required data on the node’s input 
arcs. 
 
This paper discusses our partial evaluation of a domain 
specific graph based visual language, called VRPML 
[7][10], utilizing the well-known ISPW-6 benchmark 
problem [4] as a case study. The focus of the 
evaluation is on the VRPML’s firing rule. Due to its 
control flow based firing rule, we observe that VRPML 
suffers from the race condition problem, that is, two or 
more control-flow signals can inadvertently and 
erroneously compete to enable a particular activity 
node. This paper outlines our proposal to address the 
problem and enhance the language syntax and 
semantics. 
 
This paper is organized as follows. Section 2 gives an 
overview on the VRPML syntax and semantics. 
Section 3 discusses the ISPW 6 problem and provides 
brief descriptions of the corresponding VRPML 
solution. Section 4 discusses the lessons learned. 
Finally, section 5 presents the conclusions of the paper.  
 
The Granite and the Limestone are still remained the 
main rocks types used for the aggregates production. 
The aggregates are referred to these crush rocks which 
normally used in road and other construction purposes 
[1]. It is a fast growing and emerging industry as one of 
the most demanding with a lot of expectations to fulfill 
the needs and the requirement for various industry and 
domestic purposes.  

 
2. Overview of VRPML 

VRPML [7][10] is a domain specific graph based 
visual language adopting the control-flow model firing 
rule.  VRPML is used to model and execute a software 
process, that is, a sequence of steps that must be 
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followed by software engineers to pursue the goals of 
software engineering.  
 
Software processes are specified in VRPML as graphs, 
by interconnecting nodes from top to bottom using arcs 
that carry run-time control-flow signals. As an 
illustration, Figure 1 presents the main VRPML 
solution to a benchmark process, i.e. the ISPW-6 
problem [4]. This solution will be discussed further in 
the next section 
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Fig. 1 Main VRPML Graph for the ISPW-6 Problem 
 
Similar to Little JIL [6], software processes in VRPML 
are described using process step abstractions, which 
represent the most atomic representation of a software 
process (i.e. the actual activity that software engineers 
are expected to perform). These activities are 
represented as nodes, called activity nodes (shown as 
small ovals with stick figures).  
 
As depicted in Figure 1, VRPML supports many 
different kinds of activity nodes. They include: 
general-purpose activity nodes (shown as individual 
small ovals with stick figures); multi-instance activity 
nodes (shown as overlapping small ovals with stick 
figures); and meeting activity node (shown as small and 
shaded overlapping ovals with stick figures). Both 
multi-instance activity nodes and meeting activity 
nodes have associated depths, indicating the actual 
number of engineers involved (and also the number of 
identical activities in the case of multi-instance 
activity).  Also, a set of VRPML nodes can be grouped 

together using a macro node (shown as dotted line 
ovals) to improve the graph readability. 
 
The firing of activity nodes is controlled by the arrival 
of a necessary control-flow signal. Control-flow signals 
may be generated from transitions (shown as small 
white circles with a capital letter attached to an activity 
node) or decomposable transitions (shown as small 
black circles with a capital letter attached to an activity 
node). However, the initial control-flow signal must 
always be generated from a start node (shown as a 
white circle enclosing a black circle). A stop node 
(shown as a white circle enclosing another white circle) 
does not generate any control-flow signal. In VRPML, 
activity nodes can also be enacted in parallel using 
combinations of language elements called merger and 
replicator nodes (shown as trapezoidal boxes with 
arrows inside). 
 
For every activity node, VRPML provides a separate 
workspace. Figure 2 depicts the sample workspace for 
the activity node called Review Meeting in Figure 1. A 
workspace typically gives a work context of an activity 
as it hosts resources needed for enacting the activity: 
transitions, artifacts (shown as overlapping two 
overlapping documents with arrows for depicting 
access rights), communication tools (shown as a 
microphone, and an envelope), and any task 
descriptions (shown as a question mark). Effectively, 
when an activity is undertaken, the workspace is 
mapped into a virtual room, transitions into buttons, 
and artifacts, communication tools and task description 
into objects which can be manipulated by software 
engineers to complete the particular task at hand. This 
mapping is based on Doppke’s task-centered mapping 
described in [3]. 
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Fig. 2 Sample Workspace for Activity Node Review 
Meeting from Figure 1 

 
As part of its enactment model, VRPML relies on its 
resource exception handling mechanism. In VRPML, 
resources include roles assignment, artifacts and tools 
(including communication tools) in a workspace as 
well as the depths of multi-instance activity nodes and 
meeting activity nodes. Depending on the needs of a 
particular software development project, these 
resources can either be allocated during graph 
instantiation or dynamically during graph enactment.   
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Fig. 3 VRPML Enactment Model 

 
 
Upon the arrival of the control-flow signal, an activity 
node will be enabled (see Figure 3).  Here, the VRPML 
interpreter attempts to acquire resources that the 
activity node needs. If resources are successfully 
acquired, the VRPML interpreter then instantiates the 
activity corresponding to that activity node. If for any 
reason VRPML fails to acquire the resources, 
enactment will be blocked until such resources are 
made available (e.g. an engineer has not been assigned 
to the activity. Once enactment is blocked, the VRPML 
interpreter automatically produces an activity for the 
administrator (e.g. process engineer) to rectify the 
resource exception or completely terminate the current 
activity. If that activity is terminated, the administrator 
may optionally terminate the overall enactment of the 
particular VRPML graph in question or manually re-
enact connecting nodes by providing the necessary 
control-flow signals that they need to fire. If the 
resource exception is rectified, normal enactment of the 
particular VRPML graph can be resumed resulting in 
the activity being assigned to the appropriate software 
engineer. When that engineer selects that particular 
activity, a workspace for that activity will appear as a 
virtual room with artifacts, transitions and 
communication tools as objects which software 
engineer can manipulate to complete the task. Finally, 
the activity completes when the software engineer 
selects one of the possible transitions (e.g. passed, 
failed, done, or aborted). 
 
3. Solution to the ISPW-6 Problem 
 
The ISPW-6 problem [4] concerns with a software 
change request occurring at the end of the development 

project. A number of activities are defined including: 
Modify Design; Review Design; Modify Code; Modify 
Test Plans; Modify Unit Test Package; and Test Unit. 
Some activities may be executed in parallel, while 
others have to be executed in a sequential manner. In 
each activity, there are also defined roles, tools, source 
files, and pre-conditions and post-conditions which 
must be respected by the software engineers to 
complete the task. Figure 4 and Table 1 summarizes 
the flow of activities, responsibility assignments, inputs 
and outputs involved in the ISPW-6 problem. 
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     Fig. 4 Flow of Tasks in the ISPW-6 Problem 
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The main VRPML graph for the ISPW-6 problem has 
already been given earlier in Figure 1. There are many 
aspects of the solution that can be elaborated further to 
capture the details (e.g. workspace descriptions), but 
space does not permit this. The complete solution is 
described in [8]. 
 
Two aspects of the VRPML solution shown in Figure 1 
are worth highlighting. The first aspect relates to 
macro nodes. Figure 5 below illustrates the macro 
expansion for Test Unit. As seen in the figure, macro 
nodes serve as the modularization and abstraction 
facility for VRPML, apart from improving the graph’s 
readability. 
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           Fig. 5 Macro Expansion for Test Unit in Figure 
 
The second aspect also relates to modularization and 
abstraction, that is, through the decomposable 
transitions. In VRPML, decomposable transitions 
permit the specification of the activity to check 
whether or not the pre-conditions of the parent activity 

Table 1: ISPW-6 Activities, Inputs and Outputs 
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are satisfied before allowing the control-flow signal to 
be generated.  Referring to Figure 1, an example of the 
decomposable transition (labeled D) can be seen 
attached to Modify Code. The sub-graph representing 
that transition is shown in Figure 6 below.  

C h e c k  C o m p ila t io n

S W E n g r

R D

 
 

Fig. 6 Sub-graph for Decomposable Transition labeled 
D in Modify Code 

 
When Check Compilation fails, the assigned software 
engineer can select the transition R (for re-do). As a 
result, a control-flow signal will be generated to re-
enact its parent node (i.e. Modify Code) through a re-
enabled node (shown as two white circles enclosing 
black circle). Otherwise, if the compilation is 
successful, the assigned engineer can select the 
transition D (for Done). In this case, the control-flow 
signal will be generated and propagated back to the 
main graph to enable the subsequent connected node.  

 
 

4. Lessons Learned About VRPML 
 
Upon generating the ISPW-6 solution, we observe 
some limitation in the VRPML’s firing rule 
particularly relating to race condition, whereby two or 
more control-flow signals compete to enable a 
particular activity node. Figure 7 below illustrates the 
situation 
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Fig. 7 The Problem of Race Conditions 
 

Although syntactically correct, the VRPML graph 
above represents an erroneous situation where activity 
C can be enabled when either the done transition of 
activity A or the done transition of activity B is 

selected. As a result, there is a possibility for activity C 
to be enabled twice.  

To address this issue, we propose to amend the 
VRPML syntax and semantics. Instead of permitting 
multiple incoming arcs, the syntax of an activity node 
could be changed to allow only a single incoming arc 
to connect to it.  Therefore, referring to Figure 7, the 
two arcs connections from the done transitions of 
activity A and B to activity C would be syntactically 
incorrect. In this way, the possibilities for race 
conditions would be eliminated.  

This proposed change of syntax to activity nodes raises 
an issue relating to iteration. Disabling multiple 
incoming arcs would not permit iterations, hence, 
limiting the expressiveness of the VRPML notation. 
For example, the VRPML graph in Figure 8 below 
would give rise to a syntax error during compilation 
due to more that one arc connection to activity P (i.e. 
from the start node and the transition R of activity Q). 
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Fig. 8 VRPML Feedback Example  

 

As a solution to support iteration in a VRPML graph, a 
new decomposable cyclic node could be introduced. 
Figure 9 depicts the proposed notation for the 
decomposable cyclic node. 

 

N o d e  Id e n tifie r

 
Fig. 9 The Proposed Decomposable Cyclic Node Notation 

 
Semantically, a decomposable cyclic node permits the 
specification of sub-graphs and allows the use of re-
enabled nodes to re-enable the parent of those sub-
graphs (i.e. the decomposable cyclic node itself). In 
this way, general feedback loops can be specified.  

An example usage of the decomposable cyclic node 
called “Activity P and Q” alongside its decomposition 
is demonstrated below to express the feedback loop for 
the VRPML graph given earlier (see Figure 8). 
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Fig. 10 Example Usage of the Proposed Decomposable 
Cyclic Node 
 
If the activity Q fails, the assigned software engineer 
can select the transition R (for re-do). As a result, a 
control-flow signal will be generated to enable its 
parent node (i.e. Activity P and Q) through a re-
enabled node (shown as two white circles enclosing 
black circle). Otherwise, if the activity Q is successful, 
the assigned engineer can select the transition D (for 
Done). In this case, the control-flow signal will be 
generated and propagated back to the main graph to 
enable the connected node. 
 
Having considered the proposed changes to the 
VRPML syntax, Figure 11 below highlights the new 
partial VRPML solution to the ISPW-6 problem.  

 
Fig. 11 Using Decomposable Cyclic Node as part of 

the VRPML Solution to the ISPW-6 Problem 
 
Two decomposable cyclic nodes can be used:  
 

(i) Modify Design and Review  

(ii) Test Unit and Analysis 
 
Because the decomposition for Modify Design and 
Review is relatively straightforward and similar to the 
case discussed earlier in Figure 8, it will not be 
developed further. Instead, only the decomposition for 
Test Unit and Analysis will be shown in Figure 10. 
Here, the decomposition of Test Unit and Analysis has 
captured the feedback requirement as stipulated by the 
ISPW-6 problem. Apart from addressing the possible 
race condition problems, it can be observed that the 
VRPML solution in Figure 11 and 12 can be more 
compact as compared to the ones given earlier. One 
reason is that the VRPML notation now becomes 
acyclic. 

 
Fig. 12 Decomposition of Test Unit and Analysis 

 

5. Conclusion 
 
In conclusion, this paper has presented a partial 
evaluation of a domain specific graph based visual 
language, called VRPML, whose firing rule are based 
on control flow model. This evaluation uncovers some 
of the limitations of associated with the control flow 
based firing rule and suggests some improvement in 
the language syntax and semantics to address these 
limitations. Such evaluation and its improvement 
suggestion can hopefully provide valuable guidance 
for the design of other graph based visual languages in 
the near future. 
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