
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

146

Manuscript received July 5, 2007

Manuscript revised July 25, 2007

Addressing Race Condition Problem in a Graph Based
Visual Language

Kamal Z. Zamli and Nor Ashidi Mat Isa

1School of Electrical & Electronic Engineering,

Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang Malaysia

Summary
Graph based visual languages are typically based on

nodes, directed arcs and sub-graphs. Nodes represent function
or actions, arcs carry data or control-flow signals, and sub-
graphs provide abstraction and modularization. Operations in
graphs follow a firing rule which defines the conditions under
which execution of node occurs. In the control flow based
model, the firing rule is based solely on the availability of the
control-flow signals on the node’s input arcs. In the data flow
based model, the firing rule is based on the availability of the
required data on the node’s input arcs.

This paper discusses our partial evaluation of a domain
specific graph based visual language, called VRPML
utilizing the well-known ISPW-6 benchmark problem as a
case study. The focus of the evaluation is on the firing rule.
Due to its control flow based firing rule, we observe that
VRPML suffers from race condition problem, that is, two or
more control-flow signals can inadvertently and erroneously
compete to enable a particular activity node. This paper
outlines our proposal to address the problem and enhance the
language syntax and semantics.

1. Introduction

Visual programming languages have been around for
quite some time now. The basic idea behind a visual
programming language is that computer graphics (e.g.
graphs consisting of icons, nodes, and arcs) are used
instead of a textual representation. In fact, the central
argument for a visual programming language is based
on an observation that picture is better than text (i.e. a
picture is worth a thousand words [5]).

While a visual programming language may not be able
to provide a silver bullet to solve every problem related
to engineering a software system, a carefully chosen
level of abstractions (e.g. by working at the same level
of abstraction as the problem domain) coupled with
easy to understand notations may help alleviate the
low-level complexities offered by the textual
counterpart. Motivated by the abovementioned
arguments, much research has been undertaken on
visual languages over the last 20 years. Of interest to us
is the graph based visual language [9][10][11] .

Graph based visual languages are typically based on
nodes, directed arcs and sub-graphs [1][2]. Nodes
represent function or actions, arcs carry data or control-

flow signals, and sub-graphs provide abstraction and
modularization. Operations in graphs follow a firing
rule which defines the conditions under which
execution of node occurs. In the control flow based
model, the firing rule is based solely on the availability
of the control-flow signals on the node’s input arcs. In
the data flow based model, the firing rule is based on
the availability of the required data on the node’s input
arcs.

This paper discusses our partial evaluation of a domain
specific graph based visual language, called VRPML
[7][10], utilizing the well-known ISPW-6 benchmark
problem [4] as a case study. The focus of the
evaluation is on the VRPML’s firing rule. Due to its
control flow based firing rule, we observe that VRPML
suffers from the race condition problem, that is, two or
more control-flow signals can inadvertently and
erroneously compete to enable a particular activity
node. This paper outlines our proposal to address the
problem and enhance the language syntax and
semantics.

This paper is organized as follows. Section 2 gives an
overview on the VRPML syntax and semantics.
Section 3 discusses the ISPW 6 problem and provides
brief descriptions of the corresponding VRPML
solution. Section 4 discusses the lessons learned.
Finally, section 5 presents the conclusions of the paper.

The Granite and the Limestone are still remained the
main rocks types used for the aggregates production.
The aggregates are referred to these crush rocks which
normally used in road and other construction purposes
[1]. It is a fast growing and emerging industry as one of
the most demanding with a lot of expectations to fulfill
the needs and the requirement for various industry and
domestic purposes.

2. Overview of VRPML

VRPML [7][10] is a domain specific graph based
visual language adopting the control-flow model firing
rule. VRPML is used to model and execute a software
process, that is, a sequence of steps that must be

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

147

followed by software engineers to pursue the goals of
software engineering.

Software processes are specified in VRPML as graphs,
by interconnecting nodes from top to bottom using arcs
that carry run-time control-flow signals. As an
illustration, Figure 1 presents the main VRPML
solution to a benchmark process, i.e. the ISPW-6
problem [4]. This solution will be discussed further in
the next section

ModifyTestPlans

QAEngr

ModifyCode

DsgnEngr

D

ModifyUnitTestPackage

QAEngr
D

ModifyDesign

DsgnEngr

ReviewDesign

SWEngr1

ReviewDesign

QAEngr

ReviewMeeting

DsgnEngr
P

F
DReviewDesign

DsgnEngr
DD

D

ModifyUnitTestPackage

QAEngr

ModifyCode

DsgnEngr

TestUnit

D

ModifyUnitTestPackage

QAEngr

D

ModifyCode

DsgnEngr

D

D

D

Fig. 1 Main VRPML Graph for the ISPW-6 Problem

Similar to Little JIL [6], software processes in VRPML
are described using process step abstractions, which
represent the most atomic representation of a software
process (i.e. the actual activity that software engineers
are expected to perform). These activities are
represented as nodes, called activity nodes (shown as
small ovals with stick figures).

As depicted in Figure 1, VRPML supports many
different kinds of activity nodes. They include:
general-purpose activity nodes (shown as individual
small ovals with stick figures); multi-instance activity
nodes (shown as overlapping small ovals with stick
figures); and meeting activity node (shown as small and
shaded overlapping ovals with stick figures). Both
multi-instance activity nodes and meeting activity
nodes have associated depths, indicating the actual
number of engineers involved (and also the number of
identical activities in the case of multi-instance
activity). Also, a set of VRPML nodes can be grouped

together using a macro node (shown as dotted line
ovals) to improve the graph readability.

The firing of activity nodes is controlled by the arrival
of a necessary control-flow signal. Control-flow signals
may be generated from transitions (shown as small
white circles with a capital letter attached to an activity
node) or decomposable transitions (shown as small
black circles with a capital letter attached to an activity
node). However, the initial control-flow signal must
always be generated from a start node (shown as a
white circle enclosing a black circle). A stop node
(shown as a white circle enclosing another white circle)
does not generate any control-flow signal. In VRPML,
activity nodes can also be enacted in parallel using
combinations of language elements called merger and
replicator nodes (shown as trapezoidal boxes with
arrows inside).

For every activity node, VRPML provides a separate
workspace. Figure 2 depicts the sample workspace for
the activity node called Review Meeting in Figure 1. A
workspace typically gives a work context of an activity
as it hosts resources needed for enacting the activity:
transitions, artifacts (shown as overlapping two
overlapping documents with arrows for depicting
access rights), communication tools (shown as a
microphone, and an envelope), and any task
descriptions (shown as a question mark). Effectively,
when an activity is undertaken, the workspace is
mapped into a virtual room, transitions into buttons,
and artifacts, communication tools and task description
into objects which can be manipulated by software
engineers to complete the particular task at hand. This
mapping is based on Doppke’s task-centered mapping
described in [3].

?
O utcom eN otification

R equirem entC hange

D esignR eviewFeedback

R eview M eeting
D sgnEngr

P

C om m unica tionToo l

M od ifiedD esign

Em ailTool

F

Fig. 2 Sample Workspace for Activity Node Review
Meeting from Figure 1

As part of its enactment model, VRPML relies on its
resource exception handling mechanism. In VRPML,
resources include roles assignment, artifacts and tools
(including communication tools) in a workspace as
well as the depths of multi-instance activity nodes and
meeting activity nodes. Depending on the needs of a
particular software development project, these
resources can either be allocated during graph
instantiation or dynamically during graph enactment.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

148

EnabledReady

Arrival of a control
flow signal

Resources needed for the process
step are successfully acquired

Suspended

Resource exception
rectified

Aborted

Progressing

Completed
A new control flow
signal is generated

Resource exception
raised

Engineer undertakes the
process step

Process step is
terminated

Process step
is terminated

Process step is
terminated

Engineer selects any of the
possible transitions

Fig. 3 VRPML Enactment Model

Upon the arrival of the control-flow signal, an activity
node will be enabled (see Figure 3). Here, the VRPML
interpreter attempts to acquire resources that the
activity node needs. If resources are successfully
acquired, the VRPML interpreter then instantiates the
activity corresponding to that activity node. If for any
reason VRPML fails to acquire the resources,
enactment will be blocked until such resources are
made available (e.g. an engineer has not been assigned
to the activity. Once enactment is blocked, the VRPML
interpreter automatically produces an activity for the
administrator (e.g. process engineer) to rectify the
resource exception or completely terminate the current
activity. If that activity is terminated, the administrator
may optionally terminate the overall enactment of the
particular VRPML graph in question or manually re-
enact connecting nodes by providing the necessary
control-flow signals that they need to fire. If the
resource exception is rectified, normal enactment of the
particular VRPML graph can be resumed resulting in
the activity being assigned to the appropriate software
engineer. When that engineer selects that particular
activity, a workspace for that activity will appear as a
virtual room with artifacts, transitions and
communication tools as objects which software
engineer can manipulate to complete the task. Finally,
the activity completes when the software engineer
selects one of the possible transitions (e.g. passed,
failed, done, or aborted).

3. Solution to the ISPW-6 Problem

The ISPW-6 problem [4] concerns with a software
change request occurring at the end of the development

project. A number of activities are defined including:
Modify Design; Review Design; Modify Code; Modify
Test Plans; Modify Unit Test Package; and Test Unit.
Some activities may be executed in parallel, while
others have to be executed in a sequential manner. In
each activity, there are also defined roles, tools, source
files, and pre-conditions and post-conditions which
must be respected by the software engineers to
complete the task. Figure 4 and Table 1 summarizes
the flow of activities, responsibility assignments, inputs
and outputs involved in the ISPW-6 problem.

Schedule and
Assign Task

Modify Design

Monitor Progress

Review Design
Modify Unit

Test Package

Modify Test Plans

Modify Code

Test Unit

 Fig. 4 Flow of Tasks in the ISPW-6 Problem

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

149

The main VRPML graph for the ISPW-6 problem has
already been given earlier in Figure 1. There are many
aspects of the solution that can be elaborated further to
capture the details (e.g. workspace descriptions), but
space does not permit this. The complete solution is
described in [8].

Two aspects of the VRPML solution shown in Figure 1
are worth highlighting. The first aspect relates to
macro nodes. Figure 5 below illustrates the macro
expansion for Test Unit. As seen in the figure, macro
nodes serve as the modularization and abstraction
facility for VRPML, apart from improving the graph’s
readability.

Test

DsgnEngr

D

ReviewDesign

QAEngr

TestAnalysis

QAEngr

C

T
B

FeedbackForCode

DsgnEngr
D

FeedbackForTestPackage

DsgnEngr

D FeedbackForCodeAndTestPackage
DsgnEngr

D

P

 Fig. 5 Macro Expansion for Test Unit in Figure

The second aspect also relates to modularization and
abstraction, that is, through the decomposable
transitions. In VRPML, decomposable transitions
permit the specification of the activity to check
whether or not the pre-conditions of the parent activity

Table 1: ISPW-6 Activities, Inputs and Outputs

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

150

are satisfied before allowing the control-flow signal to
be generated. Referring to Figure 1, an example of the
decomposable transition (labeled D) can be seen
attached to Modify Code. The sub-graph representing
that transition is shown in Figure 6 below.

C h e c k C o m p ila t io n

S W E n g r

R D

Fig. 6 Sub-graph for Decomposable Transition labeled
D in Modify Code

When Check Compilation fails, the assigned software
engineer can select the transition R (for re-do). As a
result, a control-flow signal will be generated to re-
enact its parent node (i.e. Modify Code) through a re-
enabled node (shown as two white circles enclosing
black circle). Otherwise, if the compilation is
successful, the assigned engineer can select the
transition D (for Done). In this case, the control-flow
signal will be generated and propagated back to the
main graph to enable the subsequent connected node.

4. Lessons Learned About VRPML

Upon generating the ISPW-6 solution, we observe
some limitation in the VRPML’s firing rule
particularly relating to race condition, whereby two or
more control-flow signals compete to enable a
particular activity node. Figure 7 below illustrates the
situation

Activity B

SW Engr

D

Activity C

SW Engr

Activity A
SW Engr

D

D

Fig. 7 The Problem of Race Conditions

Although syntactically correct, the VRPML graph
above represents an erroneous situation where activity
C can be enabled when either the done transition of
activity A or the done transition of activity B is

selected. As a result, there is a possibility for activity C
to be enabled twice.

To address this issue, we propose to amend the
VRPML syntax and semantics. Instead of permitting
multiple incoming arcs, the syntax of an activity node
could be changed to allow only a single incoming arc
to connect to it. Therefore, referring to Figure 7, the
two arcs connections from the done transitions of
activity A and B to activity C would be syntactically
incorrect. In this way, the possibilities for race
conditions would be eliminated.

This proposed change of syntax to activity nodes raises
an issue relating to iteration. Disabling multiple
incoming arcs would not permit iterations, hence,
limiting the expressiveness of the VRPML notation.
For example, the VRPML graph in Figure 8 below
would give rise to a syntax error during compilation
due to more that one arc connection to activity P (i.e.
from the start node and the transition R of activity Q).

R e v ie w D e s ig n

S W E n g r 1

R e v ie w D e s ig n

Q A E n g r

A c t i v i t y Q

S W E n g r

D

R

A c t iv i t y P

S W E n g r

D

Fig. 8 VRPML Feedback Example

As a solution to support iteration in a VRPML graph, a
new decomposable cyclic node could be introduced.
Figure 9 depicts the proposed notation for the
decomposable cyclic node.

N o d e Id e n tifie r

Fig. 9 The Proposed Decomposable Cyclic Node Notation

Semantically, a decomposable cyclic node permits the
specification of sub-graphs and allows the use of re-
enabled nodes to re-enable the parent of those sub-
graphs (i.e. the decomposable cyclic node itself). In
this way, general feedback loops can be specified.

An example usage of the decomposable cyclic node
called “Activity P and Q” alongside its decomposition
is demonstrated below to express the feedback loop for
the VRPML graph given earlier (see Figure 8).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

151

A ctiv ity P and Q

R eview D esign

SW Engr1

R eview D esign

Q A Engr

A ctiv ity Q

S W Engr

D R

A ctiv ity P

SW E ngr

D

D ecom posab le C yc lic N ode
A ctiv ity P and Q

D ecom position o f
A ctiv ity P and Q

Fig. 10 Example Usage of the Proposed Decomposable
Cyclic Node

If the activity Q fails, the assigned software engineer
can select the transition R (for re-do). As a result, a
control-flow signal will be generated to enable its
parent node (i.e. Activity P and Q) through a re-
enabled node (shown as two white circles enclosing
black circle). Otherwise, if the activity Q is successful,
the assigned engineer can select the transition D (for
Done). In this case, the control-flow signal will be
generated and propagated back to the main graph to
enable the connected node.

Having considered the proposed changes to the
VRPML syntax, Figure 11 below highlights the new
partial VRPML solution to the ISPW-6 problem.

Fig. 11 Using Decomposable Cyclic Node as part of

the VRPML Solution to the ISPW-6 Problem

Two decomposable cyclic nodes can be used:

(i) Modify Design and Review

(ii) Test Unit and Analysis

Because the decomposition for Modify Design and
Review is relatively straightforward and similar to the
case discussed earlier in Figure 8, it will not be
developed further. Instead, only the decomposition for
Test Unit and Analysis will be shown in Figure 10.
Here, the decomposition of Test Unit and Analysis has
captured the feedback requirement as stipulated by the
ISPW-6 problem. Apart from addressing the possible
race condition problems, it can be observed that the
VRPML solution in Figure 11 and 12 can be more
compact as compared to the ones given earlier. One
reason is that the VRPML notation now becomes
acyclic.

Fig. 12 Decomposition of Test Unit and Analysis

5. Conclusion

In conclusion, this paper has presented a partial
evaluation of a domain specific graph based visual
language, called VRPML, whose firing rule are based
on control flow model. This evaluation uncovers some
of the limitations of associated with the control flow
based firing rule and suggests some improvement in
the language syntax and semantics to address these
limitations. Such evaluation and its improvement
suggestion can hopefully provide valuable guidance
for the design of other graph based visual languages in
the near future.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

152

Acknowledgement

The work undertaken in this research is partially
funded by the USM Short Term Grants – “The Design
and Implementation of the VRPML Runtime
Environment”.

References

1. W.B. Ackerman, Data Flow Languages. In IEEE
Computer, pp 15-23, February 1982

2. T. Agerwala, and Arvind, 1982. Data Flow
Languages. In IEEE Computer, pp. 10-13,
February 1982.

3. J.C. Doppke, D. Heimbigner, and A.L. Wolf.
“Software Process Modeling and Execution
within Virtual Environments”. ACM Transactions
on Software Engineering and Methodology, 7 (1),
January 1998. pp. 1-40.

4 M.I. Kellner, P.H. Feiler, A. Finkelstein, T.
Katayama, L.J. Osterweil, M.H. Penedo, and H.D.
Rombach. “Software Process Modeling Example
Problem”. In Proc. of the 6th Intl. Software
Process Workshop, Hakodate, Hokkaido, Japan,
October 1990. IEEE CS Press.

5. K.N. Whitley, “Visual Programming Languages
and the Empirical Evidence For and Against”.
Journal of Visual Language and Computing 8 (1),
January 1997, pp. 109-142.

6. A. Wise. “Little JIL 1.0 Language Report -
Technical Report 98-24”, Dept. of Computer
Science, Univ. of Massachusetts at Amherst,
April 1998.

7. K.Z. Zamli and P.A. Lee. “Exploiting a Virtual
Environment in a Visual PML”. In Proc. of the
4th Intl. Conf. on Product Focused Software
Process Improvements, LNCS 2559, pp. 49-62,
Rovaniemi, Finland, 2002, Springer.

8. K.Z. Zamli. “Supporting Software Processes for
Distributed Software Engineering Teams”,
School of Computing Science, Univ. of
Newcastle upon Tyne, PhD Thesis (Oct 2003).

9. K.Z. Zamli, and N.A. Mat Isa, “The
Computational Model for a Flow-based Visual
Language”, in Proc. of the AIDIS Intl. Conf. in
Applied Computing 2005, Algarve, Portugal,
pp.217-224 , Feb 22-25, 2005.

10. K.Z. Zamli, N.A. Mat Isa, and N. Khamis, "The
Design and Implementation of the VRPML
Support Environment", Malaysian Journal of
Computer Science 18 (1), June 2005, pp. 57-69.

[11] K.Z. Zamli, N.A. Mat Isa, N. Khamis,
“Implementing Executable Graph Based Visual
Language in a Distributed Environment”, in Proc.
of the IEEE Intl. Conf. on Computing and
Informatics, Kuala Lumpur, June 2006.

Kamal Zuhairi Zamli
obtained his B.Sc in
Electrical Engineering from
Worcester Polytechnic
Institute, Worcester, USA in
1992, MSc in Real Time
Software Engineering from
CASE, Universiti Sains
Malaysia in 2000 and PhD in
Software Engineering from
the University of Newcastle
upon Tyne, UK 2003. He is
currently lecturing at the

School of Electrical and Electronics Engineering, USM
Engineering Campus in Transkerian. His research interests
include software engineering, software process, software
testing, visual languages and object oriented analysis and
design

Nor Ashidi Mat Isa obtained
his B.Eng Hons in Electrical
Engineering from Universiti
Sains Malaysia in 2000 and
PhD in Image Processing and
Neural Networks from the same
university in 2003. He is
currently lecturing at the School
of Electrical and Electronics
Engineering, USM Engineering
Campus in Transkrian. He
specializes in the area of image

processing, nerural networks for medical applications
and software engineering.

