
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

153

Manuscript received July 5, 2007

Manuscript revised July 25 2007

Implementation of an Adaptive Total Ordering Protocol

Yoshihiro Yasutake†, Shinobu Izumi††, Kentaro Oda†† and Takaichi Yoshida††,

†Department of Intelligent Informatics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka, Japan
††Program of Creation Informatics, Kyushu Institute of Technology, 680-4 Kawatsu, Iizuka, Japan

Summary
In distributed systems, the communication among group
members often needs ordered messages to guarantee that every
member receives the messages in the same order. Oftentimes,
changes in distributed computing environment occur and this
undermines the assumption of any ordering algorithm. Therefore,
it is difficult to presume a suitable ordering algorithm and apply
a single algorithm throughout the lifetime of the system.
In this paper, we present an adaptive total ordering protocol and
its implementation on our reconfigurable object model. Our
adaptive protocol selects a suitable ordering protocol from
optimistic and pessimistic total ordering protocols dynamically
depending on the runtime environment. With optimistic protocol,
it is possible to reduce the affect of the network latency which is
not negligible in the pessimistic protocol, because the optimistic
protocol delivers messages immediately after receiving them.
The optimistic protocol though incurs high ordering cost during
rollback, and so in this case, it is worth using the pessimistic
algorithm instead.
The adaptive protocol is realized on the reconfigurable object
model. This object model enables dynamic changing of object
behaviors by reconfiguring consists of meta-objects. The total
ordering processes are dealt in one of the meta-objects, called re-
ordering meta-object. Therefore reconfiguration makes it
possible to switch a total ordering protocol to others dynamically
depending on the runtime environment.
We introduce the reconfigurable object model and the method to
realize the total ordering protocol in this model. To explain the
adaptive ordering protocol, we show the implementation
including detecting environmental change and reconfiguring
object.
We looked into the feasibility of our adaptive total ordering
protocol in this paper. We present the requirements to realize our
adaptive protocol, and show how the adaptive protocol is
implemented on the reconfigurable object model.
Key words:
Total ordering protocol, Adaptive computing, Reconfigurable
object model

1. Introduction

In the distributed environment, message multicast serves
as a foundation for the communication among group
members like replica group and event notification. The
group communication often needs the guarantee that each
member receives the messages in the same order. For
example, if group members have replicated data, it is

always expected for them to process messages in the same
order to make their states consistent among them.

The total ordering algorithms have been proposed for
various systems [1]. They have their own characteristics.
Therefore it is expected to apply a suitable algorithm, so
that the system performs stable operation. However, their
performance always changes according to the
characteristics of applications and runtime environments.
For example, different applications have different event
granularity and message population. The environment has
the variation of network traffic, network latency and
active users. These make it difficult to presume an
ordering algorithm suited for an environment and apply a
single algorithm throughout the lifetime of a system.

We propose the adaptive total ordering protocol. Our
approach is selecting a suitable total ordering protocol
dynamically. In general, the protocol has its own ordering
cost depending on the application and environment.
Unlike using single protocol, the adaptive protocol can
improves the ordering cost by using multiple protocols
dynamically.

We use our reconfigurable object model proposed in
[2][3] to implement the adaptive total ordering protocol.
In this model, the total ordering protocol is implemented
as a module. The module is isolated and has weak
connections with the other. Therefore the total ordering
protocol is isolated from the application behavior.
Additionally, the modules can be exchanged with no
consideration of others. Thus the adaptive protocol is
realized by dynamic exchanging of modules implementing
the total ordering protocol.

We present the adaptive total ordering protocol in section
2 and the reconfigurable object model in section 3. In
section 4 and 5, we describe the implementation of
proposed protocol based on our model. Its discussion is
section 6 and the conclusion is section 7.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

154

2. Adaptive Total Ordering Protocol

The environmental change is not negligible in the
distributed system, because it often affects the
performance of whole system even if it occurs partially.
The performance of total ordering protocols is also
influenced by the runtime environment. Therefore it is
worth adapting the protocol to the environment
dynamically.

We propose switching total ordering protocols
dynamically depending on the environment. For the first
step, we classify the total ordering protocols into
optimistic and pessimistic approaches in the point of the
time when the messages are marked with deliverable.

The optimistic algorithm [4] generally delivers the
messages immediately after receiving them. If members
receive messages in the same order, there is no conflict in
the receiving order among members. In the such case that
the order of receiving messages matches the ideal one with
no conflict, the optimistic approach can be considered as
an effective method. However, when the order of the
messages is detected to be conflicted, the delivered
messages must be undone and delivered again in the
correct order. In the case that the conflict often occurs, the
cost to cancel sending messages and undo delivered
messages is not negligible in general. Thus the messages
are delivered at the small cost, and the rollback generally
causes expensive computation.

In the pessimistic approach [5], the messages are
preserved until their delivered order would be valid. Thus
the pessimistic algorithm guarantees the message order
without rollback. Though there is no conflict, the cost of
ordering is more expensive than the optimistic approach,
because this approach needs to exchange messages in
order to determine the next receiving message. In addition,
the member has to wait the confirmation messages from
the other members to decide the next delivered message,
and thus the elapsed time waiting them has to be
considered. Therefore the ordering cost is relatively
expensive and the failure and latency at a single point
affects all group members.

The group members exist on each network location and
then their messages are affected from the logical distance
and network condition between the communicating
members. If the network latency becomes larger, the
message order received by each member would be more
mixed up. The frequency of the message multicast, which
depends on the application and runtime environment, also
causes the conflict between multicast messages. In the
case that the message order conflicts less frequently, the

optimistic ordering algorithm would be better than the
pessimistic one in general. In another case that has the
high possibility for the message conflict, the pessimistic
algorithm would be better to keep stable performance,
because it confirms each message order before delivering
them. We propose to switch an appropriate ordering
algorithm implemented in an optimistic or a pessimistic
protocol according to dynamic environment changes.

We give the case, which the runtime environment changes
for a certain period, as an example. Fig. 1 shows ordering
cost of optimistic protocol and pessimistic protocol. In this
case, most messages are received at the same order except
for the period between time A and B. It can be consider
that the message order often conflict as a result of the
environmental changes between time A and B. Thus the
pessimistic protocol provides the stable performance and
the optimistic protocol is sensitive to the execution
conditions. Since the pessimistic protocol takes the higher
ordering cost than the optimistic protocol except the
period between time A and B, the pessimistic protocol is
proper in the certain period and the optimistic protocol is
better in the other. We consider that it is ideal to switch
from the optimistic protocol to the pessimistic protocol at
time A and switches again to the optimistic protocol at
time B. To select a suitable protocol adaptively enables to
reduce the ordering cost in the comparison with the case
using single protocol.

Fig. 1 Cost of the adaptive protocol.

The overview of our adaptive protocol consists of the
following steps.

1. Cost Estimation: Members of a group receive

messages and deliver them according to an ordering
algorithm. And each member calculates the costs in
target algorithms (the current algorithm and the other
algorithms).

Ordering Cost

Logical Time
B A

Adaptive
Protocol

Pessimistic
Protocol

Optimistic
Protocol

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

155

2. Comparison of ordering costs: Each member
compares the calculated costs, respectively.

3. Agreement: A most suitable algorithm for the current

environment is selected as a result of an agreement
among members.

4. Preparing for dynamic switching: The member

manages the pending messages to keep the message
order in a next total ordering protocol.

5. Switching to a next protocol: The members resume

pending and delivering messages with the new
ordering algorithm.

We described the effectiveness of our adaptive protocol in
[6]. In this paper, we describe the implementation of the
protocol.

3. Reconfigurable Object Model

We proposed to adapt objects to the environmental
changes by changing their behavior [2][3]. There are
several environmental changes: hardware resource (CPU
load, available memory and so on), network condition
(topology and latency), software evolution and user
preferences. For adapting to these changes, we enable
objects to reconfigure their meta-composition as
appropriate. The reconfigurable object consists of meta-
objects (Fig. 2). The reconfigurable object has the same
interface as the normal object by encapsulating its meta-
objects.

Fig. 2 The reconfigurable object model.

The meta-object is the functional component of object.
The objects having different meta-object have different
function. If it is allowed to exchange meta-object, it is
possible to change object behavior. The reconfigurable
object provides the way to exchange meta-objects to adapt
the object itself. For the dynamic and reliable exchange,

the communication among meta-objects is loosely-coupled
in this model.

The meta-objects communicate through the message space.
This model is the tuple space introduced in the Linda
distributed programming language [7]. We use the term
`message' instead of tuple, and use `message space' instead
of tuple space as analogous to object orientation. The
message space provides indirect, asynchronous and
content-addressing communication. The meta-objects use
the operations against the message space; out() puts a
message to the message space, in() withdraws a
message, and read() reads a message without
withdrawing. To put the specified label on the messages,
the other meta-objects can get necessary messages by
identifying the label.

The configurable object consists of the meta-objects:
message handler controls end-to-end communication
between remote objects, message queue manager controls
the order of messages, executor controls concurrent
executions, monitor collects internal activities, adaptation
manager determine the adaptation strategy. These meta-
objects communicate indirectly by withdrawing and
putting messages through the message space. For
reconfiguration, they can be replaced. For example, when
the different remote communication protocol is required,
the current message hander is removed, and then the new
message hander is added.

4. Implementation

Fig. 3 shows the overview of our adaptive protocol. The
messages are received in message handler. Then the
received messages are processed by the total ordering
protocol and delivered to the application. This flow is
monitored and reported to the adaptation strategy manager.
This manager decides which protocol is efficient in
current condition on the monitored result and user
preferences.

The total ordering functions, which are required in each
group member, can be implemented in the re-ordering
meta-object. The re-ordering object can be considered a
kind of message queue manager. The re-ordering meta-
object withdraws received messages from the message
space before applying other message processing, and
executes total ordering processes: putting time stamp on
messages, queueing and sorting messages.

In our adaptive protocol, the total ordering protocol is
changed dynamically. This protocol change is realized by
exchanging a re-ordering meta-object. Each meta-object

User Defined
Application

Communication Kernel
- message space -

Executo
Adaptatio
n

Message Queue
Manager

Monitor

Message
Handler

Encapsulator

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

156

implements its own protocol. In other words, there is the
same kind of meta-objects as the total ordering protocols.
When the object needs to change a current total ordering
protocol, the re-ordering meta-object is exchanged for the
other meta-object implementing a different protocol.

Fig. 3 The overview of our adaptive protocol.

The following is the explanation of each function in our
adaptive protocol (Fig. 3).

Message Handler

The message handler is the communication interface of
the reconfigurable object. The task is basically the control
of message sending and receiving. There are various types
of message handler according to end-to-end
communication protocol: communication with remote
objects, encrypted communication, asynchronous
communication and so on.

Total Ordering

The function for total ordering is the main subject in this
paper. We explain how the total ordering protocol works
in the reconfigurable object, and replaced dynamically.
For the implementation of total ordering protocol, it is
possible to add the re-ordering meta-object composed of
message queues (explained in Section 3 as message queue
manager). After getting a delivered message, the
application treats it and puts a result message to the
message space.

The switching protocol is realized by the replacing the re-
ordering meta-object. It is simple to switch the total
ordering protocol in the reconfigurable object model. The
new object has the same operations (used in the generative
communication) and different protocol (used in the total
ordering). The other message handling processes like the
receiving and executing messages can continue their
processes while the re-ordering meta-object is being

replaced, because they are independent of the other meta-
objects in the generative communication. This aspect
contributes to switch the total ordering protocol simply
and effectively.

There are the other meta-objects communicating with the
re-ordering meta-object through the message space. The
application meta-object treats the messages which have
been processed by the re-ordering meta-object. The
monitor meta-object observes the runtime environment,
and reports to the adaptation strategy. The adaptation
strategy meta-object decides and controls the adaptive
behavior depending on the information reported from the
monitor.

Application

The application object has only behavioral function of
user defined application. In this object, there are no
functions as like as the total ordering processes, because
the messages have already been ordered at the re-ordering
meta-object. Therefore, it is not necessary for the
application programmers to consider the total ordering
processes in their program.

Monitor

The monitor gathers the internal states and activities of the
reconfigurable object. In the message space, there are
labeled messages waiting for begin pulled by a meta-
object. The monitor object can statistically know the rate
of received and delivered massages by observing
periodically the messages in the message space. The
monitor reports the observational result to the other meta-
objects through the message space.

Adaptation Strategy

The adaptation strategy maintains the composition of
meta-objects. In this object, the method for adapting
environment is decided and started reorganizing of
composition (reconfiguration). The adaptation strategy
meta-object obtains the information created by the monitor
through the message space. Then it is decided whether it
starts a configuration or not by obtaining the consensus
among group members.

The adaptation strategy meta-object is independent of the
other meta-objects (The same can be said for other meta-
objects). Therefore, the agreement process is executed
concurrently with the application process. The details of
adaptation protocol are described in section 5.

Total Ordering

Application

Monitor

Adaptation Strategy

messages

Message Handler

monitoring

replace

User
Preferences

received messages

delivered messages

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

157

User Preferences

The application programmers need to care only functional
behavior of their application, because the composition of
reconfigurable object is hidden from the programmer. The
way to access the meta-function is setting given properties
by the reconfigurable object. The property is written in a
file, and loaded by the adaptation strategy meta-object at
initialization time.

For the adaptive total ordering protocol the following
properties are provided and mainly loaded by the
adaptation manager.

- Target protocols: The total ordering protocol is

provided as one of the modules in runtime library of
reconfigurable object. The protocols selected by the
programmer are loaded in the adaptation manager at
proper time.

- Trigger condition of switching protocol: Basically the

low cost protocol is dynamically selected in our
model. In addition, if the programmers want to reflect
time and number of users to their system, they can
describe settings including these attributes.

5. Adaptive Protocol

We consider it is feasible that the total ordering algorithms
have no central entity like the sequencer and token on the
distributed environment. Therefore, our adaptive protocol
is designed to contain the total ordering algorithms not
having a specific ordering entity. These algorithms are
classified into communication history and destination
agreement algorithm in [1]. The message sender is simple
and the receiver respectively has the process for the total
ordering. In our adaptive protocol, each receiver’s
ordering process is implemented in the re-ordering meta-
object in each object.

There are the several adaptive protocols which support
multiple total ordering protocols [8][9]. The characteristic
of our adaptive protocol is to support the optimistic
protocols as well as the pessimistic protocols. As a result
of optimistic delivering, the group member needs the
rollback and restarting processes when the message order
differs from the others. It makes difficult to estimate the
ordering cost, because the message order is not fixed at
the deliver time. Our protocol estimates the ordering cost
from the received and delivered messages passed among
meta-objects. The estimation is achieved only by the
reflective function provided by the reconfigurable object.

This section provides more detail explanation of our
adaptive protocol described as the overview in section 2.
The group member observes the runtime environment and
decides the protocol change is necessary or not. If
necessary, all members in the group start the
reconfiguration. On the total ordering protocol, the
runtime environment is the processing states of messages,
and the reconfiguration is the switching the re-ordering
meta-object.

Cost Estimation

The monitor meta-object estimates the cost of total
ordering protocols from three conditions of message
handling. One is the rate of receiving message. This rate
implies how many messages are waiting for being handled
in a certain time. Another is the processing time of each
message. The message throughput is estimated from the
average of processing time. The other is the message log
with the timestamp. This make possible know the
receiving order with each message timestamp.

The monitor meta-object collects the internal states and
activities of the reconfigurable object. In the message
space, there are labeled messages waiting for begin pulled
by a meta-object. The monitor meta-object can statistically
know the rate of received and delivered massages by
observing periodically the messages in the message space.
The read operation, described in section 3, is utilized to
observe the messages. It means there is no interrupt in the
message processing.

Comparison of ordering costs

For selecting a suitable total ordering protocol, the
monitor meta-object in each object compares the target
protocols with their ordering costs. We define the
condition (1): ordering and switching costs. Let
Cost(CUR) be the cost of the current protocol,
Cost(NEXT) be the cost of the another protocol and Cost
(CUR_S) be the switching cost from the current protocol.

)_()()(SCURCostNEXTCostCURCost +> . (1)

This condition is used in the monitor, and the result is
reported to the adaptation strategy meta-object. If the
condition (1) is satisfied, it can be considered that the
switching is effective at the current environment.

Agreement

The adaptation strategy meta-object receives the
information from the monitor meta-object and starts the
agreement process among group members. The adaptation
strategy meta-objects in a group have respective

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

158

monitoring results. They communicate to decide a suitable
protocol on the current runtime environment which they
exist.

The decision is based on the consent of the majority. The
adaptation strategy meta-objects in each member vote a
suitable protocol on its environment, and obtain a
consensus. When the adaptation strategy meta-object
decides to start reconfiguration, it sends a request message,
which requests replacing with a new re-ordering meta-
object.

When the group members decide a next protocol, they also
decide a global time T when they switch to the next
protocol. T is set at sufficiently bigger time than the local
time in the group members to avoid the rollback for
switching.

Preparing for dynamic switching

For the preparation to switch from a current total ordering
protocol, the adaptation strategy meta-object requires the
re-ordering meta-object to prepare being replaced. The
condition (2) is required to separate the messages applied
different protocols. mt and nt are the time stamps of
message m and n. A current total ordering protocol apply
the message m and a next protocol apply the message n.
T is the global time of switching.

nm tTt <≤ . (2)

Switching to a next protocol

When the preparation is done, the re-ordering meta-object
sends an acknowledgement to the adaptation strategy.
Then the adaptation strategy removes the current re-
ordering meta-object and adds the new meta-object
implementing a total ordering protocol agreed among
group members.

The meta-objects can be replaced by the self-contained
manner. No other objects need to manage them for
replacing themselves. To exchange the re-ordering meta-
object, the time stamp and message queues are transferred
through the message space.

1. The re-ordering meta-object packs and sends the

current states for the message ordering protocols to
the message space, such as local time and message
queues.

2. The adaptation strategy removes the current re-

ordering meta-object and adds the new meta-object.

It is not required to synchronize the other meta-
objects, because there are weak connections between
them.

3. The new re-ordering meta-object withdraws the

previous states from the message space, and initiates
with them.

The message order is kept before and after switching, and
the total ordering protocol is exchanged during execution.
Moreover, the message handling processes, such as
receiving message in the protocol hander and processing
in the application meta-object, keep their process while the
ordering protocol is suspended. Therefore, the entire
system does not halt during the reconfiguration.

6. Discussion

The multiple message handlings are mostly implemented
on the filter structure [10]. Our implementation requires
handling messages: receiving, sending, observing
messages, total ordering, and processing requests.
However, they are not necessarily applied in sequence.
For example, the monitor observes received and delivered
messages, but the observation result has no relation with
the message handlings. The message space, called tuple
space in Linda, provides the weak relation between
modules. It helps to organize complex process modules on
the proper structure, and each module can behave
effectively. In addition, it allows each module to have the
same interface which is used to communicate with the
message space. Thus it is possible to replace a module
without the consideration of other modules.

Our adaptive total ordering protocol includes the
optimistic protocols as well as the pessimistic protocols.
One of the features of optimistic protocols is doing
rollback when the message sequence turns into a different
with the other message receivers. The reconfigurable
object model also supports the rollback. The basic concept
is the same as replacing meta-object.

1. The application object puts its own states including

local time into the message space. The states are
packed in a message and sent to the message space.

2. At rollback time, the application object withdraws

the state message having the target time stamp from
the message space.

Many state messages for rollback will be put into the
message space. However, there is a method to clean up
them. The method is preparing GVT (Global Virtual Time
[6]) manager. GVT gives the assurance that all receivers

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

159

have a bigger local timestamp than a certain time (GVT).
Therefore the GVT managers in the group members
communicate to calculate GVT and the each manager
deletes the state messages respectively based on the
knowledge.

7. Conclusion

We described the necessity of adaptive total ordering
protocol in the distributed system. Our approach was
selecting the total ordering protocols according to the
environmental changes. The dynamic protocol switching
was smoothly implemented in the reconfigurable object
model, because this model was designed to adapt object
itself to the environment. The total ordering protocol was
implemented in a meta-object which could be replaced by
the self-contained manner. And the other required
functions, observing messages and decision an appropriate
total ordering protocol, were also realized in the
reconfigurable object model. We presented the
requirements and implementation of our adaptive protocol,
and verified the possibility of the protocol. Moreover, we
were convinced that the reconfigurable object model is
one of the most suitable object models to implement the
adaptive system that described in this paper.

References
[1] X. Defago, A. Schiper, and P. Urban, Total order broadcast

and multicast algorithms: Taxonomy and survey, ACM
Computing Surveys, Vol.36, No.4, pp.372-421 (2004).

[2] K. Oda, H. Najima, Y. Yasutake, T. Yoshida, A Simple,
Safe Reconfigurable Object Model with Loosely-Coupled
Communication, Proceedings of the IEEE 20th International
Conference on Advanced Information Networking and
Applications (AINA 2006), 2006, pp.406-41.

[3] K. Oda, S. Izumi, Y. Yasutake, T. Yoshida, A Simple
Reconfigurable Object Model for a Ubiquitous Computing
Environment, International Journal of Computer Science
and Network Security (IJCSNS), Vol. 7 No. 5, pp. 8-16,
May, 2007.

[4] D. R. Jefferson, Virtual time, ACM Transactions on
Programming Languages and Systems, Vol.7, No.3, pp.404-
425 (1985).

[5] K. P. Birman and T. A. Joseph, Reliable communication in
the presence of the failures, ACM Transactions on
Computer Systems, Vol.5, No.1, pp. 47-76 (1987).

[6] Y. Yasutake, T. Kadowaki and T. Yoshida. Adaptable
Ordering Protocols in Distributed Computation. Proceedings
of the Inter-national Symposium on Communications and
Information Technology, 2004, Vol.2, pp.1126-1131.

[7] D. Gelernter, Generative Communication in Linda, ACM
Trans. Prog. Lang. Syst., 1985, Vol. 7, No. 1, pp. 80-112.

[8] P.D. Ezhilchelvan, R.A. Macedo and S.K. Shrivastava,
Newtop: a fault-tolerant group communication protocol,
Proceedings of 15th IEEE International Conference on
Distributed Computing Systems, pp.296-306 (1995).

[9] L. Rodrigues, H. Fonseca and P. Verissimo, Totally ordered
multicast in large-scale systems, Proceedings of the 16th
International Conference on Distributed Computing
Systems, pp.503-510 (1996).

[10] L. Bergmans and M. Aksit, Composing Crosscutting
Concerns Using Composition Filters, Comm. ACM, Vol.44,
No.10, pp.51-57 (2001).

Yoshihiro Yasutake received the
B.S. and M.S. from the
Department of Artificial
Intelligence, Kyushu Institute of
Technology, Japan, in 2000, 2002
respectively. He has been an
assistant professor of the
Department of Intelligent
Informatics at Kyushu Sangyo
University since 2005. His current
research interests include reliable
distributed systems, adaptive

middleware architecture. He is a member of the IPSJ
(Information Processing Society of Japan).

Shinobu Izumi received the
B.S. and M.S. from the
Department of Artificial
Intelligence, Kyushu Institute of
Technology, Japan, in 2004, 2006
respectively. Since April 2006, he
has been a PhD student at Kyushu
Institute of Technology. His
current research interests include
disabled access GIS, peer to peer
networking and distributed system.

Kentaro Oda received the
B.S. and M.S. from the
Department of Artificial
Intelligence, Kyushu Institute of
Technology, Japan, in 1999, 2001
respectively. He has been an
assistant professor of the Program
of Creation Informatics at Kyushu
Institute of Technology since
2004. His current research

interests include adaptive middleware architecture, multi-agent
systems (robotics soccer RoboCup), and distributed systems. He
is a member of the ACM, IEEE (IEEE Computer Society).

Takaichi Yoshida received the
B.S. degree in electrical
engineering form Keio University,
Japan, in 1982, and the M.S. and
Ph.D degree in computer science
form Keio University in 1984 and
1987, respectively.
Since 1987, he has been at
Kyushu Institute of Technology,
and currently is a professor in the
Graduate School of Computer

Science and Systems Engineering, Kyushu Institute of
Technology. His research interests include distributed computing
and object-oriented computing. He is a member of the ACM,
IEEE (IEEE Computer Society).

