
 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, 2007

 Manuscript received June 5, 2007
 Manuscript revised July 25, 2007

177

Information Flow Type System for Proof Carrying Code

Abdulrahman Muthana, Abdul Azim Abd Ghani, Ramlan Mahmod, and Hasan Selamat
ab.muthana@gmail.com {azim, ramlan, hasan}@fsktm.upm.edu.my

Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Summary

Proof Carrying Code (PCC) is a promising new

technology for enforcing security policies. We present an

information flow type system for RISC-style assembly

language that enforces confidentiality through

noninterference. Based on the security-type system, the

PCC can be used for checking untrusted code for

noninterference, and thus enabling end-users to protect

their confidential data.

Key words:

Information-Flow, Proof Carrying Code, Type system,

Static Analysis, Noninterference, Assembly Language.

1. Introduction

Proof Carrying Code (PCC) is a technique developed by

Necula and Lee [7] as a safety framework for mobile code

and operating system extensions. The trusted computing

base (TCB) in PCC is relatively small and easy to

implement. Furthermore, to install and execute the

untrusted code, the code receiver checks only its safety
proof rather than checking the program text, which is more

intricate task. These advantages make PCC an active

research area see e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10] and an

attractive option for enforcing security policies.

 A key component of PCC infrastructure is the security

policy, which defines the desired security requirements

that the untrusted code must meet. In order to adapt PCC

to static information-flow analysis, this key component

must essentially enforce the confidentiality. The

motivation of adapting PCC to static information flow

analysis is the need for a reliable mechanism to protect
confidential data of end-users from being leaked by the

untrusted code.

Recent works in language-based security have shown that

type systems can be used as a basis for any security

infrastructure wishes to provide an adequate assurance of

confidentiality, and in particular through noninterference

[25]. The notion of noninterference guarantees the

confidentiality through the absence of illegal information

flow.

 Many works have addressed enforcing confidentiality

through noninterference, but unfortunately, most of these
studies have been devoted to source-level languages and

calculi [11], see e.g. [12, 13, 14, 15, 16, 17, 18, 19].

However, enforcing confidentiality at low-level is highly

desirable because (1) ultimately, it is the machine code

that executes; (2) much of the code is distributed in low-

level form; (3) it yields a small trusted computing base.

 This paper presents an information flow type system for

RISC-style assembly language as a basis for the security

policy of PCC infrastructure to enforce confidentiality

through noninterference, and thus enabling end-users to

protect their confidential data. The contribution of this

paper is that we consider it as a useful step toward

enabling PCC to benefit from a large body of work in

type-based static information-flow analyses.
 The remainder of this paper is organized as follows:

section 2 gives a summary of the related work. The

assembly language including the syntax, the semantics,

and the control dependence regions is described in section

3. Section 4 presents the security policy. In section 5 we

give a brief account on PCC for noninterference

framework based on the proposed security-type system.

Section 6 concludes.

2. Related Work

Many works have addressed enforcing confidentiality

through noninterference, but unfortunately, most of these

studies have been devoted to source-level languages and

calculi [11], see e.g. [12, 13, 14, 15, 16, 17, 18, 19]. In the

following, we restrict ourselves to discussing very closely

related work; in particular those that studied

noninterference at assembly level.

 Zdancewic and Myers [20] presented low-level, secure

calculus that guarantees noninterference property. To
permit high precision information flow analysis they used

ordered linear continuations to simulate source-level

program structures. Their language is not an assembly

language because it has if-then-else structure, has no

register file, and is based on variables.

 Bonelli et al. [21] presented typed assembly language

for secure information flow SIFTAL. Their technique is

inspired by the work of Zdancewic and Myers in that they

use the notion of linear continuations for implicit flow

tracking.

 Medel et al. [22] presented SIF language, an improved
version of SIFTAL. SIF introduces a stack of junction

points for conditionals and uses two pseudo-instructions

mailto:ab.muthana@gmail.com
mailto:%7bazim,%20ramlan,%20hasan%7d@fsktm.upm.edu.my

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, 2007

178

for handling this stack in order to recover the structured

control flow.

 Yu and Islam [23] presented TALC language for

enforcing noninterference in assembly code. TALC is

similar to SIF in that they use type annotations to recover

structured control flow of source-level programs and no
trusted component for computing postdominators is

required. However TALC is richer than SIF. TALC

supports code pointers and call stack. [23] Also presented

a security type-preserving compilation from source-level

security language with first order procedures to TALC.

 The mentioned works are based on the philosophy of

type-preserving compilation in which the compiler

produces the static type annotations, which expressed in

the code, to recover the source-level program abstractions.

In contrast, our type system is for information flow

analysis of assembly code produced by an off-the-shelf

compiler that does not produce such code annotations. We
circumvent the lack of such annotations by using a trusted

function to retrieve the missing source-level abstractions.

 Avvenute et al. [24] proposed an approach for verifying

secure information flow in java bytecode. The proposed

approach is similar to type-level abstract interpretation

used in standard Java bytecode verification.

 Barthe et al. [1] presented information flow type

system for a simplified version of JVM and introduced a

security type-preserving compilation from source-level

language into their language.

 Barthe et al. [26] developed an information flow type
system for a fragment of bytecode that extended the JVM

language defined in [1] with new features to include

classes, objects, and exceptions. They also proved that the

information flow type system enforces noninterference.

 Barthe et al. [27] presented a formal relation between

security policies at source-level language and security

policies at bytecode level. This relation is realized via

type-preserving compilation. A main point in [27] is to

derive an information flow type system for source program

from an information flow type system for bytecode.

 It should be noted that works [1, 24, 26, 27] address

stack-based model (bytecode) which is different from
RISC-style architecture.

 In his PhD thesis [7], Necula indicated that adapting

PCC to information flow analysis of assembly language is

an open research area and in [11], Sabelfeld and Myers

pointed out that such adapting is highly desirable.

3. Assembly Language

This section introduces a generic assembly language SAL

derived from [7] which is used as a basis for describing the

proposed type system.

3.1 Syntax

The syntax of SAL is shown in Fig. 1. SAL is RISC-like

assembly language, with a finite set of general purpose

registers. In addition, SAL has a number of special

purpose registers: program counter “pc” that holds the

address of current instruction, stack pointer register “sp”,

and register “ra” which used to hold the return address of

current function. More details on SAL language can be

found in [7].

3.2 Operational Semantics

SAL execution state st is defined as a triple (i, M, R),

where i is the value of program counter, M : mem → n is a

memory descriptor which is a mapping from memory

locations to values, R: Regs → n is a register file which is

a mapping from registers to values. i++ refers to the

address of next instruction immediately following the
current instruction.

SAL program consists of function definitions each of

which is a sequence of instructions taken from Fig. 1.

Furthermore, each SAL program has a function main. Fig.

2 shows the operational semantics of SAL, giving the

resulting state obtained after executing each instruction.

Register Regs::=ri | ra i= 0, …, Rmax

Instruction: I ::= r = n Immediate Move

 r = r' Register Move

 r = aop r' , n Arith./Logical Operations

 r = aop r', r'' Arith./Logical Operations

 ra = pc + n Compute return address

 jump label Jump to label

 jcond r, label Conditional branch

 call F Function call

 ret Function return

 r = M[r'] Memory read / Load

 M[r'] = r Memory write / Store

 r = M[sp + n] Stack read

 M[sp + n] = r Stack write

 sp = sp + n Advance stack pointer

 Numerals : n ∈ ℤ

Fig. 1 SAL Instruction set.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, 2007

179

3.3 Control Dependence Regions

Conditional branch instructions are the source of implicit

flow. They control the execution of other instructions

based on value of conditional expressions. When a

conditional expression is evaluated, a branch is chosen

accordingly and its instructions are executed. Hence, the

value of the expression could be inferred by observing the

effects of the executed instructions.

 To detect implicit flow, we must first identify for each

conditional instruction the set of instructions that execute

under its control condition. The set of these instructions

constitutes what is called the control dependence region,
CDR. Every conditional instruction has a control

dependence region.

 We use the notion of control flow graph and the notion

of postdomination to identify control dependence regions.

The body of a given function F consists of set of basic

blocks B, denoted as BBF. The control flow graph of

function F is a directed graph (V, E), where V= BBF the set

of nodes, and E ⊆ V x V, the set of edges. The control
flow graph is augmented with two additional nodes start

and exit. There is an edge from start node to the first node

of control flow graph and an edge from start node to exit

node. Furthermore, there is an edge from every return

node to exit node.

Let Bi, Bj ∈ V:

Bj postdominates Bi, denoted by Bj=pdom(Bi), if Bi≠ Bj
and Bj is on every path from Bi to exit node.

Bj immediately postdominates Bi, denoted by

Bj=ipdom(Bi), if Bi≠ Bj and there is no node Bk such that
Bk=pdom(Bi) and Bj=pdom(Bk).

 An edge (Bi, Bj) of set E means that, the instructions of

Bj are immediately executed after that of Bi. CDRi is the

set of basic blocks whose instructions are executed

conditionally based on the value of expression tested at
address i. Thus, CDRi constitutes the control dependence

region associated with the conditional branch instruction at

address i.

 Type system is parameterized with abstract functions:

region, ipd, and propagate. The function region(i)

identifies the control dependence region of a conditional

branch instruction at address i. The function ipd(i) returns

the address of the instruction that is immediately executed

after exiting from region(i), thus, representing the

immediate postdominator of instruction at address i.

Finally, the function propagate (region, security level)
updates the security context of instructions of a given

region into a given security level. In addition, we use the

following functions: addr, ctxt, first, and dom. The

function addr(i) returns true if i is an instruction address,

the function ctxt(i) denotes the security context of an

instruction i, the function first(B) returns the first

instruction address in basic block B, and finally the

function dom(U) returns the instruction addresses that

belong to a given region U :

 In the following we give a formal definition for the

functions region, ipd, and propagate:

region(i) = ∀j. addr(j) and j ∈ dom(CDRi).

ipd(i) = ∃j. addr(j) and j= first(Bm) and i ∈ dom(Bn)

 and Bm=ipdom (Bn).

propagate (region(i), ℓ) = ∀j. addr(j) and j ∈ region(i)
 implies ctxt(j) = ℓ.

If i and j are two conditional instructions addresses such

that j ∈ CDRi, then CDRj ⊂ CDRi meaning that control
dependence region associated with j is included in that

associated with i; this is called region inclusion property,

RIP.

4. Security Policy

The main goal of our security policy is to guarantee secure

information flow within SAL programs. The main
components of the security policy are information flow

type system and logic. The information flow type system,

shown in Fig. 3, is a set of typing rules for information

flow analysis of SAL programs that enforces

confidentiality through noninterference.

Instruction F(i) Resulting state

r = n (i++, M, R[r← n])

r = r' (i++, M, R[r← R(r')])

r = aop r' , n (i++, M, R[r← (R(r') aop n)])

r = aop r' , r'' (i++, M, R[r← (R(r') aop R(r''))])

r = M[r'] (i++, M, R[r← M(R(r'))])

M[r'] = r (i++, M[(R(r')) ← R(r)], R)

r = M[sp+ n] (i++, M, R[r ←M(R(sp)+n)])

M[sp + n] = r (i++, M[(R(sp) + n) ←R(r)], R)

sp = sp + n (i++, M, R[sp ←(R(sp) + n)])

jump label (label, M, R)

jcond r , label (label, M, R)

jcond r , label (i++, M, R)

call G (<G,0>, M, R) , ra = i++

ret (R(ra), M, R)

Fig. 2 Operational Semantics of SAL.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, 2007

180

To formalize the type system, we assume a lattice L of

security levels, partially ordered by ⊑, with top element

⊤, bottom element ⊥, and join operation ⊔. To simplify

the presentation, we assume that security lattice L contains

a set of two security levels, L= {L, H} and that L ⊑ H; L

stands for low security data and H for high security data.

 T_mov
 F i : = 𝑟 = 𝑟′ Γ(𝑟′): ℓ′ Γ(pc): ℓpc Γ{𝑟: ℓpc ⊔ ℓ′}

Γ; μ ⊦ 𝑟 = 𝑟′

 T_aop_n
F(i) ∶= 𝑟 = aop 𝑟′, 𝑛 Γ(pc): ℓpc Γ(𝑟′): ℓ′ Γ{𝑟: ℓpc ⊔ ℓ′}

Γ; μ ⊦ 𝑟 = aop 𝑟′, 𝑛

[T_aop_r]
F i : = 𝑟 = aop 𝑟′, 𝑟′′ Γ(pc): ℓpc Γ(𝑟′):ℓ′ Γ(𝑟′′): ℓ′′ Γ{𝑟: ℓpc ⊔ ℓ′ ⊔ ℓ′′}

Γ; μ ⊦ 𝑟 = aop 𝑟′ , 𝑟′′

 T_cond

F i ≔ jcond 𝑟, 𝑙𝑎𝑏𝑒𝑙 Γ pc : ℓpc Γ 𝑟 : ℓ

 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖 , ℓpc ⊔ ℓ

j = ipd i j: < Γ ′ > Γ pc = Γ′ pc , Γ′ ⊆ Γ

Γ; μ ⊦ jcond 𝑟, 𝑙𝑎𝑏𝑒𝑙

 T_load
F i : = 𝑟 = M 𝑟′ Γ(pc): ℓpc Γ(𝑟′): ℓ′ μ([𝑟′]):ℓm Γ{𝑟: ℓpc ⊔ ℓ′ ⊔ ℓm }

Γ; μ ⊦ 𝑟 = M[𝑟′]

 T_store
F i ≔ M 𝑟′ = 𝑟 Γ pc : ℓpc Γ 𝑟 :ℓ Γ 𝑟′ :ℓ′ μ 𝑟′ :ℓm ℓpc ⊔ ℓ ⊔ ℓ′ ⊑ ℓm

Γ; μ ⊦ M 𝑟′ = 𝑟

 T_call

F i ≔ call G ΣG = 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡, 𝑆𝑖𝑔

𝑃𝑟𝑒G = 𝑟1: ℓ1 ∧ 𝑟2: ℓ2 ∧ … ∧ 𝑟n : ℓn

Γ 𝑃𝑟𝑒G : {𝑟1: ℓa1 ∧ 𝑟2: ℓa2 ∧ … ∧ 𝑟n : ℓan }

 Γ pc : ℓpc ℓai ⊔ ℓpc ⊑ ℓi ∀ i ∈ {1 . . . n}, ℓpc ⊑ Sig

Γ; μ ⊦ call G

 T_ret

F i : = ret ΣF = 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡, 𝑆𝑖𝑔

𝑃𝑜𝑠𝑡F = r: ℓpost Γ 𝑃𝑜𝑠𝑡F = r: ℓret Γ pc : ℓpc

 ℓret ⊔ ℓpc ⊑ ℓpost

Γ; μ ⊦ ret

[T_sstore]
 F i ≔ M sp + 𝑛 = 𝑟 Γ pc : ℓpc Γ 𝑟 : ℓ Γ{(sp + 𝑛): ℓpc ⊔ ℓ}

Γ; μ ⊦ M sp + 𝑛 = 𝑟

[T_sload]
 F i ≔ 𝑟 = M sp + 𝑛 Γ pc : ℓpc Γ sp + 𝑛 : ℓ𝑠𝑝+𝑛 Γ{𝑟: ℓpc ⊔ ℓ𝑠𝑝+𝑛 }

Γ; μ ⊦ 𝑟 = M sp + 𝑛

 Tmvi
F(i)∶= 𝑟 = 𝑛 Γ(pc): ℓpc Γ{𝑟: ℓpc }

Γ; μ ⊦ 𝑟 = 𝑛

[T_jump]
F(i)∶= jump 𝑙𝑎𝑏𝑒𝑙

Γ; μ ⊦ jump 𝑙𝑎𝑏𝑒𝑙

 Fig. 3 Typing rules of information flow analysis of function F.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, 2007

181

The type system is formalized at assembly level; therefore,

it is defined in terms of registers, memory locations, and
immediate values. The security levels of registers and

memory locations are described in register file type

Г:r→L and memory type μ: mem →L respectively. Stack

slots are treated as part of register file, and hence described

by Г; we use Г(pc) to denote the current security context.

As an immediate value is not intrinsically sensitive [15];

an immediate value is given a security level L.

 To prevent explicit flow, the type system prevents high

security values from flowing to lower memory locations

and to prevent implicit flow, the type system associates a
security level with program counter pc at each program

point, which is called the security context, and checks that

the security level of updated data is as at least as the

security context.

 Preventing illegal information flow through function

calls and returns requires that each function to be having a

typing specification. The typing specification of a given

function F, ΣF, is a triple (Pre, Post, Sig), where Pre is the

precondition, Post is the postcondition, and Sig is the

signature of function F. For any given function, the
precondition represents binding of its input parameters

with security levels, the postcondition represents binding
of its return value with a security level, and the signature

represents binding of its name with a security level. The

signature Sig of a given function F represents the lowest

security level of data that function F may update.

Typing rules T_mov, T_mvi, T_aop_n, T_aop_r, T_load,

T_sload, and T_sstore infer the security levels of
destination registers from the source operands taking into

account the current security context.

 In the rule T_store, the condition is that the security

level of the target memory location is higher than or equal

to those of the source operand, the address register, and the

current security context.

 The rule T_cond performs least upper bound between

the current security context and the security level of

register r that controls the branching. The result security

level then propagated through the region of the conditional

instruction as a security context for all instructions in the

region in order to prevent implicit flow. Moreover, the rule
T_cond checks that the security context at the

postdominator j matches the current security context. To

ensure a precise information flow analysis in the

remainder of the code, the rule T_cond requires that the

register file types at j, Γ′, complies with the current register

file types, Γ; this is checked through subtyping relation, ⊆.

 The rule T_call checks that, for any given function, the

security levels of the formal parameters as specified by the

user in the precondition Pre are higher than or equal to

those of the corresponding actual parameters and the
current security context. In addition, it checks that the

signature Sig is higher than the current security context.

Security

Context
 Seuirty

Context

L if a=0 L rt = M[ra]
H then b:= 1 L rt = eq rt, 0
H else b:=2 L jfalse rt, else
L c:=3 H rt = 1
 H M[rb] = rt
 H jump endif
 H else: rt = 2
 H M[rb] = rt
 L endif: rt = 3
 L M[rc] = rt

(a) (b) (c)

Fig. 4 An example fragment of source program (a) and the corresponding SAL code (b) and the control flow graph showing control

dependence region of the conditional enclosed by dashed lines box.

rt = M[ra]

rt = eq rt, 0

jfalse rt, else

rt = 1

M[rb] = rt

jump endif

rt = 2

M[rb] = rt

rt = 3

M[rc] = rt

L

L

H

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, 2007

182

 Similarly, the rule T_ret checks that the security level

specified by the user for the function return value in

postcondition Post is higher than or equal to those of the

actual return value and the current security context.

Example: consider a fragment of program, shown in

Fig.4.a, and its corresponding SAL code, shown in Fig. 4.b,
where a is a high variable, b and c are low variables.

Memory locations M[ra], M[rb], M[rc] in SAL code

correspond to variables a, b, and c respectively. Hence,

M[ra] is high memory location; M[rb] and M[rc] are two

low memory locations. The program modifies the value of

variable b based on the value of variable a. In this

fragment, an implicit flow occurs because the value of

high variable a can be inferred from the final value of low
variable b. Our type system can prevent such leakage by

propagating the high security level through the control

dependence region of the conditional, as shown in Fig 4.c,

and by rejecting writing into low memory location M[rb]

when the current security context is high.

5. Proof Carrying Code for Noninterference

Fig. 5 shows a source-level structure of PCC for

noninterference framework. Modules are the Compiler, the

Annotator, the Security policy, the Verification Condition

Generator (VCG), and the Checker Module, which

includes the Theorem Prover and the Proof Checker.
Following the conventions used in [7], grey rectangular

boxes represent the untrusted modules, and white ones

represent the trusted modules that constitute Trusted

Computing Base (TCB). In the following we give a brief

description of each module.

The compiler is an off-the-shelf compiler.

The Annotator produces the typing specifications and

initial annotations that VCG requires to verify the code.

The initial annotations are bindings of security levels with

global objects in addition to functions’ typing

specifications.

The Security Policy consists of logic and an information

flow type system for assembly language. The logic is a set

of first order predicate constructors, axioms, and proof

rules designed to formalize functions typing specifications,
construct verification conditions, and guide the theorem

proving process. The type system, shown in Fig. 3, is a set

of typing rules that are used for information flow analysis

of SAL programs. The type system is parameterized by

control dependence regions computed by a trusted

function, which performs intra-procedural control flow

analysis of the untrusted code.

The Verification Condition Generator (VCG) performs an

abstract execution over the untrusted code based on the

type system and typing specifications one function at a

time. VCG produces verification conditions (VCs) for
memory write, function call, and function return

instructions. VCs and their assumptions are represented

as LF terms [28].

 The Checker Module includes the theorem prover and the

proof checker. The Twelf system [29] is our checker

module. The object logic is encoded in Twelf and then

the Twelf theorem prover generates the proofs that are to

be type checked later on by Twelf Type checker.

6. Conclusion

We have proposed an information flow type system for

RISC-style assembly language that can serve as a basis for

the security policy of PCC infrastructure to enforce

confidentiality through noninterference. The use of PCC

for checking untrusted code for noninterference based on

the proposed type system will enable end-users to protect

their confidential data. We consider this as a useful step

toward enabling PCC to benefit from a large body of work

in type-based static information-flow analyses.

 Fig. 5 The high-level structure of the PCC for noninterference Framework.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, 2007

183

References
[1] G. Barthe, A. Basu, and T. Rezk. Security types

preserving compilation. In Proc. 5th International
Conference on Verification, Model Checking and
Abstract Interpretation, volume 2937 of LNCS, pages
2–15, Venice, Italy, Jan. 2004.

[2] A. Appel, A. Felty, “A Semantic Model of Types and
Machine Instructions for Proof-Carrying Code”, in
Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages

(POPL’00), pp. 243–253, ACM Press, Boston,
Massachusetts (USA), January 2000.

[3] A. Appel, “Foundational Proof-Carrying Code”, in
Proceedings of the 16th Annual Symposium on Logic
in Computer Science, pp. 247–256, IEEE Computer
Society Press, 2001.

[4] A. Appel, E. Felten, “Models for Security Policies in
Proof-Carrying Code”. Princeton University Computer

Science Technical Report TR-636-01, March 2001.
[5] A. Bernard, P. Lee, “Temporal Logic for Proof-

Carrying Code”, in Proceedings of Automated
Deduction (CADE-18), Lectures Notes in Computer
Science 2392, pp. 31–46, Springer-Verlag, 2002.

[6] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, K.
Cline, “A certifying compiler for Java”, in Proceedings
of the 2000 ACM SIGPLAN Conference on

Programming Language Design and Implementation
(PLDI’00), pp. 95–105, ACM Press, Vancouver
(Canada), June 2000.

[7] G. Necula “Compiling with Proofs” Ph.D. Thesis
School of Computer Science, Carnegie Mellon
University CMU-CS-98-154. 1998.

[8] G. Necula, R. Schneck, “A Sound Framework for
Untrusted Verification-Condition Generators”, in
Proceedings of IEEE Symposium on Logic in Computer

Science (LICS’03), July 2003.
[9] M. Plesko, F. Pfenning, “A Formalization of the Proof-

Carrying Code Architecture in a Linear Logical
Framework”, in Proceedings of the FLoC Workshop on
Run-Time Result Verification, Trento (Italy), 1999.

[10] R. Schneck, G. Necula, “A Gradual Approach to a
More Trustworthy, yet Scalable, Proof-Carrying
Code”, in Proceedings of International Conference on

Automated Deduction (CADE’02), pp. 47–62,
Copenhagen, July 2002.

[11] A. Sabelfeld and A. Myers. Language-Based
Information-Flow Security. IEEE Journal on Selected
Areas in Communications, 21:5-19, January 2003.

[12] F. Pottier and V. Simonet, “Information flow inference
for ML,” in Proc. ACM Symp. on Principles of
Programming Languages, Jan. 2002, pp. 319–330.

[13] D. Volpano, G. Smith, and C. Irvine, “A sound type
system for secure flow analysis,” J. Computer Security,
vol. 4, no. 3, pp. 167–187, 1996.

[14] N. Heintze and J. G. Riecke, “The SLam calculus:
programming with secrecy and integrity,” in Proc.
ACM Symp. on Principles of Programming Languages,
Jan. 1998, pp. 365–377.

[15] D. Volpano and G. Smith. A type-based approach to

program security. In Proc. 7th International Joint
Conference CAAP/FASE on Theory and Practice of

Software Development, LNCS, pages 607–621, Lille,
France, Apr. 1997.

[16] A. C. Myers, “JFlow: Practical mostly-static
information flow control,” in Proc. ACM Symp. on
Principles of Programming Languages, Jan. 1999, pp.

228–241.
[17] G. Barthe and B. Serpette, “Partial evaluation and non-

interference for object calculi,” in Proc. FLOPS. Nov.
1999, vol. 1722 of LNCS, pp. 53–67, Springer-Verlag.

[18] S. Zdancewic and A. C. Myers, “Secure information
flow and CPS,” in Proc. European Symposium on
Programming. Apr. 2001, vol. 2028 of LNCS, pp. 46–
61, Springer-Verlag.

[19] A. Banerjee and D. A. Naumann, “Secure information
flow and pointer confinement in a Java-like language,”
in Proc. IEEE Computer Security Foundations
Workshop, June 2002, pp. 253–267.

[20] S. Zdancewic and A. C. Myers. Secure information
flow via linear continuations. Higher-Order and
Symbolic Computation, 15(2– 3):209–234, Sept. 2002.

[21] E. Bonelli, A. Compagnoni, and R. Medel. SIFTAL: A

typed assembly language for secure information flow
analysis. Technical report, Stevens Institute of
Technology, Hoboken, NJ, July 2004.

[22] R. Medel, A. Compagnoni, and E. Bonelli. Non-
interference for a typed assembly language. In Proc.
2005 Workshop on Foundations of Computer Security,
Chicago, IL, June 2005.

[23] D. Yu, N. Islam. A Typed Assembly Language for

Confidentiality. Technical report, DoCoMo USA Labs,

2005.
[24] M. Avvenuti, C. Bernardeschi, and F. Francesco. Java

bytecode verification for secure information flow.
ACM SIGPLAN Notices,38(12):20–27, Dec. 2003.

[25] J. A. Goguen and J. Meseguer. Security policy and
security models. In Proceedings of the Symposium on
Security and Privacy, pages11–20. IEEE Press, 1982.

[26] G. Barthe and T. Rezk. Non-interference for a JVM-

like language. In TLDI ’05: Proceedings of the 2005
ACM SIGPLAN international workshop on Types in
languages design and implementation, pages 103–112,
New York, NY, USA, 2005. ACM Press.

[27] G. Barthe, D. Naumann, and T. Rezk. Deriving an
information flow checker and certifying compiler for
Java. In Proceedings of Symposium of Security and
Privacy'06. IEEE Press, 2006.

[28] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of the Association for
Computing Machinery 40(1):143–184, January 1993.

[29] F. Pfenning and C. Sch¨urmann. System description:
Twelf: A meta-logical framework for deductive
systems. In H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction
(CADE-16-99), volume 1632 of LNAI, pages 202–206,

Berlin, July 7–10 1999. Springer.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, 2007

184

Abdulrahman Muthana received the
B.Sc. degree in Computer Science from
Mosul Univeristy, Iraq in 1996 and
M.C.A. degree from Bangalore
University, India in 2003. In 1997 he

joined Thamar University as a lecturer.
He is a Ph.D. student at University Putra
Malaysia. His research interest is
Language-based security.

Abdul Azim Abd Ghani received
the B.Sc in Mathematics/Computer

Science from Indiana State University

in 1984 and M.Sc in Computer

Science from University of Miami in

1985. He joined Universiti Putra

Malaysia in 1985 as a lecturer in

Computer Science. He received the

Ph.D in Software Engineering from University of

Strathclyde in 1993. He is an Associate Professor and the

Dean of Faculty of Computer Science and Information

Technology, Universiti Putra Malaysia. His research

interests are software engineering, software measurement,
software quality, and security in computing.

Ramlan Mahmod hold a PhD from

University of Bradford, United Kingdom.
Currently, he is a Associate Professor at
Faculty of Computer Science and
Information Technology, Universiti Putra

Malaysia, His research area are artificial
intelligence.

 Mohd Hasan Selamat received his M.S

degrees from Essex University and PhD
from East Anglia University in United
Kingdom. His research interests including
software engineering and information
system. He is now a fulltime lecturer and
Head Department of Information System in
Faculty of Computer Science and
Information Technology, University Putra

Malaysia.

