
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

184

Manuscript received July 5, 2007

Manuscript revised July 25, 2007

A Variable Neighbourhood Search for Component Pick-and-
Place Sequencing in Printed Circuit Board Assembly

Masri Ayob,

School of Computer Science & IT, The National University of Malaysia,
UKM 43600 Bangi, Selangor, Malaysia

Summary
This work presents a heuristic for component pick-and-place
sequencing to improve the throughput of a multi-head surface
mount device placement machine for assembling printed circuit
board. We present a Variable Neighbourhood Monte Carlo
Search (VNMS), which employs variable neighbourhood search
with an Exponential Monte Carlo acceptance criterion. VNMS is
a descent-ascent heuristic that operates on three sets of
neighbourhood structures that are based on three different local
searchers. The first two sets use a steepest descent and
Exponential Monte Carlo local search, respectively whilst the
third set uses a random 3-opt operator. The solution returned by a
local search, after exploring a neighbourhood structure, will be
accepted based on the EMCQ (Exponential Monte Carlo with
counter) acceptance criterion. The novelty of the VNMS
approach (in the context of VNS) is the concept of three stages of
neighbourhood search, using an EMCQ acceptance criterion (at
the VNS level) and the shaking procedure (which is only applied
when the local searchers cannot find an improved solution).
Results show that the VNMS consistently produces good quality
solutions.

Key words:
Heuristic, component placement sequencing, variable

neighbourhood search, printed circuit board assembly.

1. Introduction

Electronic components (possibly hundreds or thousands)
are assembled onto a PCB (printed circuit board) using
SMD (surface mount device) placement machine(s). SMD
machines are categorised into five types, based on their
specification and their operational methods. These are
dual-delivery, multi-station, turret-style, multi-head and
sequential machines [1]. In this work, we study a single
SMD placement machine with a single PCB to schedule
the component pick-and-place operation of a multi-head
SMD placement machine. The machine has a fixed feeder
carrier, a fixed PCB table and a positioning arm head that
is equipped with many pipettes. The positioning arm head
(that is movable simultaneously in the X-Y direction) is
responsible for transporting components from the
component feeder and then mounting them onto the PCB.
The pipette (spindle) is located at the end of head and is

used to hold a nozzle (tool or gripper). The nozzle is used
to grasp the component [2]. The feeder carrier holds
several feeder banks. Each feeder bank consists of several
feeder slots where the component feeders are located. The
PCB table holds the board in a locked position during a
pick-place operation.

A sub tour (we refer to a sub tour to differentiate with
an overall tour, which is an operation to place all the
required components onto a single board) means an
operation taken by the robot arm to pick up and place
some components (depending on the number of
pipette/nozzles per head) in a single trip. A sub tour of the
heads begins by picking up some components from the
feeders (simultaneously or sequentially depending on the
pickup locations). Then, it travels in an X and Y direction
(simultaneously) and positions itself at the point where the
component will be mounted. Then the head moves down
(Z-direction) and mounts the component on the board
before returning to its original position and repeating these
steps for the next locations on the board that have to be
mounted in the same sub tour. After completing a sub tour,
the head returns to the feeder location to begin another sub
tour. Fig. 1 is an example of a multi-head placement
machine.

There are many factors involved in determining the
efficiency of the pick-place operation of multi-head
placement machines. For example:
1) Assigning PCB points to a sub tour. As the robot

arm is equipped with many pipette/nozzles, the

Arm Head

PCB Nozzles

Feeders

Fig. 1. An example of a pick and place multi-head placement machine.

Pipette

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

185

problem is to determine the sets of PCB points that
will be visited by the robot arm (i.e. to place a
component) in the same sub tour. For example, if the
robot arm is equipped with 8 pipette/nozzles, we may
have 8 pickup points and 8 placement points in a sub
tour.

2) Assigning the pickup pipettes. In this work we
assume all components are the same size (we ignore
nozzle size selection, i.e. the nozzles are common for
all component types and there are no nozzle change
operations). The issue is to determine which pipette
should be used to pickup a component such that we
minimise the robot arm travelling distance.

3) Sequencing the component pickups. The problem is
to determine the sequence of picking up components
in a sub tour to optimise the pickups.

4) Sequencing the placement operation. The problem
is to determine the sequence of placing components in
a sub tour to optimise the placements.

5) Assigning the placement pipettes. Again, the issue is
to optimise the placement and we must ensure that the
PCB points will receive the correct component type.
This problem is almost the same as problem (2).
However, in this problem, the placement pipette is
assigned by aiming to minimise the placement
operation (ignoring the cost of the pickup operation).
Similarly, in problem (2) the assignment of pickup
pipette is done based on minimising the pickup
operations (ignoring the cost of the placement
operation).

6) Sequencing the sub tours. The aim is to optimise the
sequence of sub tours in order to minimise the
assembly cycle time.

The aim of optimising the pickup and placement
operations is to minimise the assembly cycle time.
However, there is a trade-off between optimising the
pickup and optimising the placement. Indeed, these sub
problems are tightly linked. The problem requires various
neighbourhood structures in order to carry out an effective
search. Generally, local search approaches, such as
simulated annealing and tabu search, have difficulty in
solving this problem since they are usually dealing with
single neighbourhood, whilst the complexity of the
problem requires many heuristics for exploring various
neighborhood structures. Therefore, heuristics that are
capable of exploring multi-neighborhood structures such
as Hyper-heuristics [3] and Variable Neighbourhood
Search (VNS) [4] are more applicable when solving this
type of problem. The hyper-heuristic approach has been
successfully studied in our previous work [5],[6]. This
suggests that a VNS approach might be suitable as hyper-
heuristics allowing various neighbourhoods to be searched,

which is the principle behind VNS. Our previous works on
improving the SMD placement machine throughput can be
found in [7],[8].

The printed circuit board problem is easy to describe,
but due to the NP [9] characteristics of the sub problems
involved, it is practically impossible, for reasonably sized
instances, to solve to optimality by exact approaches [10].
De Souza and Lijun [11] discussed that the complexity of
concurrent machine operations also causes difficulties in
formulating a realistic mathematical programming
problem. In practice, heuristic algorithms (such as VNS,
simulated annealing and tabu search) are used. These
approaches can generate good solutions efficiently, at a
reasonable computational cost, but without being able to
guarantee either feasibility or optimality [12]. As such, the
aim of this work is to develop an algorithm that is capable
of generating reasonably good solutions in reasonable
times for sequencing component pick-and-place
operations.

One motivating factor for our work comes from the
fact that, as far as we are aware, none of these studies
attempt to apply variable neighbourhood search or hyper-
heuristic approaches to optimise the SMD placement
machine.

2. Related Work

Some studies which have examined the PCB assembly
problem include Altinkemer et al. [2], Crama et al. [13],
Grunow et al. [14], Ho and Ji [15].

Since the arm and head of a multi-head SMD
placement machine can move concurrently in both the X
and Y axis, Altinkemer et al. [2] used the chebychev
distance (i.e. they calculated the distance as the maximum
of the movements in the X or Y direction). They formulate
a problem for an SMD placement machine that has a
rotating single head that can pick up many components
and mount them on the board in a same sub tour. For the
case of a moveable feeder carrier (i.e. the feeder of the
component type that will be processed next, can move
towards the tool magazine while the head is mounting
another component type), the distance between the feeder
locations and the points on the PCB can be measured from
a fixed point next to the tool magazine. The simultaneous
movement enables each component type to have the same
origin and destination point, and thus allow the
formulation to be an independent capacitated vehicle
routing problem (VRP). Since the distance between a
point on the PCB and feeder is not dependent on where the
component is located among feeders, the feeder setup
problem does not have to be integrated with the pick-and-
place sequencing decisions [2]. For the case of a stationary
feeder carrier, they formulate the problem as a
combination of assignment-like and vehicle-like problems.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

186

They first solve a VRP for each component type at every
possible feeder location, and then use this feasible solution
as the cost of assigning the component type to the
particular feeder location. They argue that their integrated
algorithm provides a feasible solution with an error gap
less than or equal to the maximum error gap of the VRP
costs.

Crama et al. [13] provides an exhaustive survey of
some of the major optimisation problems arising in the
area of production planning for the assembly of PCBs. By
considering a long-term decision with the mixed demand
and the fixed shop layout, they classified the production
planning problems into eight sub problems:
SP1: Assigning PCB types to product families and to

machine groups;
SP2: Allocating component feeders to machines;
SP3: Partitioning component locations on the PCB,

indicating which components are going to be
placed by each machine (for each PCB type);

SP4: Sequencing the PCB types (for each machine
group);

SP5: Assigning component feeders to slots on the feeder
bank/carrier (for each machine);

SP6: Sequencing the component pick-and-place
operation (for each pair consisting of a machine
and a PCB type);

SP7: Component retrieving plan. That is the rule
indicating from which feeder the component should
be retrieved from (if feeder duplications are
allowed);

SP8: A motion control specification, indicating where
the pick and place device should be located to
pickup and place the component.

Normally, the decision as to which of the SP1-SP8 sub
problems to be solved, is based on which sub problem will
minimise the assembly cycle time [13]. However, the
dilemma is that all the sub problems are intertwined and
the question arises as to which one should be solved first.
As a consequence, some researchers tackled the problem
in an iterative manner, instead of a one-pass procedure
through each of the sub problems. The technological
characteristics of the SMD placement machine can also
influence the nature of the problem to be solved and the
formulation of the associated models [13].

Recently, Ho and Ji [15] employed a hybrid genetic
algorithm (that was proposed in [16]) to simultaneously
solve the component pick-and-place sequencing, feeder
setup and component retrieval problem for turret-type
SMD placement machines. The component retrieval
problem is solved using a nearest neighbour heuristic
which aims to minimise the movement of the feeder
carrier. Results show that the approach is capable of
producing a better solution when there are feeder
duplications.

3. The Assumptions and Objective Function

The quality of a schedule can be evaluated by a placement
time function, known as the assembly cycle time, CT. We
model a pick-and-place multi-head placement machine
that has a single head equipped with G nozzles/pipettes,
fixed PCB (printed circuit board) table and stationary
feeder carrier (same as in [5],[6],[7]). This models many
real-world machines.

The objective function is to minimise the assembly
cycle time, CT, by minimising the travelling distance of
the robot to perform pick and place operation:

Where:
I(j) : the time taken for the robot arm to travel

from feeders to PCB points and place
some components in the jth sub tour;

P(j) : the time taken for the robot arm to travel
from PCB points to feeders and pick
some components in the jth sub tour;

B : the total number of sub tours;

The assembly cycle time, CT (equation 1) is a function

of the time to pick-and-place all the available/required
components onto a PCB. This objective function (equation
1) could be applicable for various types of SMD
placement machines such as a dual-delivery, sequential
pick-and-place, multi-station and particularly the multi-
head. However, the calculation of P(j) and I(j) are machine
dependent due to the machine specifications and
operational methods. In this work, P(j) and I(j) is a
summation of the robot travelling distance divided by the
robot speed, plus component pickups and placements time,
respectively. Since the robot (i.e. the arm and head of
SMD placement machine) can move simultaneously in the
X-Y axis, the robot travelling distance is dictated by the
maximum of the X or Y travelling distance, i.e. a
chebychev distance.

In this work, we assume that the CT is only dictated by
the robot travelling distance by ignoring other
optimisation factors such as nozzle changes, component
feeder transportation time, simultaneous (gang) pickup,
tray feeder reloading time etc. These assumptions are
made in order to abstract the problem such that we can
model it as a multi-tour travelling salesman problem
(which is known to NP-hard). However, as addressed by
Kumar and Luo [17], the placement sequencing problem
can be viewed as a “generalised Travelling Salesman
Problem (TSP)” where not only the overall travel time
depends on the travel sequence (as in the standard TSP),
but the distances between any pair of nodes is sequence

(1) []∑
=

= +
B

j
CT jIjP

1
)()(Minimise

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

187

dependent. We also assume that all components are
aligned while the robot arm is moving (i.e. on the fly
alignment).

4. Variable Neighbourhood Search

Variable neighbourhood search (VNS) is a relatively
unexplored approach [18]. It was introduced by
Mladenović & Hansen [19]. By systematically changing
the neighbourhood within a local search algorithm, VNS
can explore distant neighbourhoods of the current solution,
and jump to a new solution if it is superior to the current
solution [19]. The shaking procedure in the basic VNS
approach provides a diversification factor in order to reach
a distant neighbourhood whilst the local search will
intensify the search to make it converge to local optima.
The basic VNS algorithm is a descent heuristic but it can
be transformed to a descent-ascent or a best improvement
method [18].

Recently, there has been increasing interest in the VNS
approach. For example, Avanthay et al. [20], developed an
adaptation of VNS to solve the graph coloring problem
with a Tabucol (a variant of tabu search) algorithm (see
[21]) as a local search. They used three neighbourhood
structures; these being vertex, class, and non-increasing
neighbourhoods. Their VNS however is not superior to the
hybrid algorithm proposed by Galinier and Hao [22] that
integrates a tabu search and a genetic algorithm. Fleszar
and Hindi [23] applied a VNS approach in solving the
resource-constrained project scheduling problem. Results
show that the quality of solutions and lower bounds
achieved by VNS with enhanced moves and precedence
augmentation is impressive.

5. Variable Neighbourhood Search for
Component Pick-and-Place Sequencing

In this work we develop two types of VNS approaches,
these being basic VNS (VNS-1, VNS-2 and VNS-3) and a
Variable Neighbourhood Monte Carlo Search (VNMS).
The first one is based on basic VNS [18].[19] that operates
on different local searches. The second type (i.e. VNMS)
has three stages of neighbourhood structures where each
stage operates on a different set of local searchers.

Let nw, w=1,2…,W, be a set of predefined
neighbourhood structures, and nw(x) is the set of solutions
in the wth neighbourhood of x, f(x) is the quality of solution
x. W is the total number of neighbourhood structures to be
used in the search.

In this work, we use three acceptance criteria, which
are applied at the VNS level and/or the local search level.
These being:

1) Descent: Only accepts an improved solution.

2) EMC (Exponential Monte Carlo): This accepts an
improved solution and probabilistically accepts a
worse solution. The probability of accepting a worse
solution decreases as δ (where δ=f(x’)-f(x)) increases.
The trial solution, x’, is accepted if a generated
random number is less than e-δ. The f(x’) and f(x) are
the qualities of the trial solution and the
initial/incumbent solution, respectively

3) EMCQ (Exponential Monte Carlo with counter):
Similar to EMC, this accepts an improved solution.
However it may also accept a worse solution with the
probability of acceptance increasing as δ decreases
and the counter of consecutive none improvement
iteration, Q, increases. The probability is computed by
e-θ/τ where θ=δ*t, τ=ρ(Q) and δ=f(x’)-f(x).
Computation time, t, is measured as minute being the
unit time (in our case). The trial solution, x’ is
accepted if a generated random number is less than
e-θ/τ. θ and τ are defined such that we ensure that the
probability of accepting a worse solution decreases as
the time increases and δ increases. The factor of time
is included in this formulation as an intensification
factor. At the beginning of the search, moderately
worse solutions are more likely to be accepted but as
the time increases, worse solutions are unlikely to be
accepted. However, the probability of accepting a
worse solution increases as the counter of consecutive
none improvement iterations, Q, increases. This is a
diversification factor. ρ(Q) is a function to
intelligently control Q. In this work we use τ=v*Q
where 0≤v≤1, in order to limit the acceptance
probability. However, our preliminary experiment on
the parameter sensitivity of v shows that the EMCQ
algorithm with v=1 performs the best. Therefore, we
set τ=Q. We originally proposed these acceptance
criteria (EMC and EMCQ) in [6].

VNS-1 is absolutely a basic descent heuristic that

operates with a random descent local search (RD-LS) by
using descent acceptance criterion at the local search and
VNS levels. VNS-1 only accepts an improved solution
returned by the RD-LS. We use a 2-opt operator in the
local search. A local search heuristic explores a single
neighbourhood solution space by performing a sequence
of local changes to an initial solution, in order to improve
the quality of a solution until a local optimum is found
[23]. A neighbouring solution is produced by a move-
generation mechanism and will be selected depending on
the pre-defined acceptance criteria. In VNS-1, the local
search starts by generating a solution x’ from the wth
neighbourhood of x (x’Єnw(x)). Starting from x’ as an

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

188

initial solution, the RD-LS sequentially visits at least 1P
neighbours around the wth neighbourhood of x’. The RD-
LS accepts the first improving neighbour solution and
moves to this solution. Then the search continues until the
stopping condition is true. We use two stopping conditions
in the local search. These being a number of visited
neighbours and the solution’s quality. If the current
neighbour solution is better than the best obtained solution
by the RD-LS, then the search continues even after
exceeding the limit of visited neighbours.

VNS-2 itself is a descent heuristic but the EMC-LS
local search is a descent-ascent heuristic. The EMC-LS
also begins by generating a solution x’ from the wth
neighbourhood of x (x’ЄNw(x)). Starting from x’ as an
initial solution, EMC-LS sequentially visits P neighbours
around the wth neighbourhood of x’. The search
sequentially moves to the new accepted solution even
though the new solution is worse (depending on the EMC
acceptance criterion). The EMC-LS exits when it reaches
the limit of visited neighbours (P). It returns the best
obtained solution to the VNS heuristic.

VNS-3 is also a basic VNS but it is a descent-ascent
VNS with EMCQ acceptance criteria at VNS level that
operates with an EMC-LS local searchers. Instead of
simple descent heuristics, the VNS-3 transforms the
descent VNS into a descent-ascent VNS. It applies the
EMCQ acceptance criterion to probabilistically accept a
worse solution returned by the local searches. VNS-3 uses
the same EMC local search, EMC-LS as in (VNS-2).

VNMS is a descent-ascent heuristic that accepts an
improved solution but probabilistically accepts a worse
solution based on the EMCQ acceptance criterion that
operates at the higher level. VNMS has a three stages
neighbourhood search, these being a steepest descent,
EMC (Exponential Monte Carlo) and shaking. The idea is
to initially explore the best neighbour in each
neighbourhood structure before applying a random
element. The search direction changes, when the steepest
descent local search that returns the best neighbour is
unable to find an improved solution (by applying EMC
local searchers). The shaking procedure is only applied
after the EMC local search cannot find an improved
solution. The novelty of the VNMS approach (in the
context of VNS) is the concept of three stages of
neighbourhood search, using an EMCQ acceptance
criterion at the VNS level and the shaking procedure
(which is only applied when the local searchers cannot
find an improved solution). The VNMS algorithm is
described in fig. 2.

1 ∑
−

=

=
1

1

G

e
eP where G is the number of pipettes per

head.

The steepest descent neighbourhood search has D (six
in this work) number of steepest descent local searches.
Each steepest descent local search will explore a different
neighbourhood structure and returns the best neighbour.
The returned solution will be accepted based on the
EMCQ acceptance criterion at the VNMS level.

After exploring the steepest descent neighbourhood
structures, VNMS will explore the EMC neighbourhood

Step A: (Initialisation)
(1) Select the set of neighbourhood structures nd,

d=1,2…,D , ne, e=1,2…,E, nz, z=1,2…,Z that will be
used in the search; find an incumbent solution x;
choose a stopping condition;

(2) Record the best obtained solution, xbest←x and f(xbest)
← f(x);

Step B: (Steepest Descent Neighbourhood Search)

(1) Set d←1;
(2) Do

a). Exploration of neighbourhood. Find the best
neighbour, x’ from the dth neighbourhood of
x(x’Єnd(x));

b). Acceptance criteria (Move or not). Apply the
EMCQ acceptance criterion. If x’ is accepted, then
x← x’.

c). If the new solution is better than the incumbent
solution, continue the search with nd; otherwise,
set d←d+1.

d). If f(x’)<f(xbest) then xbest←x’ and f(xbest) ← f(x’);
Until d=D or the stopping condition is met.

Step C: (EMC Neighbourhood search)
(1) Set e←1;
(2) Do

a). Local search. Systematically generate a
neighbour, x” from the eth neighbourhood of
x(x”Єne(x)) using EMC local search. Return the
best obtained solution x’;

b). Apply the same acceptance criterion as in Step
B(2b);

c). If the new solution is better than the incumbent,
continue the search with ne; otherwise, set
e←e+1.

d). If f(x’)<f(xbest) then xbest←x’ and f(xbest) ← f(x’);
Until e=E or the stopping condition is met.

Step D: (Shaking)
(1) Randomly select neighbourhood structures nz,;
(2) Do

a). Generate a point x’ at random from the zth
neighbourhood of x (x’Єnz(x));

b). Apply the same acceptance criterion as in Step
B(2b);

c). If f(x’)<f(xbest) then xbest←x’ and f(xbest) ← f(x’). If
x’ is accepted, then goto step B;

Until x’ is accepted or the stopping condition is met.
Step E: (Termination)

Goto Step B if stopping condition=false, otherwise terminate.

Fig. 2. The VNMS algorithm for component placement sequencing of
multi-head placement machine (minimisation problem).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

189

structures at the EMC neighbourhood search stage. The
EMC neighbourhood search is meant to divert the search
direction by probabilistically accepting some worse
solution. This stage has E (six in this work) number of
EMC local searchers. These EMC local searchers are the
same as the EMC local searches in VNS-2 and VNS-3.
Indeed, the VNS-3 and the EMC neighbourhood search
stage are the same.

Finally, VNMS will apply the shaking stage if the
steepest descent neighbourhood search and EMC
neighbourhood search stages are unable to return an
accepted solution. In this work, we use 3-opt operator in
the shaking procedure. As the problem domain involves
six sub-problems, then we apply 3-opt operator for each of
the sub-problem. The three points that are randomly
chosen to be swapped are selected from the same sub tour
(for generating a neighbour of pickup’s pipette, pickup’s
sequence, placement’s pipette and placement’s sequence)
or a different sub tour (for generating a neighbour of sub
tour or sub tour’s sequence).

Each trial solution obtained by the shaking procedure
will be evaluated based on the VNMS acceptance criterion.
The shaking procedure is repeated until the obtained
solution is accepted or the stopping condition is met. Once
the obtained solution is accepted, VNMS will continue the
search by repeating the whole procedure again starting
from Step B in fig. 2, steepest descent neighbourhood
search.

The local searchers used in the VNMS are listed in
table 1. Hc denotes the heuristic ID whilst the acceptance
criteria determine how to accept the solution in the local
search.

As the problem domain requires six different swapping
operations, we developed three sets of neighbourhood
structures, having six swapping operations in each set to
produce six different neighbourhood structures in each set.
The three sets are based on the local searchers that are
steepest descent (SD-LS), exponential monte carlo (EMC-
LS) and random 3-opt operator. The steepest descent
neighbourhood search stage uses six local searchers, these
being Hc={0,1,2,3,4,5}. The EMC neighbourhood search
stage uses the next six local searchers that are
Hc={6,7,8,9,10,11} whereas the other six local searchers
(i.e. Hc={12,13,14,15,16,17}) that are actually just a
simple 3-opt operators, are used in the shaking procedure.

6. Hyper-heuristic

As the differences among various SMD placement
machine specifications and operational methods
significantly influence the solution approaches, it is
difficult to evaluate the performance of the VNMS against
other approaches. As such, we have developed hyper-
heuristic approaches for comparison purposes.

Table 1: A list of local searches used in VNMS

Hc Local search name
Acceptance
Criteria

0 Swap placement sub-tour using SD-LS choose the best
1 Swap pickup nozzle using SD-LS choose the best
2 Swap pickup sequence using SD-LS choose the best
3 Swap placement nozzle using SD-LS choose the best
4 Swap placement sequence using SD-LS choose the best
5 Swap sub-tour’s sequencing order using SD-LS choose the best
6 Swap placement sub-tour using EMC-LS EMC
7 Swap pickup nozzle using EMC-LS EMC
8 Swap pickup sequence using EMC-LS EMC
9 Swap placement nozzle using EMC-LS EMC
10 Swap placement sequence using EMC-LS EMC
11 Swap sub-tour’s sequencing order using EMC-LS EMC
12 Swap placement sub-tour using random 3-opt None
13 Swap pickup nozzle using random 3-opt None
14 Swap pickup sequence using random 3-opt None
15 Swap placement nozzle using random 3-opt None
16 Swap placement sequence using random 3-opt None

17
Swap sub-tour’s sequencing order using random
3-opt None

Hyper-heuristics are (meta-)heuristics that can operate

over a set of (meta-) heuristics [3]. The hyper-heuristic
framework manages a set of low level heuristics, which
operates at a higher level of abstraction without having
access to the problem domain-knowledge [3]. In this work,
we have developed nine hyper-heuristic approaches. These
hyper-heuristics operate on different sets of low-level
heuristic and acceptance criteria:
1) AM-sdEmc3opt (All Move that operates with SD-LS,

EMC-LS and 3-opt LLH): Randomly selects LLH and
accepts any solution returned by the LLH. There are
eighteen LLHs (these are the same local searchers
used in VNMS approach).

2) OI-sdEmc3opt (Only Improving that operates with
SD-LS, EMC-LS and 3-opt LLH): Randomly selects
LLH and only accepts an improved solution returned
by the LLH.

3) OICF-sdEmc3opt (Only Improving Choice Function
that operates with SD-LS, EMC-LS and 3-opt LLH):
Select LLH based on historical performance (Cowling
et al., 2001) and only accepts an improved solution
returned by the LLH.

4) Λ(hk)=max{α*f1(hk)+ β*f2(hj,hk)+ σ*f3(hk)} Where

Λ(hk) is a function used by Cowling et al. [24] to
choose a heuristic (which has the largest Λ(hk.)) to be
applied at the next iteration. f1(hk) is the cumulative
performance rate of heuristic hk, f2(hj,hk) is the
cumulative performance rate of consecutive pairs of
heuristics (heuristic hj followed by hk) and f3(hk) is the
CPU time which has elapsed since heuristic hk was

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

190

last called. Details of the algorithm can be found in
[24]. If the time taken by each LLH to make a swap is
too short (approximate to zero milliseconds), then we
set the duration as 1.

5) AMCF-sdEmc3opt (All Move Choice Function that
operates with SD-LS, EMC-LS and 3-opt LLH): Same
as OICF-sdEmc3opt but in this case we accept all
solutions returned by the LLH’s.

6) EMCQ-sdEmc3opt (Exponential Monte Carlo with
Counter that operates with SD-LS, EMC-LS and 3-opt
LLH): Randomly selects LLH and accepts the
returned solution based on the EMCQ acceptance
criterion.

7) AM-sd (All Move that operates with SD-LS LLH):
Randomly selects LLH and accepts any solution
returned by the LLH. There are only six steepest
descent LLHs (that are the same steepest descent local
searches used in VNMS).

8) OI-2opt (Only Improving that operates with 2-opt
LLH): Randomly selects LLH and only accepts an
improved solution returned by the LLH. This is a
simple descent heuristic.

9) OICF-2opt (Only Improving Choice Function that
operates with 2-opt LLH): Select LLH based on
historical performance [24] and only accepts an
improved solution returned by the LLH. This is a
simple descent heuristic with a choice function.

10) EMCQ-2opt (EMCQ that operates with 2-opt LLH):
Randomly selects LLH and accepts the returned
solution based on the EMCQ acceptance criterion.

7. Computational Experiments

An initial solution is obtained by applying either a
randomised or an ordered constructive heuristic (i.e. the
PCB points are consecutively scheduled based on a
sequence of PCB points that are sorted starting with the
minimum of maximum (X,Y) coordinate, then with the
minimum (X,Y) when there is a duplication of maximum
(X,Y)). In the experiment we modelled the multi-head
placement machine that has a head equipped with 8
pipettes/nozzles that can pick no more than 8 components
in a sub tour. We further assume that the SMD placement
machine can only pickup one component at a time (no
simultaneous pickup) but the number of components that
can be picked up in a sub tour is dependent on the number
of pipettes/nozzles per head.

To simulate the pick-place operation of the placement
machine, we set the speed of the robot arm, V=10 unit
distance/unit time, the pickup and placement time, λ = θ =
0.5 unit time. For the purpose of generating the random

placement points, we set the length (BL) and the width
(BW) of the board, such that the random PCB points fall
within the limits. In the experiment we use two datasets
(dataset N80K20_A and N240K40_F). The specification
of these datasets is shown in table 2. These datasets are
randomly generated using our random PCB generator
software called PCBgen. PCBgen allows the user to set the
required N (sum of placement points), K (sum of
component types), BW and BL.

Table 2: Experimental datasets.
Dataset N K BL BW
N80K20_A 80 20 600 200
N240K40_F 240 40 1800 600

We ran the experiments using an Intel® Pentium®4

PC with 1.8GHz speed and 256 MB RAM. In this work
we set α=1.0, β=0.01 and σ=0.5 (for OICF and AMCF).
The parameters values are chosen based on the results
obtained from our preliminary tests on parameter
sensitivity. Other approaches are not parameter sensitive.
The parameter sensitivity’s test showed that the OICF and
AMCF performance are very sensitive to their parameters
and the best value for the parameters is subject to the
problem size [6].

Table 3 shows the experimental results of the average
of ten runs on datasets N80K20_A and N240K40_F with
each run being given one hour of computation time as a
termination criterion. An ANOVA test on the results of
dataset N80K20_A and N240K40_F (one hour F
runtimes) showed that the CT’s averages of all approaches
tested in this section are statistically different (at the 99%
confidence level with F-ratio=47.87 and 33.27,
respectively). Therefore, by just looking at the CT’s
averages, we can briefly estimate the effectiveness of the
approaches (shown in table 4). Based on the results in
table 4, we can observe that VNMS and AMCF-sdEmc3opt
show the best performance on dataset N80K20_A and
N240K40_F, respectively). Interestingly, VNMS and
AMCF-sdEmc3opt have obtained the best performance of
the two heuristics ranked in this experiment (on dataset
N80K20_A and N240K40_F). However, based on an
ANOVA test carried out on the results of EMCQ-2opt,
AMCF-sdEmc3opt and VNMS (on the results of dataset
N80K20_A for one hour runtimes) there is no significant
difference in their performance (F-ratio=0.39 for α=0.01)
even though they used different local searchers.

Fig. 3 shows a box-and-whisker plot, which represents
the results of ten runs (minimum, first quartile, median,
third quartile and maximum values of CT) on dataset
N80K20_A (one hour runtime).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

191

Table 3: An average result of ten runs on each data set (test duration: 1 hour).
Data set N80K20_A

(CTo=1061.04)

Data set N240K40_F

(CTo=3238.90) Heuristic

CTavg I(%) Dev CTmin CTavg I(%) Dev CTmin
VNMS 257.04 75.77 2.49 252.86 2052.12 75.53 0.00 2052.12
VNS-1 311.61 70.63 9.63 300.10 2590.57 69.11 82.64 2477.19
VNS-2 298.65 71.85 10.18 286.40 2617.47 68.79 75.06 2482.07
VNS-3 275.74 74.01 7.53 263.19 2592.18 69.09 63.18 2480.02
AM-sdEmc3opt 272.58 74.31 4.78 264.10 2086.48 75.12 33.16 2045.16
OI-sdEmc3opt 278.26 73.77 9.06 262.15 2063.53 75.39 29.93 2031.71

AMCF-sdEmc3opt 258.63 75.62 6.28 251.85 2047.13 75.59 37.48 1970.74
OICF-sdEmc3opt 273.97 74.18 6.36 264.96 2070.48 75.00 37.84 2026.71
EMCQ-sdEmc3opt 274.47 74.13 9.48 259.00 2063.70 75.39 26.02 2007.75
AM-sd 276.98 73.90 12.19 256.68 2053.88 75.51 22.63 2008.94
EMCQ-2opt 258.77 75.61 4.98 252.14 2264.44 73.00 50.43 2213.25
OICF-2opt 325.42 69.33 18.92 296.95 2781.95 66.83 512.33 2151.95
OI-2opt 279.03 73.70 8.09 264.50 2369.73 71.74 75.24 2276.86
Note:

CTavg: Average assembly cycle time(unit time); CTmin : Minimum assembly cycle time(unit time);
Dev : Standard deviation of CT; CTo : Initial CT;
I : CT’s Improvement=(CTo-CTavg)*100/ CTo

Table 4: A heuristic ranking based on CTavg of ten runs starting with the most effective heuristic (smallest CTavg) (test duratio:one hour).

 Dataset N80K20_A Dataset N240K40_F

 Heuristic rank CTavg Heuristic rank CTavg

1 VNMS 257.04 AMCF-sdEmc3opt 2047.13
2 AMCF-sdEmc3opt 258.63 VNMS 2052.12
3 EMCQ-2opt 258.77 AM-sd 2053.88
4 AM-sdEmc3opt 272.58 OI-sdEmc3opt 2063.53
5 OICF-sdEmc3opt 273.97 EMCQ-sdEmc3opt 2063.70
6 EMCQ-sdEmc3opt 274.47 OICF-sdEmc3opt 2070.48
7 VNS-3 275.74 AM-sdEmc3opt 2086.48
8 AM-sd 276.98 EMCQ-2opt 2264.44
9 OI-sdEmc3opt 278.26 OI-2opt 2369.73
10 OI-2opt 279.03 VNS-1 2590.57
11 VNS-2 298.65 VNS-3 2592.18
12 VNS-1 311.61 VNS-2 2617.47
13 OICF-2opt 325.42 OICF-2opt 2781.95

By referring to fig. 3, we can observe that the VNMS

slightly outperformed the other approaches with the
smallest median and variation of the CT values. Fig. 3 also
shows that the AMCF-sdEmc3opt and EMCQ-2opt have
fairly equal performance; and the AM-sdEmc3opt, OICF-
sdEmc3opt, EMCQ-sdEmc3opt, VNS-3, AM-sd, OI-
sdEmc3opt and OI-2opt also have fairly equal
performance. These results also show that our basic VNS
approaches are not performing well compared to the other
approaches across all the datasets tested in this work. This
may due to the local searches used in the basic VNS and
the basic VNS approaches itself. Generally, the quality of

the obtained solution by basic VNS is dependent on the
local search used (as argued by Hansen & Mladenović
[19]). Unfortunately, the nature of our problem presents
difficulties when applying other established local search
such as tabu search and simulated annealing since this
scheduling problem involves some interrelated sub
problems, which should not be solved independently.
There is also the issue of how far to solve each of the sub
problems before solving the others and in which order
should we solve the sub problem. Optimising one factor
(sub problem) may increase the cost of another factor(s).
However, we can conclude that the VNS may perform
better by integrating an acceptance criterion at the VNS

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

192

level. In addition, the strategy to initially explore the best
neighbour in each neighbourhood structure before
applying a random element and shaking procedures
(which will only be applied after the previous local search
group cannot find an improved solution) might be
effective. The drawback is that the steepest descent local
search is very time consuming.

8. Conclusions

A Variable Neighbourhood Search for solving the
component pick-and-place sequencing of a multi-head
SMD placement machine has been proposed. A basic
version of a VNS, that is VNS-1, VNS-2 and VNS-3 have
been presented. VNS-1 is a descent heuristic that operates
with random descent local searchers. VNS-2 is also a
descent heuristic but operates with EMC (Exponential
Monte Carlo) local searchers. The EMC local search
always accepts an improved solution and probabilistically
accepts a worse solution depending on the degree of
worsening (δ). The VNS-3 is a descent-ascent heuristic
with EMCQ (Exponential Monte Carlo with counter)
acceptance criterion that operates with EMC local
searchers. Our experimental results show that the VNS-1,
VNS-2 and VNS-3 do not perform well compared to some
hyper-heuristics approaches presented in this work.
However, VNS-3 is superior to VNS-1 and VNS-2, which
might indicate that the use of an acceptance criterion at the

local search and VNS level can guide the search in order
to obtain better solutions.

We further developed another Variable
Neighbourhood Search with an Exponential Monte Carlo
(VNMS) acceptance criterion. The VNMS is a descent-
ascent heuristic that operates on three sets of
neighbourhood structures that are grouped together based
on three different local search/operator approaches. Each
group contains six neighbourhood structures. The first two
sets use a steepest descent and EMC local search whilst
the third set uses a random 3-opt operator. The solution
returned by a local search, after exploring a
neighbourhood structure, will be accepted based on the
EMCQ acceptance criterion at the VNS level. The EMCQ
acceptance criterion always accepts an improved solution.
However, the probability of accepting a worse solution
increases as δ decreases and the counter of consecutive
none improvement iterations, Q, increases.

Results show that the VNMS is capable of producing
good quality and stable results (for smaller dataset) in
solving the component pick-and-place sequence of multi-
head SMD placement machine. Therefore, the VNMS is
more reliable compared to the hyper-heuristic approaches
tested in this work. The proposed framework of VNMS
might be suitable for solving other types of SMD
placement machines or even other problem domains.
However, the local searchers are problem specific, which
often has to be the case.

Fig. 3 A comparison of VNMS, VNS and hyper-heuristic approaches using box-and-whisker plot on the results
of ten runs on dataset N80K20_A (test duration: 1 hour).

Note: a= VNMS; b=AMCF-sdEmc3opt; c=EMCQ-2opt
d=AM-sdEmc3opt; e=OICF-sdEmc3opt; f=EMCQ-sdEmc3opt;
g=VNS-3; h=AM-sd; i=OI-sdEmc3opt;
j=OI-2opt; k=VNS-2; l=VNS-1;
m=OICF-2opt.

2 5 0

2 7 0

2 9 0

3 1 0

3 3 0

3 5 0

a b c d e f g h I j k l m

H e u r is t ic a p p r o a c h

A
ss

em
bl

y
cy

cl
e

tim
e,

 C
T

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

193

References
[1] M. Ayob and G. Kendall, “A survey of surface mount

device placement machine optimisation: machine
classification.” European Journal of Operational Research,
in press, 2007.

[2] K. Altinkemer, B. Kazaz, M. Koksalan and H.
Moskowitz, “Optimization of printed circuit board
manufacturing: Integrated modeling and algorithms.
“European Journal of Operational Research, 124, 409-
421, 2000.

[3] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross and S.
Schulenburg. “Hyper-Heuristics: An emerging
direction in modern search technology,” ch. 16. In:
Glover, F. & Kochenberger, G., Handbook of Meta-
Heuristics , 457-474, Kluwer, 2003.

[4] P. Hansen and N. Mladenović. “Variable neighborhood
search.” European Journal of Operational Research,
130, 449-467, 2001.

[5] M. Ayob and G. Kendall, “An investigation of an
adaptive scheduling for multi headed placement
machines.” Proc. of the 1st Multidisciplinary
International Conference on Scheduling: Theory and
Applications, MISTA 2003 (363-380). Nottingham,
UK, 2003.

[6] M. Ayob and G. Kendall. “A monte carlo hyper-heuristic
to optimise component placement sequencing for
multi head placement machine.” Proc. of the
International Conference on Intelligent Technologies,
InTech'03 (pp. 132-141). Chiang Mai, Thailand, 2003.

[7] M. Ayob and G. Kendall, “Real-time scheduling for
multi headed placement machine.” Proc. of the 5th
IEEE International Symposium on Assembly and Task
Planning, ISATP'03 (pp. 128-133). Besançom, France,
2003.

[8] M. Ayob and G. Kendall, “A triple objective function
with a chebychev dynamic point specification
approach to optimise the SMD placement machine.”
European Journal of Operational Research, 164, 609-
626, 2005.

[9] M.R. Garey and D.S. Johnson, “Computers and
intractability-a guide to the theory of NP-completeness.”
Freeman, 1979.

[10] L.K. Moyer and S.M. Gupta, “Simultaneous component
sequencing and feeder assignment for high speed chip
shooter machines.” Journal of Electronics Manufacturing, 6,
271-305, 1996.

[11] R. De Souza and W. Lijun, « Intelligent optimization of
component insertion in multi-head concurrent operation
PCBA machines.” Journal of Intelligent Manufacturing, 6,
235-243, 1995.

[12] Aarts, E. & Lenstra, J.K. (2003). Local search in
combinatorial optimization. Princeton University Press,
2003.

[13] Y. Crama, J.van de Klundert and F.C.R. Spieksma,
“Production planning problems in printed circuit

board assembly.” Discrete Applied Mathematics, 123 ,
339-361, 2002.

[14] M. Grunow, H-O. Günther, M. Schleusener and I.O. Yilmaz,
„Operations planning for collect-and-place machines in
PCB assembly.” Computers & Industrial Engineering, 47(4),
409-429, 2004.

[15] W. Ho and P. Ji, “A genetic algorithm approach to
optimising component placement and retrieval sequence
for chip shooter machines.” Int. J. of Adv.
Manufacturing Technology, 28, 556-560, 2006.

[16] W. Ho and P. Ji, “Component scheduling for chip
shooter machines: a hybrid genetic algorithm
approach, Computers and operations research, 30,
2175-2189, 2003.

[17] R. Kumar and Z. Luo, “Optimizing the operation
sequence of a chip placement machine using TSP
model.” IEEE Transactions on Electronics Packaging
Manufacturing, 26(1), 14-21, 2003.

[18] P. Hansen and N. Mladenović, “Variable
neighborhood search.” European Journal of
Operational Research, 130, 449-467, 2001.

[19] P. Hansen and N. Mladenović, “Variable neighborhood
search for the P-median. Location Science, 5(4), 207-226,
1997.

[20] C. Avanthay, A. Hertz and N. Zufferey, “A variable
neighborhood search for graph coloring.” European
Journal of Operational Research, 151, 379-388, 2003.

[21] A. Hertz and D. de Werra, “Using tabu search
techniques for graph coloring.” Computing, 39, 345-
351, 1987.

[22] P. Galinier and J.-K. Hao, “Hybrid evolutionary
algorithms for graph coloring.” Journal of
Combinatorial Optimization, 3, 379-397, 1999.

[23] K. Fleszar and K.H. Hindi, “Solving the resource-
constrained project scheduling problem by a variable
neighbourhood search.” European Journal of
Operational Research, 155(2), 402-413. 2004.

[24] P. Cowling, G. Kendall and E. Soubeiga, “A
hyperheuristic approach to scheduling a sales
summit.” In: Burke, E. and Erben, W., editors,
Selected Papers Of The Third International
Conference On The Practice And Theory Of
Automated Timetabling, PATAT’2000,176-190.
LNCS, 2001.

