
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007 
 

 

184 

Manuscript received  July 5, 2007 

Manuscript revised  July 25, 2007 

A Variable Neighbourhood Search for Component Pick-and-
Place Sequencing in Printed Circuit Board Assembly  

Masri Ayob, 
  

School of Computer Science & IT, The National University of Malaysia,  
UKM 43600 Bangi, Selangor, Malaysia 

 
 

Summary 
This work presents a heuristic for component pick-and-place 
sequencing to improve the throughput of a multi-head surface 
mount device placement machine for assembling printed circuit 
board. We present a Variable Neighbourhood Monte Carlo 
Search (VNMS), which employs variable neighbourhood search 
with an Exponential Monte Carlo acceptance criterion. VNMS is 
a descent-ascent heuristic that operates on three sets of 
neighbourhood structures that are based on three different local 
searchers. The first two sets use a steepest descent and 
Exponential Monte Carlo local search, respectively whilst the 
third set uses a random 3-opt operator. The solution returned by a 
local search, after exploring a neighbourhood structure, will be 
accepted based on the EMCQ (Exponential Monte Carlo with 
counter) acceptance criterion. The novelty of the VNMS 
approach (in the context of VNS) is the concept of three stages of 
neighbourhood search, using an EMCQ acceptance criterion (at 
the VNS level) and the shaking procedure (which is only applied 
when the local searchers cannot find an improved solution). 
Results show that the VNMS consistently produces good quality 
solutions. 
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1. Introduction 

Electronic components (possibly hundreds or thousands) 
are assembled onto a PCB (printed circuit board) using 
SMD (surface mount device) placement machine(s). SMD 
machines are categorised into five types, based on their 
specification and their operational methods. These are 
dual-delivery, multi-station, turret-style, multi-head and 
sequential machines [1]. In this work, we study a single 
SMD placement machine with a single PCB to schedule 
the component pick-and-place operation of a multi-head 
SMD placement machine. The machine has a fixed feeder 
carrier, a fixed PCB table and a positioning arm head that 
is equipped with many pipettes. The positioning arm head 
(that is movable simultaneously in the X-Y direction) is 
responsible for transporting components from the 
component feeder and then mounting them onto the PCB. 
The pipette (spindle) is located at the end of head and is 

used to hold a nozzle (tool or gripper). The nozzle is used 
to grasp the component [2]. The feeder carrier holds 
several feeder banks. Each feeder bank consists of several 
feeder slots where the component feeders are located. The 
PCB table holds the board in a locked position during a 
pick-place operation.  

A sub tour (we refer to a sub tour to differentiate with 
an overall tour, which is an operation to place all the 
required components onto a single board) means an 
operation taken by the robot arm to pick up and place 
some components (depending on the number of 
pipette/nozzles per head) in a single trip. A sub tour of the 
heads begins by picking up some components from the 
feeders (simultaneously or sequentially depending on the 
pickup locations). Then, it travels in an X and Y direction 
(simultaneously) and positions itself at the point where the 
component will be mounted. Then the head moves down 
(Z-direction) and mounts the component on the board 
before returning to its original position and repeating these 
steps for the next locations on the board that have to be 
mounted in the same sub tour. After completing a sub tour, 
the head returns to the feeder location to begin another sub 
tour. Fig. 1 is an example of a multi-head placement 
machine. 

 
 
 
 
 
 
 
 
 
 

 

There are many factors involved in determining the 
efficiency of the pick-place operation of multi-head 
placement machines. For example: 
1) Assigning PCB points to a sub tour. As the robot 

arm is equipped with many pipette/nozzles, the 
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Fig. 1. An example of a pick and place multi-head placement machine. 
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problem is to determine the sets of PCB points that 
will be visited by the robot arm (i.e. to place a 
component) in the same sub tour. For example, if the 
robot arm is equipped with 8 pipette/nozzles, we may 
have 8 pickup points and 8 placement points in a sub 
tour. 

2) Assigning the pickup pipettes. In this work we 
assume all components are the same size (we ignore 
nozzle size selection, i.e. the nozzles are common for 
all component types and there are no nozzle change 
operations). The issue is to determine which pipette 
should be used to pickup a component such that we 
minimise the robot arm travelling distance.      

3) Sequencing the component pickups. The problem is 
to determine the sequence of picking up components 
in a sub tour to optimise the pickups. 

4) Sequencing the placement operation. The problem 
is to determine the sequence of placing components in 
a sub tour to optimise the placements.  

5) Assigning the placement pipettes. Again, the issue is 
to optimise the placement and we must ensure that the 
PCB points will receive the correct component type. 
This problem is almost the same as problem (2). 
However, in this problem, the placement pipette is 
assigned by aiming to minimise the placement 
operation (ignoring the cost of the pickup operation). 
Similarly, in problem (2) the assignment of pickup 
pipette is done based on minimising the pickup 
operations (ignoring the cost of the placement 
operation).  

6) Sequencing the sub tours. The aim is to optimise the 
sequence of sub tours in order to minimise the 
assembly cycle time. 

The aim of optimising the pickup and placement 
operations is to minimise the assembly cycle time. 
However, there is a trade-off between optimising the 
pickup and optimising the placement. Indeed, these sub 
problems are tightly linked. The problem requires various 
neighbourhood structures in order to carry out an effective 
search. Generally, local search approaches, such as 
simulated annealing and tabu search, have difficulty in 
solving this problem since they are usually dealing with 
single neighbourhood, whilst the complexity of the 
problem requires many heuristics for exploring various 
neighborhood structures. Therefore, heuristics that are 
capable of exploring multi-neighborhood structures such 
as Hyper-heuristics [3] and Variable Neighbourhood 
Search (VNS) [4] are more applicable when solving this 
type of problem. The hyper-heuristic approach has been 
successfully studied in our previous work [5],[6]. This 
suggests that a VNS approach might be suitable as hyper-
heuristics allowing various neighbourhoods to be searched, 

which is the principle behind VNS. Our previous works on 
improving the SMD placement machine throughput can be 
found in [7],[8].  

The printed circuit board problem is easy to describe, 
but due to the NP [9] characteristics of the sub problems 
involved, it is practically impossible, for reasonably sized 
instances, to solve to optimality by exact approaches [10]. 
De Souza and Lijun [11] discussed that the complexity of 
concurrent machine operations also causes difficulties in 
formulating a realistic mathematical programming 
problem. In practice, heuristic algorithms (such as VNS, 
simulated annealing and tabu search) are used. These 
approaches can generate good solutions efficiently, at a 
reasonable computational cost, but without being able to 
guarantee either feasibility or optimality [12]. As such, the 
aim of this work is to develop an algorithm that is capable 
of generating reasonably good solutions in reasonable 
times for sequencing component pick-and-place 
operations.  

One motivating factor for our work comes from the 
fact that, as far as we are aware, none of these studies 
attempt to apply variable neighbourhood search or hyper-
heuristic approaches to optimise the SMD placement 
machine. 

2. Related Work 

Some studies which have examined the PCB assembly 
problem include Altinkemer et al. [2], Crama et al. [13], 
Grunow et al. [14], Ho and Ji [15].  

Since the arm and head of a multi-head SMD 
placement machine can move concurrently in both the X 
and Y axis, Altinkemer et al. [2] used the chebychev 
distance (i.e. they calculated the distance as the maximum 
of the movements in the X or Y direction). They formulate 
a problem for an SMD placement machine that has a 
rotating single head that can pick up many components 
and mount them on the board in a same sub tour. For the 
case of a moveable feeder carrier (i.e. the feeder of the 
component type that will be processed next, can move 
towards the tool magazine while the head is mounting 
another component type), the distance between the feeder 
locations and the points on the PCB can be measured from 
a fixed point next to the tool magazine. The simultaneous 
movement enables each component type to have the same 
origin and destination point, and thus allow the 
formulation to be an independent capacitated vehicle 
routing problem (VRP). Since the distance between a 
point on the PCB and feeder is not dependent on where the 
component is located among feeders, the feeder setup 
problem does not have to be integrated with the pick-and-
place sequencing decisions [2]. For the case of a stationary 
feeder carrier, they formulate the problem as a 
combination of assignment-like and vehicle-like problems. 
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They first solve a VRP for each component type at every 
possible feeder location, and then use this feasible solution 
as the cost of assigning the component type to the 
particular feeder location. They argue that their integrated 
algorithm provides a feasible solution with an error gap 
less than or equal to the maximum error gap of the VRP 
costs. 

Crama et al. [13] provides an exhaustive survey of 
some of the major optimisation problems arising in the 
area of production planning for the assembly of PCBs. By 
considering a long-term decision with the mixed demand 
and the fixed shop layout, they classified the production 
planning problems into eight sub problems: 
SP1: Assigning PCB types to product families and to 

machine groups; 
SP2: Allocating component feeders to machines; 
SP3: Partitioning component locations on the PCB, 

indicating which components are going to be 
placed by each machine (for each PCB type); 

SP4: Sequencing the PCB types (for each machine 
group); 

SP5: Assigning component feeders to slots on the feeder 
bank/carrier (for each machine); 

SP6: Sequencing the component pick-and-place 
operation (for each pair consisting of a machine 
and a PCB type); 

SP7: Component retrieving plan. That is the rule 
indicating from which feeder the component should 
be retrieved from (if feeder duplications are 
allowed); 

SP8: A motion control specification, indicating where 
the pick and place device should be located to 
pickup and place the component. 

Normally, the decision as to which of the SP1-SP8 sub 
problems to be solved, is based on which sub problem will 
minimise the assembly cycle time [13]. However, the 
dilemma is that all the sub problems are intertwined and 
the question arises as to which one should be solved first. 
As a consequence, some researchers tackled the problem 
in an iterative manner, instead of a one-pass procedure 
through each of the sub problems. The technological 
characteristics of the SMD placement machine can also 
influence the nature of the problem to be solved and the 
formulation of the associated models [13].  

Recently, Ho and Ji [15] employed a hybrid genetic 
algorithm (that was proposed in [16]) to simultaneously 
solve the component pick-and-place sequencing, feeder 
setup and component retrieval problem for turret-type 
SMD placement machines. The component retrieval 
problem is solved using a nearest neighbour heuristic 
which aims to minimise the movement of the feeder 
carrier. Results show that the approach is capable of 
producing a better solution when there are feeder 
duplications.  

3. The Assumptions and Objective Function 

The quality of a schedule can be evaluated by a placement 
time function, known as the assembly cycle time, CT. We 
model a pick-and-place multi-head placement machine 
that has a single head equipped with G nozzles/pipettes, 
fixed PCB (printed circuit board) table and stationary 
feeder carrier (same as in [5],[6],[7]). This models many 
real-world machines. 

The objective function is to minimise the assembly 
cycle time, CT, by minimising the travelling distance of 
the robot to perform pick and place operation: 

 
 
 
 

Where: 
I(j) : the time taken for the robot arm to travel 

from feeders to PCB points and place 
some components in the jth sub tour; 

P(j) : the time taken for the robot arm to travel 
from PCB points to feeders and pick 
some components in the jth sub tour; 

B : the total number of sub tours; 
 
The assembly cycle time, CT (equation 1) is a function 

of the time to pick-and-place all the available/required 
components onto a PCB. This objective function (equation 
1) could be applicable for various types of SMD 
placement machines such as a dual-delivery, sequential 
pick-and-place, multi-station and particularly the multi-
head. However, the calculation of P(j) and I(j) are machine 
dependent due to the machine specifications and 
operational methods. In this work, P(j) and I(j) is a 
summation of the robot travelling distance divided by the 
robot speed, plus component pickups and placements time, 
respectively. Since the robot (i.e. the arm and head of 
SMD placement machine) can move simultaneously in the 
X-Y axis, the robot travelling distance is dictated by the 
maximum of the X or Y travelling distance, i.e. a 
chebychev distance. 

In this work, we assume that the CT is only dictated by 
the robot travelling distance by ignoring other 
optimisation factors such as nozzle changes, component 
feeder transportation time, simultaneous (gang) pickup, 
tray feeder reloading time etc. These assumptions are 
made in order to abstract the problem such that we can 
model it as a multi-tour travelling salesman problem 
(which is known to NP-hard). However, as addressed by 
Kumar and Luo [17], the placement sequencing problem 
can be viewed as a “generalised Travelling Salesman 
Problem (TSP)” where not only the overall travel time 
depends on the travel sequence (as in the standard TSP), 
but the distances between any pair of nodes is sequence 
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dependent. We also assume that all components are 
aligned while the robot arm is moving (i.e. on the fly 
alignment).  

4. Variable Neighbourhood Search 

Variable neighbourhood search (VNS) is a relatively 
unexplored approach [18]. It was introduced by 
Mladenović & Hansen [19]. By systematically changing 
the neighbourhood within a local search algorithm, VNS 
can explore distant neighbourhoods of the current solution, 
and jump to a new solution if it is superior to the current 
solution [19]. The shaking procedure in the basic VNS 
approach provides a diversification factor in order to reach 
a distant neighbourhood whilst the local search will 
intensify the search to make it converge to local optima. 
The basic VNS algorithm is a descent heuristic but it can 
be transformed to a descent-ascent or a best improvement 
method [18].  

Recently, there has been increasing interest in the VNS 
approach. For example, Avanthay et al. [20], developed an 
adaptation of VNS to solve the graph coloring problem 
with a Tabucol (a variant of tabu search) algorithm (see 
[21]) as a local search. They used three neighbourhood 
structures; these being vertex, class, and non-increasing 
neighbourhoods. Their VNS however is not superior to the 
hybrid algorithm proposed by Galinier and Hao [22] that 
integrates a tabu search and a genetic algorithm. Fleszar 
and Hindi [23] applied a VNS approach in solving the 
resource-constrained project scheduling problem. Results 
show that the quality of solutions and lower bounds 
achieved by VNS with enhanced moves and precedence 
augmentation is impressive.  

5. Variable Neighbourhood Search for 
Component Pick-and-Place Sequencing 

In this work we develop two types of VNS approaches, 
these being basic VNS (VNS-1, VNS-2 and VNS-3) and a 
Variable Neighbourhood Monte Carlo Search (VNMS). 
The first one is based on basic VNS [18].[19] that operates 
on different local searches. The second type (i.e. VNMS) 
has three stages of neighbourhood structures where each 
stage operates on a different set of local searchers.  

Let nw, w=1,2…,W, be a set of predefined 
neighbourhood structures, and nw(x) is the set of solutions 
in the wth neighbourhood of x, f(x) is the quality of solution 
x. W is the total number of neighbourhood structures to be 
used in the search. 

In this work, we use three acceptance criteria, which 
are applied at the VNS level and/or the local search level. 
These being: 

1) Descent: Only accepts an improved solution. 

2) EMC (Exponential Monte Carlo): This accepts an 
improved solution and probabilistically accepts a 
worse solution. The probability of accepting a worse 
solution decreases as δ (where δ=f(x’)-f(x)) increases. 
The trial solution, x’, is accepted if a generated 
random number is less than e-δ. The f(x’) and f(x) are 
the qualities of the trial solution and the 
initial/incumbent solution, respectively  

3) EMCQ (Exponential Monte Carlo with counter): 
Similar to EMC, this accepts an improved solution. 
However it may also accept a worse solution with the 
probability of acceptance increasing as δ decreases 
and the counter of consecutive none improvement 
iteration, Q, increases. The probability is computed by 
e-θ/τ where θ=δ*t, τ=ρ(Q) and δ=f(x’)-f(x). 
Computation time, t, is measured as minute being the 
unit time (in our case). The trial solution, x’ is 
accepted if a generated random number is less than    
e-θ/τ. θ and τ are defined such that we ensure that the 
probability of accepting a worse solution decreases as 
the time increases and δ increases. The factor of time 
is included in this formulation as an intensification 
factor. At the beginning of the search, moderately 
worse solutions are more likely to be accepted but as 
the time increases, worse solutions are unlikely to be 
accepted. However, the probability of accepting a 
worse solution increases as the counter of consecutive 
none improvement iterations, Q, increases. This is a 
diversification factor. ρ(Q) is a function to 
intelligently control Q. In this work we use τ=v*Q 
where 0≤v≤1, in order to limit the acceptance 
probability. However, our preliminary experiment on 
the parameter sensitivity of v shows that the EMCQ 
algorithm with v=1 performs the best. Therefore, we 
set τ=Q. We originally proposed these acceptance 
criteria (EMC and EMCQ) in [6]. 

 
VNS-1 is absolutely a basic descent heuristic that 

operates with a random descent local search (RD-LS) by 
using descent acceptance criterion at the local search and 
VNS levels.  VNS-1 only accepts an improved solution 
returned by the RD-LS. We use a 2-opt operator in the 
local search. A local search heuristic explores a single 
neighbourhood solution space by performing a sequence 
of local changes to an initial solution, in order to improve 
the quality of a solution until a local optimum is found 
[23]. A neighbouring solution is produced by a move-
generation mechanism and will be selected depending on 
the pre-defined acceptance criteria. In VNS-1, the local 
search starts by generating a solution x’ from the wth 
neighbourhood of x (x’Єnw(x)). Starting from x’ as an 
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initial solution, the RD-LS sequentially visits at least 1P 
neighbours around the wth neighbourhood of x’. The RD-
LS accepts the first improving neighbour solution and 
moves to this solution. Then the search continues until the 
stopping condition is true. We use two stopping conditions 
in the local search. These being a number of visited 
neighbours and the solution’s quality. If the current 
neighbour solution is better than the best obtained solution 
by the RD-LS, then the search continues even after 
exceeding the limit of visited neighbours.  

VNS-2 itself is a descent heuristic but the EMC-LS 
local search is a descent-ascent heuristic. The EMC-LS 
also begins by generating a solution x’ from the wth 
neighbourhood of x (x’ЄNw(x)). Starting from x’ as an 
initial solution, EMC-LS sequentially visits P neighbours 
around the wth neighbourhood of x’. The search 
sequentially moves to the new accepted solution even 
though the new solution is worse  (depending on the EMC 
acceptance criterion).  The EMC-LS exits when it reaches 
the limit of visited neighbours (P). It returns the best 
obtained solution to the VNS heuristic. 

VNS-3 is also a basic VNS but it is a descent-ascent 
VNS with EMCQ acceptance criteria at VNS level that 
operates with an EMC-LS local searchers. Instead of 
simple descent heuristics, the VNS-3 transforms the 
descent VNS into a descent-ascent VNS. It applies the 
EMCQ acceptance criterion to probabilistically accept a 
worse solution returned by the local searches. VNS-3 uses 
the same EMC local search, EMC-LS as in (VNS-2). 

VNMS is a descent-ascent heuristic that accepts an 
improved solution but probabilistically accepts a worse 
solution based on the EMCQ acceptance criterion that 
operates at the higher level. VNMS has a three stages 
neighbourhood search, these being a steepest descent, 
EMC (Exponential Monte Carlo) and shaking.  The idea is 
to initially explore the best neighbour in each 
neighbourhood structure before applying a random 
element. The search direction changes, when the steepest 
descent local search that returns the best neighbour is 
unable to find an improved solution (by applying EMC 
local searchers). The shaking procedure is only applied 
after the EMC local search cannot find an improved 
solution. The novelty of the VNMS approach (in the 
context of VNS) is the concept of three stages of 
neighbourhood search, using an EMCQ acceptance 
criterion at the VNS level and the shaking procedure 
(which is only applied when the local searchers cannot 
find an improved solution). The VNMS algorithm is 
described in fig. 2. 

                                                           

1 ∑
−

=

=
1

1

G

e
eP  where G is the number of pipettes per 

head. 

The steepest descent neighbourhood search has D (six 
in this work) number of steepest descent local searches. 
Each steepest descent local search will explore a different 
neighbourhood structure and returns the best neighbour. 
The returned solution will be accepted based on the 
EMCQ acceptance criterion at the VNMS level. 

After exploring the steepest descent neighbourhood 
structures, VNMS will explore the EMC neighbourhood 

Step A: (Initialisation) 
(1) Select the set of neighbourhood structures nd, 

d=1,2…,D , ne, e=1,2…,E, nz, z=1,2…,Z that will be 
used in the search; find an incumbent solution x; 
choose a stopping condition; 

(2) Record the best obtained solution, xbest←x and f(xbest) 
← f(x);  

 
Step B: (Steepest Descent Neighbourhood Search) 

(1) Set d←1; 
(2) Do  

a). Exploration of neighbourhood. Find the best 
neighbour, x’ from the dth neighbourhood of 
x(x’Єnd(x)); 

b). Acceptance criteria (Move or not).  Apply the 
EMCQ acceptance criterion. If x’ is accepted, then 
x← x’. 

c).  If the new solution is better than the incumbent 
solution, continue the search with nd; otherwise, 
set d←d+1.  

d). If f(x’)<f(xbest) then xbest←x’ and f(xbest) ← f(x’); 
Until d=D or the stopping condition is met.  
 

Step C: (EMC Neighbourhood  search) 
(1) Set e←1; 
(2) Do  

a). Local search. Systematically generate a 
neighbour, x” from the eth neighbourhood of 
x(x”Єne(x)) using EMC local search. Return the 
best obtained solution x’; 

b). Apply the same acceptance criterion as in Step 
B(2b); 

c). If the new solution is better than the incumbent, 
continue the search with ne; otherwise, set 
e←e+1.  

d). If f( x’)<f(xbest) then xbest←x’ and f(xbest) ← f(x’); 
Until e=E or the stopping condition is met.  
 

Step D: (Shaking) 
(1) Randomly select neighbourhood structures nz,; 
(2) Do  

a). Generate a point x’ at random from the zth 
neighbourhood of x (x’Єnz(x)); 

b). Apply the same acceptance criterion as in Step 
B(2b); 

c). If f(x’)<f(xbest) then xbest←x’ and f(xbest) ← f(x’). If 
x’ is accepted, then goto step B;  

Until x’ is accepted or the stopping condition is met.  
Step E: (Termination) 

Goto Step B if stopping condition=false, otherwise terminate. 

Fig. 2. The VNMS algorithm for component placement sequencing of 
multi-head placement machine (minimisation problem). 
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structures at the EMC neighbourhood search stage. The 
EMC neighbourhood search is meant to divert the search 
direction by probabilistically accepting some worse 
solution. This stage has E (six in this work) number of 
EMC local searchers. These EMC local searchers are the 
same as the EMC local searches in VNS-2 and VNS-3. 
Indeed, the VNS-3 and the EMC neighbourhood search 
stage are the same. 

Finally, VNMS will apply the shaking stage if the 
steepest descent neighbourhood search and EMC 
neighbourhood search stages are unable to return an 
accepted solution. In this work, we use 3-opt operator in 
the shaking procedure. As the problem domain involves 
six sub-problems, then we apply 3-opt operator for each of 
the sub-problem. The three points that are randomly 
chosen to be swapped are selected from the same sub tour 
(for generating a neighbour of pickup’s pipette, pickup’s 
sequence, placement’s pipette and placement’s sequence) 
or a different sub tour (for generating a neighbour of sub 
tour or sub tour’s sequence).  

Each trial solution obtained by the shaking procedure 
will be evaluated based on the VNMS acceptance criterion. 
The shaking procedure is repeated until the obtained 
solution is accepted or the stopping condition is met. Once 
the obtained solution is accepted, VNMS will continue the 
search by repeating the whole procedure again starting 
from Step B in fig. 2, steepest descent neighbourhood 
search. 

The local searchers used in the VNMS are listed in 
table 1. Hc denotes the heuristic ID whilst the acceptance 
criteria determine how to accept the solution in the local 
search. 

As the problem domain requires six different swapping 
operations, we developed three sets of neighbourhood 
structures, having six swapping operations in each set to 
produce six different neighbourhood structures in each set. 
The three sets are based on the local searchers that are 
steepest descent (SD-LS), exponential monte carlo (EMC-
LS) and random 3-opt operator. The steepest descent 
neighbourhood search stage uses six local searchers, these 
being Hc={0,1,2,3,4,5}. The EMC neighbourhood search 
stage uses the next six local searchers that are 
Hc={6,7,8,9,10,11} whereas the other six local searchers 
(i.e. Hc={12,13,14,15,16,17}) that are actually just a 
simple 3-opt operators, are used in the shaking procedure. 

6. Hyper-heuristic 

As the differences among various SMD placement 
machine specifications and operational methods 
significantly influence the solution approaches, it is 
difficult to evaluate the performance of the VNMS against 
other approaches. As such, we have developed hyper-
heuristic approaches for comparison purposes. 

Table 1:  A list of local searches used in VNMS  

Hc Local search name 
Acceptance 
Criteria 

0 Swap placement sub-tour using SD-LS choose the best
1 Swap pickup nozzle using SD-LS choose the best
2 Swap pickup sequence using SD-LS choose the best
3 Swap placement nozzle using SD-LS choose the best
4 Swap placement sequence using SD-LS choose the best
5 Swap sub-tour’s sequencing order using SD-LS choose the best
6 Swap placement sub-tour using EMC-LS EMC 
7 Swap pickup nozzle using EMC-LS EMC 
8 Swap pickup sequence using EMC-LS EMC 
9 Swap placement nozzle using EMC-LS EMC 
10 Swap placement sequence using EMC-LS EMC 
11 Swap sub-tour’s sequencing order using EMC-LS EMC 
12 Swap placement sub-tour using random 3-opt None 
13 Swap pickup nozzle using random 3-opt None 
14 Swap pickup sequence using random 3-opt None 
15 Swap placement nozzle using random 3-opt None 
16 Swap placement sequence using random 3-opt None 

17
Swap sub-tour’s sequencing order using random 
3-opt None 

 
Hyper-heuristics are (meta-)heuristics that can operate 

over a set of (meta-) heuristics [3]. The hyper-heuristic 
framework manages a set of low level heuristics, which 
operates at a higher level of abstraction without having 
access to the problem domain-knowledge [3]. In this work, 
we have developed nine hyper-heuristic approaches. These 
hyper-heuristics operate on different sets of low-level 
heuristic and acceptance criteria:      
1) AM-sdEmc3opt (All Move that operates with SD-LS, 

EMC-LS and 3-opt LLH): Randomly selects LLH and 
accepts any solution returned by the LLH. There are 
eighteen LLHs (these are the same local searchers 
used in VNMS approach).  

2) OI-sdEmc3opt (Only Improving that operates with 
SD-LS, EMC-LS and 3-opt LLH): Randomly selects 
LLH and only accepts an improved solution returned 
by the LLH.  

3) OICF-sdEmc3opt (Only Improving Choice Function 
that operates with SD-LS, EMC-LS and 3-opt LLH): 
Select LLH based on historical performance (Cowling 
et al., 2001) and only accepts an improved solution 
returned by the LLH. 

4) Λ(hk)=max{α*f1(hk)+ β*f2(hj,hk)+ σ*f3(hk)} Where 

Λ(hk) is a function used by Cowling et al. [24] to 
choose a heuristic (which has the largest Λ(hk.)) to be 
applied at the next iteration. f1(hk) is the cumulative 
performance rate of heuristic hk, f2(hj,hk) is the 
cumulative performance rate of consecutive pairs of 
heuristics (heuristic hj followed by hk) and f3(hk) is the 
CPU time which has elapsed since heuristic hk was 
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last called. Details of the algorithm can be found in 
[24]. If the time taken by each LLH to make a swap is 
too short (approximate to zero milliseconds), then we 
set the duration as 1.  

5) AMCF-sdEmc3opt (All Move Choice Function that 
operates with SD-LS, EMC-LS and 3-opt LLH): Same 
as OICF-sdEmc3opt but in this case we accept all 
solutions returned by the LLH’s. 

6) EMCQ-sdEmc3opt (Exponential Monte Carlo with 
Counter that operates with SD-LS, EMC-LS and 3-opt 
LLH): Randomly selects LLH and accepts the 
returned solution based on the EMCQ acceptance 
criterion.  

7) AM-sd (All Move that operates with SD-LS LLH): 
Randomly selects LLH and accepts any solution 
returned by the LLH. There are only six steepest 
descent LLHs (that are the same steepest descent local 
searches used in VNMS). 

8) OI-2opt (Only Improving that operates with 2-opt 
LLH): Randomly selects LLH and only accepts an 
improved solution returned by the LLH. This is a 
simple descent heuristic. 

9) OICF-2opt (Only Improving Choice Function that 
operates with 2-opt LLH): Select LLH based on 
historical performance [24] and only accepts an 
improved solution returned by the LLH. This is a 
simple descent heuristic with a choice function. 

10) EMCQ-2opt (EMCQ that operates with 2-opt LLH): 
Randomly selects LLH and accepts the returned 
solution based on the EMCQ acceptance criterion.   

7. Computational Experiments 

An initial solution is obtained by applying either a 
randomised or an ordered constructive heuristic (i.e. the 
PCB points are consecutively scheduled based on a 
sequence of PCB points that are sorted starting with the 
minimum of maximum (X,Y) coordinate, then with the 
minimum (X,Y) when there is a duplication of maximum 
(X,Y)). In the experiment we modelled the multi-head 
placement machine that has a head equipped with 8 
pipettes/nozzles that can pick no more than 8 components 
in a sub tour. We further assume that the SMD placement 
machine can only pickup one component at a time (no 
simultaneous pickup) but the number of components that 
can be picked up in a sub tour is dependent on the number 
of pipettes/nozzles per head.  

To simulate the pick-place operation of the placement 
machine, we set the speed of the robot arm, V=10 unit 
distance/unit time, the pickup and placement time, λ = θ = 
0.5 unit time. For the purpose of generating the random 

placement points, we set the length (BL) and the width 
(BW) of the board, such that the random PCB points fall 
within the limits. In the experiment we use two datasets 
(dataset N80K20_A and N240K40_F). The specification 
of these datasets is shown in table 2. These datasets are 
randomly generated using our random PCB generator 
software called PCBgen. PCBgen allows the user to set the 
required N (sum of placement points), K (sum of 
component types), BW and BL.  

Table 2: Experimental datasets. 
Dataset N K BL BW 
N80K20_A 80 20 600 200 
N240K40_F 240 40 1800 600 

 
We ran the experiments using an Intel® Pentium®4 

PC with 1.8GHz speed and 256 MB RAM. In this work 
we set α=1.0, β=0.01 and σ=0.5 (for OICF and AMCF). 
The parameters values are chosen based on the results 
obtained from our preliminary tests on parameter 
sensitivity. Other approaches are not parameter sensitive. 
The parameter sensitivity’s test showed that the OICF and 
AMCF performance are very sensitive to their parameters 
and the best value for the parameters is subject to the 
problem size [6]. 

Table 3 shows the experimental results of the average 
of ten runs on datasets N80K20_A and N240K40_F with 
each run being given one hour of computation time as a 
termination criterion. An ANOVA test on the results of 
dataset N80K20_A and N240K40_F (one hour F 
runtimes) showed that the CT’s averages of all approaches 
tested in this section are statistically different (at the 99% 
confidence level with F-ratio=47.87 and 33.27, 
respectively). Therefore, by just looking at the CT’s 
averages, we can briefly estimate the effectiveness of the 
approaches (shown in table 4). Based on the results in 
table 4, we can observe that VNMS and AMCF-sdEmc3opt 
show the best performance on dataset N80K20_A and 
N240K40_F, respectively). Interestingly, VNMS and 
AMCF-sdEmc3opt have obtained the best performance of 
the two heuristics ranked in this experiment (on dataset 
N80K20_A and N240K40_F). However, based on an 
ANOVA test carried out on the results of EMCQ-2opt, 
AMCF-sdEmc3opt and VNMS (on the results of dataset 
N80K20_A for one hour runtimes) there is no significant 
difference in their performance (F-ratio=0.39 for α=0.01) 
even though they used different local searchers. 

Fig. 3 shows a box-and-whisker plot, which represents 
the results of ten runs (minimum, first quartile, median, 
third quartile and maximum values of CT) on dataset 
N80K20_A (one hour runtime). 
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Table 3: An average result of ten runs on each data set (test duration: 1 hour). 
Data set N80K20_A  

(CTo=1061.04) 

Data set N240K40_F 

(CTo=3238.90) Heuristic 

CTavg I(%) Dev CTmin CTavg I(%) Dev CTmin 
VNMS 257.04 75.77 2.49 252.86 2052.12 75.53 0.00 2052.12 
VNS-1 311.61 70.63 9.63 300.10 2590.57 69.11 82.64 2477.19 
VNS-2 298.65 71.85 10.18 286.40 2617.47 68.79 75.06 2482.07 
VNS-3 275.74 74.01 7.53 263.19 2592.18 69.09 63.18 2480.02 
AM-sdEmc3opt 272.58 74.31 4.78 264.10 2086.48 75.12 33.16 2045.16 
OI-sdEmc3opt 278.26 73.77 9.06 262.15 2063.53 75.39 29.93 2031.71 

AMCF-sdEmc3opt 258.63 75.62 6.28 251.85 2047.13 75.59 37.48 1970.74 
OICF-sdEmc3opt 273.97 74.18 6.36 264.96 2070.48 75.00 37.84 2026.71 
EMCQ-sdEmc3opt 274.47 74.13 9.48 259.00 2063.70 75.39 26.02 2007.75 
AM-sd 276.98 73.90 12.19 256.68 2053.88 75.51 22.63 2008.94 
EMCQ-2opt 258.77 75.61 4.98 252.14 2264.44 73.00 50.43 2213.25 
OICF-2opt 325.42 69.33 18.92 296.95 2781.95 66.83 512.33 2151.95 
OI-2opt 279.03 73.70 8.09 264.50 2369.73 71.74 75.24 2276.86 
Note:  

CTavg: Average assembly cycle time(unit time); CTmin : Minimum  assembly cycle time(unit time); 
Dev  : Standard deviation of CT; CTo : Initial CT; 
I : CT’s Improvement=(CTo-CTavg)*100/ CTo  

Table 4: A heuristic ranking based on CTavg  of ten runs starting with the most effective heuristic (smallest CTavg) (test duratio:one hour).       

 Dataset N80K20_A  Dataset N240K40_F 

  Heuristic rank CTavg  Heuristic rank CTavg 

1  VNMS 257.04  AMCF-sdEmc3opt 2047.13 
2  AMCF-sdEmc3opt 258.63  VNMS 2052.12 
3  EMCQ-2opt 258.77  AM-sd 2053.88 
4  AM-sdEmc3opt 272.58  OI-sdEmc3opt 2063.53 
5  OICF-sdEmc3opt 273.97  EMCQ-sdEmc3opt 2063.70 
6  EMCQ-sdEmc3opt 274.47  OICF-sdEmc3opt 2070.48 
7  VNS-3 275.74  AM-sdEmc3opt 2086.48 
8  AM-sd 276.98  EMCQ-2opt 2264.44 
9  OI-sdEmc3opt 278.26  OI-2opt 2369.73 
10  OI-2opt 279.03  VNS-1 2590.57 
11  VNS-2 298.65  VNS-3 2592.18 
12  VNS-1 311.61  VNS-2 2617.47 
13  OICF-2opt 325.42  OICF-2opt 2781.95 

 
By referring to fig. 3, we can observe that the VNMS 

slightly outperformed the other approaches with the 
smallest median and variation of the CT values. Fig. 3 also 
shows that the AMCF-sdEmc3opt and EMCQ-2opt have 
fairly equal performance; and the AM-sdEmc3opt, OICF-
sdEmc3opt, EMCQ-sdEmc3opt, VNS-3, AM-sd, OI-
sdEmc3opt and OI-2opt also have fairly equal 
performance. These results also show that our basic VNS 
approaches are not performing well compared to the other 
approaches across all the datasets tested in this work. This 
may due to the local searches used in the basic VNS and 
the basic VNS approaches itself. Generally, the quality of 

the obtained solution by basic VNS is dependent on the 
local search used (as argued by Hansen & Mladenović 
[19]). Unfortunately, the nature of our problem presents 
difficulties when applying other established local search 
such as tabu search and simulated annealing since this 
scheduling problem involves some interrelated sub 
problems, which should not be solved independently. 
There is also the issue of how far to solve each of the sub 
problems before solving the others and in which order 
should we solve the sub problem. Optimising one factor 
(sub problem) may increase the cost of another factor(s). 
However, we can conclude that the VNS may perform 
better by integrating an acceptance criterion at the VNS 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007 
 

 

192 

level. In addition, the strategy to initially explore the best 
neighbour in each neighbourhood structure before 
applying a random element and shaking procedures 
(which will only be applied after the previous local search 
group cannot find an improved solution) might be 
effective. The drawback is that the steepest descent local 
search is very time consuming. 

8. Conclusions 

A Variable Neighbourhood Search for solving the 
component pick-and-place sequencing of a multi-head 
SMD placement machine has been proposed. A basic 
version of a VNS, that is VNS-1, VNS-2 and VNS-3 have 
been presented. VNS-1 is a descent heuristic that operates 
with random descent local searchers. VNS-2 is also a 
descent heuristic but operates with EMC (Exponential 
Monte Carlo) local searchers. The EMC local search 
always accepts an improved solution and probabilistically 
accepts a worse solution depending on the degree of 
worsening (δ). The VNS-3 is a descent-ascent heuristic 
with EMCQ (Exponential Monte Carlo with counter) 
acceptance criterion that operates with EMC local 
searchers. Our experimental results show that the VNS-1, 
VNS-2 and VNS-3 do not perform well compared to some 
hyper-heuristics approaches presented in this work. 
However, VNS-3 is superior to VNS-1 and VNS-2, which 
might indicate that the use of an acceptance criterion at the 

local search and VNS level can guide the search in order 
to obtain better solutions.     

We further developed another Variable 
Neighbourhood Search with an Exponential Monte Carlo 
(VNMS) acceptance criterion. The VNMS is a descent-
ascent heuristic that operates on three sets of 
neighbourhood structures that are grouped together based 
on three different local search/operator approaches. Each 
group contains six neighbourhood structures. The first two 
sets use a steepest descent and EMC local search whilst 
the third set uses a random 3-opt operator. The solution 
returned by a local search, after exploring a 
neighbourhood structure, will be accepted based on the 
EMCQ acceptance criterion at the VNS level. The EMCQ 
acceptance criterion always accepts an improved solution. 
However, the probability of accepting a worse solution 
increases as δ decreases and the counter of consecutive 
none improvement iterations, Q, increases.  

Results show that the VNMS is capable of producing 
good quality and stable results (for smaller dataset) in 
solving the component pick-and-place sequence of multi-
head SMD placement machine. Therefore, the VNMS is 
more reliable compared to the hyper-heuristic approaches 
tested in this work. The proposed framework of VNMS 
might be suitable for solving other types of SMD 
placement machines or even other problem domains. 
However, the local searchers are problem specific, which 
often has to be the case. 

 

Fig. 3 A comparison of VNMS, VNS and hyper-heuristic approaches using box-and-whisker plot on the results 
of ten runs on dataset N80K20_A (test duration: 1 hour).  

Note: a= VNMS; b=AMCF-sdEmc3opt; c=EMCQ-2opt 
d=AM-sdEmc3opt; e=OICF-sdEmc3opt; f=EMCQ-sdEmc3opt; 
g=VNS-3; h=AM-sd; i=OI-sdEmc3opt; 
j=OI-2opt; k=VNS-2; l=VNS-1; 
m=OICF-2opt. 
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