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Summary 
Crystalline materials cubic structure identification is very 
important in crystallography and material science research. For a 
long time researchers in the field have used manual approach in 
matching the result data from X-Ray Diffraction (XRD) method 
with the known fingerprint. These manual matching processes 
are complicated and sometimes are tedious because the diffracted 
data are complex and may have more than one fingerprint inside. 
This paper proposes the use of support vector machines to 
enhance the performance of the matching process between the 
diffracted data of crystalline material and the fingerprints. It is 
demonstrated, through experiments, that support vector machines 
gives more accurate and reliable identification results compared 
to the use of neural network. 
Key words: 
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Cubic Structure Identification, Material Sciences, Artificial 
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1. Background 

Crystallography is one of the areas of research in physics 
that deals with the scientific study of crystals. It has 
always been one of the most challenging research fields 
since eighteenth century. The significant discovery of X-
ray by Röntgen in 1895 [8] had yielded to a new way of 
doing crystallography research. Since then X-ray 
diffraction method has been proposed and applied to many 
different sub-area of crystallography such as identification 
of crystalline phases, qualitative and quantitative analysis 
of mixtures and minor constituents, distinction between 
crystalline and amorphous states, side-chain packing of 
protein structures, identification of crystalline material, etc. 
The last area is the focus of this paper.  

X-ray diffraction data interpretation for most crystalline 
materials is a very complex and difficult task. This is due 
to the condition that different crystalline material may 
contain more than one cubic structures component type 
and after being diffracted using X-ray diffraction method, 

the diffracted data are complex. Hence, the data can be 
very ambiguous and is not easy to track and understand.  

Numerous artificial intelligence techniques and application 
have been applied and developed to solve the problems in 
various domains. In our previous work [5], an attempted 
has been made to use neural network to perform automatic 
cubic structure identification on the crystalline materials. 
Though it was a success, there’s still left room for 
improvement. This paper proposes the use of support 
vector machine (SVM) to enhance the performance of 
crystalline materials cubic structure identification. The 
result of using SVM is compared with the result using 
neural network.  

Support vector machines have been proven to be a 
powerful method to solve identification and classification 
problems. It includes gene identification [10], paraphrase 
identification [11], protein classification using X-ray 
crystallography [9], and many more. The main intent of 
this paper is to showcase the superior results on the use of 
support vector machine over neural network in crystalline 
materials cubic structure identification. 

2. Cubic Structure Identification using X-Ray 
Diffraction Data 

In principle, there are four cubic structures type for 
crystalline materials, the Simple Cubic (SC), Body 
Centered Cubic (BCC), Face Centered Cubic (FCC) and 
Diamond [1]. In our previous work [2], a formula has been 
proposed to calculate the fingerprints for these four cubic 
structures. The formula utilizes the Miller index (h,k,l) [6]. 
The proposed formula can be written as follows: 
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Since the wavelength of the incoming X-ray (λ) and lattice 
constant (a) are both constants, we can eliminate these 
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quantities from Eq. 1 and derive the ratio of two sin2θ as 
follows: 
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where θm and θn are the diffracting angles for two peak 
associated with the diffracting planes {hm,km,lm} and 
{hn,kn,ln} respectively for ratio Rm,n. 

 
The fingerprint for each crystalline material’s cubic 
structure is calculated by taking 10 peaks from the X-ray 
diffraction data and calculates the two peaks combinations 
from that 10 peaks. That is, each fingerprint is actually 
contains 45 values of the quadratic sinus ratio from Eq. 2 

since 
10
2C  equal to 45. Table 1, 2, 3 and 4 depict the 

fingerprint for Face Centered Cubic (FCC), Diamond, 
Body Centered Cubic (BCC) and Simple Cubic (SC) 
respectively. 

Table 1: Face Centered Cubic (FCC) Fingerprint 
R1,2  = 
0.750 

R2,3   = 
0.500 

R3,5  = 
0.666 

R4,8  = 
0.550 

R6,8  = 
0.800 

R1,3  = 
0.375 

R2,4   = 
0.364 

R3,6  = 
0.500 

R1,9  = 
0.458 

R6,9  = 
0.666 

R1,4  = 
0.273 

R2,5   = 
0.333 

R3,7  = 
0.421 

R1,10 = 
0.407 

R6,10 = 
0.593 

R1,5  = 
0.250 

R2,6   = 
0.250 

R3,8  = 
0.400 

R5,6  = 
0.750 

R7,8   = 
0.950 

R1,6  = 
0.187 

R2,7   = 
0.210 

R3,9  = 
0.333 

R5,7  = 
0.632 

R7,9   = 
0.792 

R1,7  = 
0.158 

R2,8   = 
0.200 

R3,10 = 
0.296 

R5,8  = 
0.600 

R7,10 = 
0.704 

R1,8  = 
0.150 

R2,9   = 
0.166 

R4,5   = 
0.916 

R5,9   = 
0.500 

R8,9  = 
0.833 

R1,9  = 
0.125 

R2,10 = 
0.148 

R4,6   = 
0.687 

R5,10 = 
0.444 

R8,10 = 
0.741 

R1,10 = 
0.111 

R3,4  = 
0.727 

R4,7   = 
0.579 

R6,7   = 
0.842 

R9,10 = 
0.888 

 

Table 2: Diamond Fingerprint 
R1,2    = 
0.375 

R2,3     = 
0.727 

R3,5    = 
0.579 

R4,8     = 
0.500 

R6,8     = 
0.750 

R1,3    = 
0.273 

R2,4     = 
0.500 

R3,6    = 
0.458 

R1,9     = 
0.457 

R6,9     = 
0.686 

R1,4    = 
0.187 

R2,5     = 
0.421 

R3,7    = 
0.407 

R1,10  = 
0.400 

R6,10   = 
0.600 

R1,5    = 
0.158 

R2,6     = 
0.333 

R3,8    = 
0.344 

R5,6    = 
0.792 

R7,8     = 
0.844 

R1,6    = 
0.125 

R2,7     = 
0.296 

R3,9    = 
0.314 

R5,7    = 
0.704 

R7,9     = 
0.771 

R1,7    = 
0.111 

R2,8     = 
0.250 

R3,10 = 
0.275 

R5,8    = 
0.594 

R7,10   = 
0.675 

R1,8    = 
0.094 

R2,9     = 
0.228 

R4,5    = 
0.842 

R5,9    = 
0.543 

R8,9      = 
0.914 

R1,9    = 
0.086 

R2,10  = 
0.200 

R4,6    = 
0.666 

R5,10  = 
0.457 

R8,10    = 
0.800 

R1,10 = 
0.075 

R3,4    = 
0.687 

R4,7    = 
0.593 

R6,7    = 
0.889 

R9,10    = 
0.875 

 
 

Table 3: Body Centered Cubic (BCC) Fingerprint 
R1,2    = 
0.500 

R2,3     = 
0.666 

R3,5    = 
0.600 

R1,8   = 
0.500 

R6,8    = 
0.750 

R1,3    = 
0.333 

R2,4     = 
0.500 

R3,6    = 
0.500 

R1,9   = 
0.444 

R6,9    = 
0.666 

R1,4    = 
0.250 

R2,5     = 
0.400 

R3,7    = 
0.428 

R1,10 = 
0.400 

R6,10  = 
0.600 

R1,5    = 
0.200 

R2,6     = 
0.333 

R3,8    = 
0.375 

R5,6   = 
0.833 

R7,8    = 
0.875 

R1,6    = 
0.166 

R2,7     = 
0.286 

R3,9    = 
0.333 

R5,7   = 
0.714 

R7,9    = 
0.777 

R1,7    = 
0.143 

R2,8     = 
0.250 

R3,10 = 
0.300 

R5,8   = 
0.625 

R7,10  = 
0.700 

R1,8    = 
0.125 

R2,9     = 
0.222 

R1,5    = 
0.800 

R5,9   = 
0.555 

R8,9     = 
0.888 

R1,9    = 
0.111 

R2,10  = 
0.200 

R1,6    = 
0.666 

R5,10 = 
0.500 

R8,10   = 
0.800 

R1,10 = 
0.100 

R3,4    = 
0.750 

R1,7    = 
0.571 

R6,7   = 
0.857 

R9,10   = 
0.900 

 

Table 4: Simple Cubic (SC) Fingerprint 
R1,2    = 
0.500 

R2,3     = 
0.666 

R3,5    = 
0.600 

R4,8   = 
0.444 

R6,8    = 
0.666 

R1,3    = 
0.333 

R2,4     = 
0.500 

R3,6    = 
0.500 

R1,9   = 
0.400 

R6,9     = 
0.600 

R1,4    = 
0.250 

R2,5     = 
0.400 

R3,7    = 
0.375 

R1,10 = 
0.364 

R6,10   = 
0.545 

R1,5    = 
0.200 

R2,6     = 
0.333 

R3,8    = 
0.333 

R5,6   = 
0.833 

R7,8     = 
0.888 

R1,6    = 
0.166 

R2,7     = 
0.250 

R3,9    = 
0.300 

R5,7   = 
0.625 

R7,9     = 
0.800 

R1,7    = 
0.125 

R2,8     = 
0.222 

R3,10  = 
0.273 

R5,8   = 
0.555 

R7,10   = 
0.727 

R1,8    = 
0.111 

R2,9     = 
0.200 

R4,5    = 
0.800 

R5,9   = 
0.500 

R8,9      = 
0.900 

R1,9    = 
0.100 

R2,10   = 
0.182 

R4,6    = 
0.666 

R5,10 = 
0.454 

R8,10    = 
0.818 

R1,10 = 
0.091 

R3,4     = 
0.750 

R4,7    = 
0.500 

R6,7   = 
0.750 

R9,10    = 
0.909 

 

3. Support Vector Machine 

Support Vector Machine (SVM) can be regarded as an 
excellent statistical learning performance and superior 
classification performance. Simply put, the support vector 
machine that we used in this paper can be summarized as 
follows: it divides two specified training samples which 
belong to two different categories through constructing an 
optimal separating hyperplane either in the original space 
or in the mapped higher dimensional space [4].  

The basic idea of constructing this optimal separating 
hyperplane is to guarantee maximum distance between 
each training sample and the separating hyperplane. The 
SVM algorithm and its learning procedure can be 
comprehended as follows: 

• If the data are linearly separable in input space, a binary 
classification task is taken into account. Let 

)1)}(,{( Niyx ii ≤≤  be a linearly separable set, where 
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}1,1{, −∈∈ i
d

i yRx  and iy are labels of categories. The 
general expression of the linear discrimination function 
in d-dimension space is defined as bxwxg +⋅=)( , and 
the corresponding equation of separating hyperplane 
is 0=+⋅ bxw where w is normal to the hyperplane, 
|b|/||w|| is the perpendicular distance from the hyperplane 
to the origin, and ||w|| is the Euclidean norm of w. 
Further normalize g(x) and let all the ix  meet |g(x)| ≥ 1 
will results to the samples which are closest to optimal 
separating hyperplane that meet |g(x)| = 1. Hence, the 
separating interval is equal to 2/||w|| and solving the 
optimal separating hyperplane itself is equivalent to 
minimizing ||w||. The objective function used for this is 
as follows: 

2

2
1)(min ww =Φ

 
           (3) 

subject to the constraints: 

Nibxwy ii ,...,1,1)( =≥+⋅                        (4) 

The constraints in Eq. 4 can be replaced by the 
Lagrange multipliers of the Lagrangian algorithm to 
further solved the constraints problem where 

∑=
i

iii xyw α  and ix  are the samples only appearing in 

the separating interval planes. These samples are called 
support vectors and its classification function is defined 
as follows: 

⎟
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⎜
⎝

⎛ +⋅= ∑
i

iii bxxyxf αsgn)(            (5) 

• If data are not linearly separable in the input space, 
simply use the following objective function: 

⎟
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Where, ξ is slack variable and C is a penalty factor. 
Simultaneously, through a non-linear transform )(⋅Φ , 
the input space is mapped into a higher dimensional 
space called feature space in which optimal separating 
hyperplane can be solved. In addition, the inner product 
calculation is changed into )()(),( jiji xxxxK Φ⋅Φ=  
where ),( ji xxK  kernel function is defined as inner 
product in Hilbert space. Thus the final classification 
function can be represented as follows: 

 ⎟
⎠

⎞
⎜
⎝

⎛ +⋅= ∑
i

iii bxxxKyxf ),(sgn)( α             (7) 

4. Experiments 

As mentioned earlier, the main intent of this paper is to 
showcase the superior results on the use of support vector 
machine over neural network in crystalline materials cubic 
structure identification. In our previous work [5], we had 
applied a back-propagation neural network to identify the 
cubic structure of three samples, Aluminium (Al), Silicon 
(Si), and a mixture of Al and Si. In this experiment, more 
samples are used in addition to that three samples such as 
Iron (Fe), Tungsten (W), Sodiumchloride (NaCl), and 
CopperZinc (CuZn). From the new samples, a mixture 
sample is also created from three samples Al, Si, and Fe to 
evaluate the performance of support vector machine in 
identifying a more complex pattern data. 

The experiments are carried out using the same 
equipments and environment settings as with our previous 
work which is using a Philips’ X-Ray device 
diffractometer control PW1710. The device was also using 
PW1729 series of X-Ray generator, anode Cu tube, and 
PCAPD (PW1877) software version 3 integrated with our 
proposed application installed. In the overall experiments, 
we use the same tube voltage and also the same tube 
current, i.e. 30kV and 20mA respectively. 

The SVMlight package [3] was used to construct the 
support vector machine (SVM) classifiers. For a given set 
of binary-labeled training examples, SVM maps the input 
space into a higher dimensional feature space and seeks a 
hyperplane in the feature space to separate the positive 
data instances from the negative ones. Different values for 
the γ and C parameters were tested to optimize the 
performance of SVM to identify the cubic structures from 
the presented crystalline material’s sample.  

Since the fingerprint training dataset was imbalanced, the 
cost factor was set to 5.8 for giving more weight to 
training errors on positive examples than errors on 
negative ones. In the end, after experimenting several 
different value for C and γ , we use γ  = 0.095 and C = 
0.55 as the SVM parameter in this experiment. While the 
rest of the parameters were set to their default values as 
specified in SVMlight package.  

As for the neural network, we kept the same setting from 
our previous work [5] for comparison wise. That is, the 
neural network was constructed with 8 nodes in the hidden 
layer, 5 in the first hidden layer and 3 in the second hidden 
layer. It uses standard iterative gradient algorithm for 
back-propagation training.  
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5. Analysis & Results 

After feeding all the samples into the X-Ray 
diffractometer, the resulted diffraction data for each 
sample and its ratio Rm,n values are shown on Table 5, 6, 7, 
8 and 9 for Iron (Fe), Tungsten (W), Sodiumchloride 
(NaCl), CopperZinc (CuZn), and the mixture of Al, Si, 
and Fe respectively. While the Rm,n ratio values for Al, Si 
and mixture of Al and Si are available at [5]. 

Table 5: The resulted Rm,n ratio values for the sample of Iron (Fe) 
R1,2    = 
0.500 

R1,5    = 
0.200 

R2,4    = 
0.500 

R3,4    = 
0.752 

R4,5    = 
0.799 

R1,3    = 
0.332 

R1,6    = 
0.166 

R2,5    = 
0.399 

R3,5    = 
0.601 

R4,6    = 
0.666 

R1,4    = 
0.250 

R2,3    = 
0.664 

R2,6    = 
0.333 

R3,6    = 
0.501 

R5,6    = 
0.833 

 

Table 6: The resulted Rm,n ratio values for the sample of Tungsten (W) 
R1,2  =  
0.500 

R2,3  =  
0.666 

R3,5  =  
0.600 

R4,8  =  
0.500 

R1,3   =  
0.333 

R2,4  =  
0.500 

R3,6  =  
0.500 

R5,6  =  
0.833 

R1,4   =  
0.250 

R2,5  =  
0.400 

R3,7  =  
0.428 

R5,7  =  
0.714 

R1,5  =  
0.200 

R2,6  =  
0.333 

R3,8  =  
0.375 

R5,8  =  
0.625 

R1,6  =  
0.166 

R2,7  =  
0.286 

R4,5  =  
0.800 

R6,7  =  
0.857 

R1,7  =  
0.143 

R2,8  =  
0.250 

R4,6  =  
0.666 

R6,8  =  
0.750 

R1,8  =  
0.125 

R3,4  =  
0.750 

R4,7  =  
0.571 

R7,8  =  
0.875 

 

Table 7: The resulted Rm,n ratio values for the sample of Sodiumchloride 
(NaCl) 

R1,2  = 
0.750 

R2,3  = 
0.500 

R3,5  = 
0.666 

R4,8  = 
0.550 

R6,8  = 
0.800 

R1,3   = 
0.375 

R2,4  = 
0.363 

R3,6  = 
0.500 

R4,9  = 
0.458 

R6,9  = 
0.666 

R1,4   = 
0.273 

R2,5  = 
0.333 

R3,7  = 
0.421 

R4,10 = 
0.407 

R6,10 = 
0.593 

R1,5  = 
0.250 

R2,6  = 
0.250 

R3,8  = 
0.400 

R5,6  = 
0.750 

R7,8  = 
0.950 

R1,6  = 
0.187 

R2,7  = 
0.210 

R3,9  = 
0.333 

R5,7  = 
0.632 

R7,9  = 
0.792 

R1,7  = 
0.158 

R2,8  = 
0.200 

R3,10 = 
0.296 

R5,8  = 
0.600 

R7,10 = 
0.704 

R1,8  = 
0.150 

R2,9  = 
0.166 

R4,5  = 
0.916 

R5,9  = 
0.500 

R8,9  = 
0.833 

R1,9  = 
0.125 

R2,10 = 
0.148 

R4,6  = 
0.687 

R5,10 = 
0.444 

R8,10 = 
0.741 

R1,10 = 
0.111 

R3,4  = 
0.727 

R4,7  = 
0.578 

R6,7  = 
0.842 

R9,10 = 
0.888 

 

 

 

 

Table 8: The resulted Rm,n ratio values for the sample of CopperZinc 
(CuZn) 

R1,2  = 
0.500 

R2,3  = 
0.667 

R3,5  = 
0.600 

R4,8  = 
0.444 

R6,8  = 
0.666 

R1,3   = 
0.333 

R2,4  = 
0.501 

R3,6  = 
0.500 

R4,9  = 
0.401 

R6,9  = 
0.601 

R1,4   = 
0.250 

R2,5  = 
0.401 

R3,7  = 
0.376 

R4,10 = 
0.363 

R6,10 = 
0.546 

R1,5  = 
0.200 

R2,6  = 
0.334 

R3,8  = 
0.333 

R5,6  = 
0.833 

R7,8  = 
0.887 

R1,6  = 
0.166 

R2,7  = 
0.251 

R3,9  = 
0.301 

R5,7  = 
0.626 

R7,9  = 
0.800 

R1,7  = 
0.125 

R2,8  = 
0.223 

R3,10 = 
0.273 

R5,8  = 
0.555 

R7,10 = 
0.726 

R1,8  = 
0.111 

R2,9  = 
0.201 

R4,5  = 
0.800 

R5,9  = 
0.501 

R8,9  = 
0.900 

R1,9  = 
0.100 

R2,10 = 
0.182 

R4,6  = 
0.666 

R5,10 = 
0.454 

R8,10 = 
0.817 

R1,10 = 
0.091 

R3,4  = 
0.750 

R4,7  = 
0.501 

R6,7  = 
0.751 

R9,10 = 
0.908 

 

Table 9: The resulted Rm,n ratio values for the mixture sample of 
Aluminium (Al), Silicon (Si), and Iron (Fe) 

R1,2  = 
0.551 

R2,3  = 
0.750 

R3,4  = 
0.898 

R4,5  = 
0.727 

R5,6  = 
0.758 

R1,3   = 
0.416 

R2,4  = 
0.679 

R3,5  = 
0.654 

R4,6  = 
0.553 

R5,7  = 
0.687 

R1,4   = 
0.375 

R2,5  = 
0.495 

R3,6  = 
0.500 

R4,7  = 
0.500 

R5,8  = 
0.579 

R1,5  = 
0.273 

R2,6  = 
0.375 

R3,7  = 
0.448 

R4,8  = 
0.421 

R5,9  = 
0.554 

R1,6  = 
0.207 

R2,7  = 
0.339 

R3,8  = 
0.378 

R4,9  = 
0.404 

R5,10 = 
0.509 

R1,7  = 
0.187 

R2,8  = 
0.286 

R3,9  = 
0.363 

R4,10 = 
0.371 

R5,11 = 
0.458 

R1,8  = 
0.158 

R2,9  = 
0.275 

R3,10 = 
0.333 

R4,11 = 
0.333 

R5,12 = 
0.407 

R1,9  = 
0.151 

R2,10 = 
0.250 

R3,11 = 
0.299 

R4,12 = 
0.296 

R5,13 = 
0.381 

R1,10 = 
0.139 

R2,11 = 
0.226 

R3,12 = 
0.266 

R4,13 = 
0.277 

R5,14 = 
0.343 

R1,11 = 
0.125 

R2,12 = 
0.201 

R3,13 = 
0.250 

R4,14 = 
0.250 

R5,15 = 
0.321 

R1,12 = 
0.111 

R2,13 = 
0.187 

R3,14 = 
0.224 

R4,15 = 
0.234 

R5,16 = 
0.313 

R1,13 = 
0.104 

R2,14 = 
0.169 

R3,15 = 
0.210 

R4,16 = 
0.228 

R5,17 = 
0.305 

R1,14 = 
0.093 

R2,15 = 
0.158 

R3,16 = 
0.205 

R4,17 = 
0.222 

R5,18 = 
0.275 

R1,15 = 
0.087 

R2,16 = 
0.155 

R3,17 = 
0.200 

R4,18 = 
0.200 

R5,19 = 
0.250 

R1,16 = 
0.085 

R2,17 = 
0.151 

R3,18 = 
0.179 

R4,19 = 
0.185 

R10,11 = 
0.897 

R1,17 = 
0.083 

R2,18 = 
0.135 

R3,19 = 
0.166 

R9,10 = 
0.914 

R10,12 = 
0.798 

R1,18 = 
0.075 

R2,19 = 
0.125 

R8,9  = 
0.960 

R9,11 = 
0.823 

R10,13 = 
0.750 

R1,19 = 
0.069 

R7,8  = 
0.842 

R8,10 = 
0.881 

R9,12 = 
0.732 

R10,14 = 
0.673 

R6,7  = 
0.904 

R7,9  = 
0.809 

R8,11 = 
0.792 

R9,13 = 
0.687 

R10,15 = 
0.630 

R6,8  = 
0.762 

R7,10 = 
0.742 

R8,12 = 
0.704 

R9,14 = 
0.617 

R10,16 = 
0.615 
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R6,9  = 
0.727 

R7,11 = 
0.666 

R8,13 = 
0.660 

R9,15 = 
0.579 

R10,17 = 
0.600 

R6,10 = 
0.666 

R7,12 = 
0.592 

R8,14 = 
0.593 

R9,16 = 
0.564 

R10,18 = 
0.538 

R6,11 = 
0.601 

R7,13 = 
0.556 

R8,15 = 
0.555 

R9,17 = 
0.550 

R10,19 = 
0.500 

R6,12 = 
0.536 

R7,14 = 
0.500 

R8,16 = 
0.542 

R9,18 = 
0.494 

 

R6,13 = 
0.500 

R7,15 = 
0.468 

R8,17 = 
0.529 

R9,19 = 
0.458 

 

R6,14 = 
0.452 

R7,16 = 
0.458 

R8,18 = 
0.475 

R15,16 = 
0.976 

 

R6,15 = 
0.421 

R7,17 = 
0.445 

R8,19 = 
0.440 

R15,17 = 
0.950 

 

R6,16 = 
0.413 

R7,18 = 
0.400 

R13,14 = 
0.899 

R15,18 = 
0.854 

 

R6,17 = 
0.400 

R7,19 = 
0.371 

R13,15 = 
0.842 

R15,19 = 
0.792 

 

R6,18 = 
0.364 

R12,13 = 
0.938 

R13,16 = 
0.821 

R16,17 = 
0.975 

 

R6,19 = 
0.335 

R12,14 = 
0.842 

R13,17 = 
0.800 

R16,18 = 
0.875 

 

R11,12 = 
0.888 

R12,15 = 
0.789 

R13,18 = 
0.719 

R16,19 = 
0.812 

 

R11,13 = 
0.834 

R12,16 = 
0.771 

R13,19 = 
0.666 

R17,18 = 
0.897 

 

R11,14 = 
0.750 

R12,17 = 
0.752 

R14,15 = 
0.936 

R17,19 = 
0.833 

 

R11,15 = 
0.702 

R12,18 = 
0.675 

R14,16 = 
0.914 

R18,19 = 
0.927 

 

R11,16 = 
0.686 

R12,19 = 
0.625 

R14,17 = 
0.891 

  

R11,17 = 
0.667 

 R14,18 = 
0.800 

  

R11,18 = 
0.600 

 R14,19 = 
0.742 

  

R11,19 = 
0.555 

    

 

Table 10: SVM and Neural Network Comparison Results 
SVM Neural Network  

Sample Name Type Accuracy Type Accuracy

FCC 91% FCC 86% 
Al + Si Diamond 92% Diamond 84%

FCC 90% FCC 78%

Diamond 82% Diamond 67%

 
 
Al + Si + Fe 

BCC 73% SC 51%

Al FCC 93% FCC 92%

Si Diamond 92% Diamond 91%

Fe BCC 89% BCC 78%

W BCC 91% BCC 89%

NaCl FCC 94% FCC 92%

CuZn SC 90% SC 87%

 

The last step is to pass the resulted data for each 
crystalline material sample into the trained SVM and 

neural network. Table 10 shows the comparison results of 
SVM and neural network. 

From result outlined on Table 10, we can clearly see that 
support vector machine (SVM) outperform neural network 
in terms of the accuracy of identifying the cubic structure 
type from each crystalline material sample. Both SVM and 
neural network successfully detect the correct cubic 
structure type for single component crystalline material, 
but neural network suffers and failed to detect the correct 
cubic structure type for multi component crystalline 
material especially the one with three cubic structure 
components inside. 

 In the experiment with the mixture sample of Aluminium 
(Al), Silicon (Si), and Iron (Fe), neural network identify 
that the sample contain three cubic structure component of 
FCC, Diamond and SC with accuracy rate of 78%, 67%, 
and 51% respectively. Since the cubic structure type of 
Iron (Fe) is BCC, the result given by neural network is 
wrong. While SVM gives more accurate result of FCC, 
Diamond and BCC with the accuracy rate of 90%, 82%, 
and 73% respectively. 

Neural network failure is probably due to the fact that the 
fingerprint structure of BCC and SC is almost the same 
and among the mixture sample component, Iron (Fe) is the 
crystalline material that has the smallest number of Rm,n 
ratio values. And after being mixed with the two other 
components, it makes its ratio pattern difficult to track.  

SVM results also outperform the neural network in the 
mixture of two component of Aluminium (Al) and Silicon 
(Si). Though both successfully detect the correct cubic 
structure types (FCC and diamond), but the accuracy of 
SVM is slightly higher, 91% and 92% respectively for 
FCC and diamond. As for single component crystalline 
material samples, both SVM and neural network gives 
equivalent results.  

6. Summary 

In this paper we propose the use of support vector 
machine to enhance the performance of cubic structures 
identification on multi component crystalline material. The 
complexity of multi component crystalline material Rm,n 
ratio needs a sophisticated and powerful methods to 
accurately classify its cubic structure type. And support 
vector machine which exhibits more excellent 
performances such as no local optimum problem, no over-
fit or under-fit problem, better convergence property, less 
training samples, higher correct identification rate, and 
higher reliability suits this job.  
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This work proves that the use of artificial intelligence 
techniques such as support vector machine and neural 
network towards crystalline materials cubic structure 
identification research to be very useful and can simplify 
and fasten up the work on crystallography research area. 
Our future research direction includes applying these 
artificial intelligence techniques to other problems in 
crystallography research area.  
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