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Summary 
In this study, a nonlinear blind channel equalization is 
implemented by using a Modified Fuzzy C-Means (MFCM) 
algorithm. The proposed MFCM searches the optimal channel 
output states of a nonlinear channel from the received symbols, 
based on the Bayesian likelihood fitness function instead of a 
conventional Euclidean distance measure. In its searching 
procedure, all of the possible desired channel states are 
constructed by the combinations of estimated channel output 
states. The desired state with the maximum Bayesian fitness is 
selected and placed at the center of a Radial Basis Function 
(RBF) equalizer to reconstruct transmitted symbols. In the 
simulations, binary signals are generated at random with 
Gaussian noise. The performance of the proposed method is 
compared with that of a hybrid genetic algorithm (GA augment 
by simulated annealing (SA), GASA). It is shown that a 
relatively high accuracy and fast search speed has been achieved. 
Key words: 
Nonlinear blind channel equalization, Modified Fuzzy C-Means, 
RBF equalizer, Channel output states 

1. Introduction 

In digital communication systems, data symbols are 
transmitted at regular intervals. Time dispersion caused by 
non-ideal channel frequency response characteristics, or by 
multipath transmission, may create inter-symbol 
interference (ISI). This has become a limiting factor in 
many communication environments. Furthermore, the 
nonlinear character of ISI that often arises in high speed 
communication channels degrades the performance of the 
overall communication system [1]. To overcome this 
detrimental ISI effects and to achieve high-speed and 
reliable communication, we have to resort ourselves to 
nonlinear channel equalization. 
 The conventional approach to linear or nonlinear 
channel equalization requires an initial training period, 
with a known data sequence, to learn the channel 
characteristics. In contrast to standard equalization 
methods, the so-called blind (or self-recovering) 
equalization methods operate without a training sequence 
[2]. Because of its superiority, the blind equalization 

method has gained practical interest during the last few 
years. Most of the studies carried out so far are focused on 
linear channel equalization [3]-[5]. 
 Only a few papers have dealt with nonlinear channel 
models. The blind estimation of Volterra kernels, which 
characterize nonlinear channels, was presented in [6], and 
a maximum likelihood (ML) method implemented via 
expectation-maximization (EM) was introduced in [7]. The 
Volterra approach suffers from enormous complexity. 
Furthermore the ML approach requires some prior 
knowledge of the nonlinear channel structure to estimate 
the channel parameters. The approaches with nonlinear 
structures such as multilayer perceptrons and piecewise 
linear networks, being trained to minimize some cost 
function, have been investigated in [8] and [9], 
respectively. However, in those methods, the structure and 
complexity of the nonlinear equalizer must be specified in 
advance. The support vector (SV) equalizer proposed by 
Santamaria et al. [10] can be a possible solution for both of 
linear and nonlinear blind channel equalization at the same 
time, but it still suffers from high computational cost of its 
iterative reweighted quadratic programming procedure. A 
unique approach to nonlinear channel blind equalization 
was offered by Lin et al. [11], in which they used the 
simplex GA method to estimate the optimal channel output 
states instead of estimating the channel parameters directly. 
The desired channel states were constructed from these 
estimated channel output states, and placed at the center of 
their RBF equalizer. With this method, the complex 
modeling of the nonlinear channel can be avoided. 
Recently this approach has been implemented with a 
hybrid genetic algorithm (that is genetic algorithm, GA 
merged with simulated annealing (SA); GASA) instead of 
the simplex GA. The resulting better performance in terms 
of speed and accuracy has been reported in [12]. However, 
for real-time use, the estimation accuracy and convergence 
speed in search of the optimal channel output states needs 
further improvement. 
 In this study, we propose a new modified Fuzzy 
C-Means (MFCM) algorithm to determine the optimal 
output states of a nonlinear channel. The FCM algorithm 
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introduced in [13] and being widely used in pattern 
recognition, system modeling, and data analysis relies on 
the use of some distance function. Typically, this distance 
is viewed as the Euclidean one. In the proposed 
modifications, the construction stage for the possible data 
set of desired channel states by the elements of estimated 
channel output states and the selection stage by the 
Bayesian likelihood fitness function are added to the 
conventional FCM algorithm. These two additional stages 
make it possible to search for the optimal output states of a 
nonlinear blind channel. The MFCM shows the relatively 
high estimation accuracy combined with fast convergence 
speed. Its performance is compared with the one using the 
GASA. In the experiments, two different nonlinear 
channels are evaluated. The optimal output states of each 
of nonlinear channels are estimated using both MFCM and 
GASA. Using the estimated channel output states, the 
desired channel states are derived and placed at the center 
of a RBF equalizer to reconstruct transmitted symbols. The 
RBF equalizer is an identical structure with the optimal 
Bayesian equalizer, and its important role is to place the 
optimal centers at the desired channel states [14].  
 The organization of this paper is as follows: Section 2 
includes a brief introduction to the equalization of 
nonlinear channel using a RBF network; section 3 shows 
the relation between the desired channel states and the 
channel output states. In section 4, MFCM with a 
Bayesian fitness function is introduced. The simulation 
results, including comparisons with GASA and the 
conclusion, are provided in sections 5 and 6, respectively.  

2. Equalization of Nonlinear Channel by a 
RBF Network 

 

 
 

Fig. 1 The structure of a nonlinear channel equalization system. 
 
A nonlinear channel equalization system is shown in Fig. 1. 
A digital sequence s(k) is transmitted through the nonlinear 
channel, which is composed of a linear portion described 
by H(z) and a nonlinear component  N(z), governed by 
the following expressions, 
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where p is the channel order and Di is the coefficient of the 
ith nonlinear term. The transmitted symbol sequence s(k) is 
assumed to be an equiprobable and independent binary 
sequence taking values from { }1± . We consider that the 
channel output is corrupted by an additive white Gaussian 
noise e(k). Given this the channel observation y(k) can be 
written as 
 

)()(ˆ)( kekyky +=  (3)

 
If q denotes the equalizer order (number of tap delay 
elements in the equalizer), then there exist 12 ++= qpM  
different input sequences 
 

)(ks = [ ])(,),1(),( qpksksks −−− L  (4)

 
that may be received (where each component is either 
equal to 1 or –1). For a specific channel order and 
equalizer order, the number of input patterns that influence 
the equalizer is equal to M, and the input vector of 
equalizer without noise is 
 

)(ˆ ky = [ ])(ˆ,),1(ˆ),(ˆ qkykyky −− L  (5)

 
The noise-free observation vector )(ˆ ky  is referred to as 
the desired channel states, and can be partitioned into two 
sets, 1

,
+
dqY  and 1

,
−
dqY , as shown in (6) and (7), depending on 

the value of s(k-d), where d is the desired time delay. 
 

1
,
+
dqY ={ )(ˆ ky | 1)( +=− dks } (6)

1
,
−
dqY ={ )(ˆ ky | 1)( −=− dks } (7)

 
The task of the equalizer is to recover the transmitted 
symbols s(k-d) based on the observation vector y(k). 
Because of the additive white Gaussian noise, the 
observation vector y(k) is a random process having 
conditional Gaussian density functions centered at each of 
the desired channel states, and determining the value of 
s(k-d) becomes a decision problem. Therefore, Bayes 
decision theory [15] can be applied to derive the optimal 
solution for the equalizer. The solution forming the 
optimal Bayesian equalizer is given as follows 
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where 1+

iy  and 1−
iy  are the desired channel states 

belonging to sets 1
,
+
dqY  and 1

,
−
dqY , respectively, and their 

numbers are denoted as 1+
sn  and 1−

sn , and 2
eσ  is the 

noise variance. The desired channel states, 1+
iy  and 1−

iy , 
are derived by considering their relationship with the 
channel output states (as it will be explained in the next 
section). In this study, the optimal Bayesian decision 
probability (8) is implemented with the use of a RBF 
network. The structure of this network is shown in Fig. 2 
[16], and its output is given as 
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where n is the number of hidden units, ci are the centers of 
the receptive fields, iρ  is the width of the ith units and iω  
is the corresponding weight. The RBF network is an ideal 
processing means to implement the optimal Bayesian 
equalizer when the nonlinear function φ  is chosen as the 
exponential function xex −=)(φ  and all of the widths are 
the same and equal to ρ , which is twice as large as the 
noise variance 2

eσ . For the case of equiprobable symbols, 
the RBF network can be simplified by setting half of the 
weights to 1 and the other half to -1. Thus the output of 
this RBF equalizer is same as the optimal Bayesian 
decision probability in (8). 
 

 
 

Fig. 2 The structure of a RBF network. 

3. Desired Channel States and Channel 
Output States  

 
The desired channel states, 1+

iy  and 1−
iy , are used as the 

centers of the hidden units in the RBF equalizer to 
reconstruct the transmitted symbols. If the channel order 
p=1 with 10.15.0)( −+= zzH , the equalizer order q is equal 
to 1, the time delay d is also set to 1, and the nonlinear 
portion is described by 0.0,05.0,1.0,1 4321 ==== DDDD  
(see Fig. 1), then the eight different channel states 
( 82 1 =++qp ) may be observed at the receiver in the 
noise-free case. Here the output of the equalizer should be 

)1(ˆ −ks , as shown in Table 1. From this table, it can be 
seen that the desired channel states [ ])1(ˆ),(ˆ −kyky  can be 
constructed from the elements of the dataset, called 
“channel output states”, { }4321 ,,, aaaa , where for this 
particular channel we have 

44375.1 ,53125.0 ,48125.0 ,89375.1 4321 −==−== aaaa . 
The length of dataset, n~ , is determined by the channel 
order, p, such as .42 1 =+p  In general, if q=1 and d=1, the 
desired channel states for 1

1,1
+Y  and 1

1,1
−Y  are (a1,a1), 

(a1,a2), (a3,a1), (a3,a2), and (a2,a3), (a2,a4), (a4,a3), (a4,a4), 
respectively. In the case of d=0, the channel states, (a1,a1), 
(a1,a2), (a2,a3), (a2,a4), belong to 1

1,1
+Y , and (a3,a1), (a3,a2), 

(a4,a3), (a4,a4) belong to 1
1,1
−Y . This relation is valid for the 

channel that has a one-to-one mapping between the 
channel inputs and outputs [11]. Thus the desired channel 
states can be derived from the channel output states if we 
assume p is known, and the main problem of blind 
equalization can be changed to focus on finding the 
optimal channel output states from the received patterns. 
 It is known that the Bayesian likelihood (BL), defined 
in (11), is maximized with the desired channel states 
derived from the optimal channel output states [17]. 
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received sequences. Therefore, the BL is utilized as the 
fitness function (FF) of the proposed algorithm to find the 
optimal channel output states after taking the logarithm, 
which is shown in equation (12). 
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Table 1: The relation between desired channel states and channel output states 
Nonlinear channel with 10.15.0)( −+= zzH , 0.0,05.0,1.0,1 4321 ==== DDDD , and d=1 

Transmitted symbols Desired channel states Output of 
equalizer 

)2( )1( )( −− ksksks  )1(ˆ           )(ˆ −kyky
By channel output 

states,{ }4321 ,,, aaaa )1(ˆ −ks  

1          1          1   89375.1    89375.1 ),( 11 aa   1  

1       1          1  −  1.89375  48125.0− ),( 21 aa   1  

1         1          1−  53125.0    89375.1 ),( 13 aa   1  

1       1          1 −−  53125.0  48125.0− ),( 23 aa   1  

1         1       1   −  48125.0−  53125.0 ),( 32 aa  1−  

1      1       1   −−  48125.0− 44375.1− ),( 42 aa  1−  

1         1       1 −−  44375.1−  53125.0 ),( 34 aa  1−  

1       1       1 −−−  44375.1− 44375.1− ),( 44 aa  1−  
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The optimal channel output states, which maximize the 
fitness function FF, cannot be obtained with the use of the 
conventional gradient-based methods, because the 
mathematical formulation between the channel output 
states and FF cannot be accomplished not knowing the 
channel structure [11]. For carrying out search of these 
optimal channel output states, a new modified version of 
FCM (MFCM) is developed, and its performance is 
compared with that of GASA introduced in [12]. 

4. A Modified Fuzzy C-Means Algorithm 
(MFCM) 

 
In comparison with the standard version of the FCM, the 
proposed modification of the clustering algorithm comes 
with two additional stages. One of them concerns the 
construction stage of possible data set of desired channel 
states with the derived elements of channel output states. 
The other is the selection stage for the optimal desired 
channel states among them based on the Bayesian 
likelihood fitness function. For the channel shown in Table 
1, the four elements of channel output states are required 
to construct the optimal desired channel states. If the 
candidates, { }4321 ,,, cccc , for the elements of optimal 
channel output states { }4321 ,,, aaaa , are extracted from the 
centers of a conventional FCM algorithm, twelve (4!/2) 
different possible data set of desired channel states can be 
constructed by completing matching between 

{ }4321 ,,, cccc and { }4321 ,,, aaaa . For the fast matching, the 
arrangements of { }4321 ,,, cccc  are saved to the set C such 
as C(1)=1,2,3,4, C(2)=1,2,4,3, …,C(12)=3,2,1,4 before the 
search process starts. For example, C(2)=1,2,4,3 means the 
desired channel states is constructed with c1 for a1, c2 for 
a2, c4 for a3, and c3 for a4 in Table 1. At a next stage, a data 
set of desired channel states, which has a maximum 
Bayesian fitness value as described by (12), is selected. 
This data set is utilized as a center set used in the FCM 
algorithm. Subsequently the partition matrix U is updated 
and a new center set is sequentially derived with the use of 
this updated matrix U. The new four candidates for the 
elements of optimal output states are extracted from this 
new center set based on the relation presented in Table 1 
(The eight centers in the new center set are treated as the 
desired channel states constructed by the elements of 
channel output states shown in Table 1. Thus each value of 
the new { }4321 ,,, cccc  is replaced with it of the 

{ }4321 ,,, aaaa  in the new center set, respectively). These 
steps are repeated until the Bayesian likelihood fitness 
function has not been changed or the maximum number of 
iteration has been reached. The proposed MFCM 
algorithm can be concisely described in the form of its 
pseudo-code, and Fig. 3 contains its flowchart. 
 
begin 

save arrangements of candidates,{ }4321 ,,, cccc , to C 
randomly initialize the candidates,{ }4321 ,,, cccc  
while (new fitness function–old fitness function) <Threshold 

   for k=1 to C size 
map the arrangement of candidates, C[k] ,  

to { }4321 ,,, aaaa  
construct a set of desired channel states 

                    based on the relation shown in Table 1 
calculate its fitness function (FF[k]) by equation (12) 
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end 
   find a data set which has a maximum FF in k=1..C 

update the membership matrix U by the data set utilized as   
a center set in the conventional FCM algorithm 

   derive a new center set by the U 
extract the candidates,{ }4321 ,,, cccc , from the new center  

set based on the relation shown in Table 1 
end 

end 
 
 

 
 

Fig. 3 The flowchart for MFCM. 
 
 In the search process carried out by the MFCM, a data 
set for the desired channel states which exhibits a 
maximum fitness value is always selected, and the 
candidates { }4321 ,,, cccc  for the elements of channel 
output states are extracted from the data set by using the 
pre-established relation in Table 1. This means that the set 
of desired channel states produced by MFCM is always 
close to the optimal set and it has the same structure as 
shown in Table 1. Thus the centers of the first half in its 
output present the desired channel states for 1

1,1
+Y  and the 

rest present for 1
1,1
−Y , or reversely. In addition, in the 

pseudo-code, the MFCM checks all of the possible 
arrangements, C, to find the data set which has a 
maximum FF in while-loop. However, for the fast 
searching of the MFCM, it is not necessary to keep this 
work during the entire procedure. The derived new center 
set in the end of while-loop is treated as a data set for the 
desired channel states presented in Table 1 and each value 
of the new { }4321 ,,, cccc  for next loop is replaced with 
each of the { }4321 ,,, aaaa  in the new center set, 
respectively (the new c1 is replaced with a1, the c2 with a2, 
the c3 with a3, and the c4 with a4). It means the new 
candidates, { }4321 ,,, cccc , are always updated by using the 
arrangement C(1). Therefore, after the first couple of 
while-loops, the desired channel states constructed with 
the arrangement C(1) always has the maximum FF and the 
selected index k in the pseudo-code is quickly going to “1”. 
This effect will be clearly shown in our experiments. 

5. Experimental studies and performance 
assessments 

 
To present the effectiveness of the proposed method, we 
consider blind equalization realized with GASA and 
MFCM. Two nonlinear channels in [11] and [18] are 
discussed. Channel 1 is shown in Table 1 while channel 2 
is described as follows.  
 
Channel 2: 

21 3482.08704.03482.0)( −− ++= zzzH ,
0.0,0.0,2.0,1 4321 ==== DDDD , and d=1 

 
In channel 2, the channel order p, the equalizer order q, 
and the time delay d are 2, 1, 1, respectively. Thus the 
output of the equalizer should be )1(ˆ −ks , and the sixteen 
desired channel states ( 162 1 =++qp ) composed of the eight 
channel output states (

8321
1 ,,,,  ,82 aaaap L=+ ) may be 

observed at the receiver in the noise-free case. Those are 
shown in Table 2. The coefficients of channel 2 are 
symmetric, which means this channel has a linear phase 
characteristic. In this case, the number of observed channel 
output states becomes six instead of eight because a2 and 
a5, and a4 and a7  always have same values, 1.0219 and 
-0.7189 for this channel, respectively. However, in our 
simulations, each of all eight channel output 
states,

8321 ,,,, aaaa L , are searched and evaluated for 
more general cases. The parameters of the optimization 
environments for each of the algorithms are included in 
Table 3, and these are fixed for all experiments. The 
choice of these specific parameter values is not critical to 
the performance of GASA and MFCM. The fitness 
function described by (12) is utilized in both algorithms. 
 In the experiments, 10 independent simulations for 
each of two channels with five different noise levels 
(SNR=5,10,15,20 and 25db) are performed with 1,000 
randomly generated transmitted symbols and the results 
are averaged. The MFCM and GASA have been 
implemented in a batch mode in facilitate comparative 
analysis. With this regard, we determine the normalized 
root mean squared errors (NRMSE)  

 

NRMSE= ∑
=

−
m

m 1

2ˆ11
i

iaa
a

 (13)

 
where a is the dataset of optimal channel output states, 

iâ  
is the dataset of estimated channel output states, and m is 
the number of experiments performed (m=10).  
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Table 2: The desired channel states and channel output states in channel 2 
Nonlinear channel with 
 21 3482.08704.03482.0)( −− ++= zzzH , 0.0,0.0,2.0,1 4321 ==== DDDD , and d=1 

Transmitted symbols Desired channel states Output of 
equalizer 

)3()2()1()( −−− ks ks ks ks  )1(ˆ           )(ˆ −kyky  
By channel 

output states, 
{ }821 aaa ,,, L

)1(ˆ −ks  

1111                                     2.0578   2.0578 ),( 11 aa   1  

1111  -                                  2.0578   1.0219 ),( 21 aa   1  

1111            -                       1.0219  -0.1679 ),( 32 aa   1  

1111 -           -                      1.0219  -0.7189 ),( 42 aa   1  

1111                                  -  1.0219   2.0578 ),( 15 aa   1  

1111  -                               -  1.0219   1.0219 ),( 25 aa   1  

1111             -                    -  0.1801  -0.1679 ),( 36 aa   1  

1111  -          -                    -  0.1801  -0.7189 ),( 46 aa   1  

1111                       -            -0.1679  1.0219 ),( 53 aa  1−  

1111  -                     -            -0.1679  0.1801 ),( 63 aa  1−  

1111            -         -             -0.7189  -0.7189 ),( 74 aa  1−  

1111 -           -        -             -0.7189  -1.0758 ),( 84 aa  1−  

1111                      -           -  -0.7189   1.0219 ),( 57 aa  1−  

1111  -                    -          -  -0.7189  0.1801 ),( 67 aa  1−  

1111             -         -          -  -1.0758  -0.7189 ),( 78 aa  1−  

1111  -          -         -          -  -1.0758  -1.0758 ),( 88 aa  1−  
 
 
 

Table 3: Parameters of the optimization environments 
Population size 50 
Maximum number of generation 100 
Crossover rate 0.8 
Mutation rate 0.1 
Random initial temperature [0, 1] 

GASA 

Cooling rate 0.99 
Maximum number of iteration 100 
Minimum amount of improvement 10-5 
Exponent for the matrix U 2 

MFCM 
 

Random initial output states [-1 1] 
 
 As shown in Fig. 4, the proposed MFCM comes with 
the lower NRMSE for both channels even the differences 
are not significant when dealing with the high order 
channel such as channel 2. Each sample of 1,000 received 
symbols under 5db SNR for both channels and their 
desired channel states constructed from the estimated 

channel output states by MFCM and GASA is shown in 
Fig. 5. In addition, we compared the search time of the 
algorithms. As mentioned in the end of Section 4, for the 
fast convergence speed of MFCM, it is not necessary to 
construct all of the possible data set of desired channel 
states in while-loop during the entire searching procedure, 
because the new candidates { }4321 ,,, cccc  for next loop are 
always updated by using the matching arrangement C(1). 
The selected index k for the maximum FF is not changed 
after the first couple while-loops, and it is quickly going to 
“1”. Each sample of variations of index k and the fitness 
function during the searching procedure for channel 1 and 
2 is shown in Fig. 6. Thus the for-loop in the pseudo-code 
of MFCM, which is the construction stadge of MFCM, is 
skipped if the index k has not changed during the last 5 
epochs in our experiments. The search times for MFCM 
and GASA are included in Table 4; Notably, the proposed 
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MFCM offers much higher search speed for both channels 
and this could be attributed to its simple structure. Finally, 
we investigated the bit error rates (BER) when using the 
RBF equalizer; refer to Table 5. It becomes apparent that 
the BER with the estimated channel output states realized 
by the MFCM is almost same as the one with the optimal 
output states for both channels. 
 

 
(a) channel 1                    (b) channel 2 

 
Fig. 4 NRMSE for the MFCM and GASA. 

 

 
(a) channel 1 

 
(b) channel 2 

 
Fig. 5 Each sample of received symbols for both channels and their 

desired channel states produced by MFCM and GASA. 
 

     
(a) channel 1: index variation(left) and its fitness function(right) 

     
(b) channel 2: index variation(left) and its fitness function(right) 

 
Fig. 6 Each sample of variations of index k during the searching 

procedure in MFCM. 

 
Table 4: The averaged search time( in sec) for MFCM and GASA 

(Simulation environment : Pentium4 2.6Ghz, 512M 
Memory, code written in Matlab 6.5) 

Channel    SNR GASA MFCM 
5db 70.1922 0.3188 
10db 68.8266 0.2984 
15db 68.6516 0.2781 
20db 69.0344 0.3469 

Channel 1 

25db 69.2734 0.3812 
5db 205.0953 14.6094 
10db 200.5969 11.2969 
15db 200.8891 11.9375 
20db 203.2812 12.4188 

Channel 2 
 

25db 189.3297 13.2281 
 

Table 5: Averaged BER(no. of errors/no. of transmitted symbols). 

Channel    SNR 
with 
optimal 
states 

GASA MFCM 

5db 0.0799 0.0822 0.0810 
10db 0.0128 0.0128 0.0127 
15db 0 0.0001 0.0001 
20db 0 0 0 

Channel 1 

25db 0 0 0 
5db 0.1161 0.1172 0.1186 
10db 0.0481 0.0493 0.0489 
15db 0.0106 0.0106 0.0106 
20db 0.0013 0.0013 0.0013 

Channel 2 
 

25db 0.0007 0.0007 0.0007 

6. Conclusion 

 
In this paper, we have introduced a new modified fuzzy 
c-means clustering algorithm for nonlinear blind channel 
equalization. In this approach, the highly demanding 
modeling of an unknown nonlinear channel becomes 
unnecessary as the construction of the desired channel 
states is accomplished directly on a basis of the estimated 
channel output states. It has been shown that the proposed 
MFCM with the Bayesian likelihood treated as the fitness 
function offers better performance in comparison to the 
solution provided by the GASA approach. In particular, 
MFCM successively estimates the channel output states 
with relatively high speed and substantial accuracy. 
Therefore an RBF equalizer, based on MFCM, can 
constitute a viable solution for various problems of 
nonlinear blind channel equalization. Our future research 
pursuits are oriented towards the use of the MFCM under 
more complex optimization environments, such as those 
encountered when dealing with channels of high 
dimensionality and equalizers of higher order. Additionally, 
the way to speed up for the searching procedure of MFCM 
should be considered.  
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