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Summary 
A skeleton is a useful shape descriptor that encodes both 
boundary and region information for a given object. A widely 
used approach for skeletonization is to use a distance transform. 
Although many skeletonization algorithms have been developed, 
most methods involve the computation of high order derivatives 
and the evaluation of complex expressions. In this paper, we 
propose an algorithm that rapidly constructs a coarse graph 
representation of skeletons without involving the computation of 
complex high order derivatives. Thus, our method can be used to 
quickly produce the skeleton prototype of a given image. We 
also show that smooth skeletons in continuous space can be 
obtained from the coarse graph using the snake model. Since our 
method processes a given image as a whole, the presence of 
multiple objects in an image is automatically detected and the 
skeletons of those objects are computed simultaneously. 
Key words: 
Skeletonization, distance map, ridge point detection.  

1. Introduction 

Given an object in an image, each point in the object is 
assigned a value equal to its distance to the nearest 
boundary of the object. This process of computing the 
Euclidean distance transform produces a distance map 
whose ridges projected back onto the image plane 
generates skeleton-like structures [3]. For a grayscale 
image, a distance transform cannot be performed directly, 
since the object boundary locations are not known. For 
some types of images, however, ridges of the intensity 
landscape tend to be at the center of anisotropic grayscale 
objects. Thus, ridges of a distance map or an intensity 
landscape are useful skeleton-like descriptors of a shape 
[4][6][8].  
 
In an effort to obtain useful shape descriptors, many ridge 
detection algorithms have been proposed. For example, a 
direct simulation of Blum's grassfire analogy to skeletons 
was implemented using active contour models on the 
distance map of a shape [12]. Many skeleton-like shape 
descriptors have also been proposed, including cores [16], 
level sets [6][13], and shocks [11][19]. These methods 
usually involve the computation of curvature or high order 
derivatives. Several ridgeness measures based on 
curvature have recently been compared in [14][15].  
 

 
Some of the methods previously discussed usually require 
explicit information about the critical points on the objects, 
for example, in [12], the positive curvature extrema on the 
object must be known to initialize and anchor a snake 
around the object, while others usually involve the 
computation of high order derivatives and evaluation of 
complex expressions [4][7][11][16].  
 
In this paper, we propose an efficient skeletonization 
method that does not involve the computation of high 
order derivatives or the evaluation of complex expressions. 
This is achieved by not trying to compute exact locations 
of ridges in continuous space. Instead, our method rapidly 
constructs a coarse graph representation of skeletons, i.e., 
coarse in the sense that they are constructed in the discrete 
image space. Thus, our method can be used to quickly 
produce the skeleton prototypes of a given image. When 
needed, however, smooth skeletons in continuous space 
can be obtained by deforming the coarse graph on the 
distance map as in [12], but in a very different way, as we 
discuss later. Finally, the processing unit of our method is 
the entire image, not the individual objects contained in it. 
As result, the presence of multiple objects in an image is 
automatically detected and the skeletons of these objects 
computed simultaneously. Although we present it only in 
the context of distance maps, it should be noted that our 
method applies equally well to intensity profile maps of 
grayscale images filtered in scale space as demonstrated in 
the experimental results. 

2. Ridge Point Detection 

We first develop a gradient-based ridge detection 
algorithm, assuming that the distance map is continuously 
differentiable. However, ridges can be described formally 
as singularities of the distance function [21]. That is, a 
ridge corresponds to where the gradient discontinuity 
occurs on the distance map. Thus, the assumption of a 
continuously differentiable distance map is not acceptable 
for a ridge detection algorithm. Later in this section, we 
will extend the algorithm to drop the assumption. 
 
The idea behind our ridge detection algorithm is based on 
the well-known fact that the gradient at any point on a 
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distance map generally points towards the ridge and 
reverses its direction as it crosses the ridge [2][13][15]. In 
other words, for a point to be on a ridge, it must be a local 
maximum on some direction, i.e., on a line passing 
through the point bearing that direction. Consider a line 
with arbitrary orientation passing through a point of a 
distance map. If the point is a local maximum in the 
direction of the line, the distance values of the point's two 
opposite neighboring points must be less than that of the 
point, and the directions of the two opposite neighbors' 
gradient vectors projected onto the line must be opposite, 
pointing to the given point. In short, the given point 
generates a sign barrier between the two opposite 
neighbors on the line, if it is on a ridge of a distance map. 
 
The problem is then how many orientations of a projection 
line should be examined to determine whether or not a 
sign barrier exists at a point on the distance map. It has 
been reported that examining the four orientations of 0, 45, 
90, and 135 degrees identifies all the ridge points 
[9][17][18]. To determine the minimum number of 
orientations, we need to understand when a particular 
orientation of the line succeeds or fails to detect certain 
ridges. 
 
There are two ways that a ridge interacts with a projection 
line: a ridge either intersects or does not intersect the line 
[2]. When a ridge intersects the projection line, it 
generates a sign barrier between the two points on the line 
enclosing the ridge. In other words, a ridge is guaranteed 
to be detected by the sign barrier on the projection line if it 
intersects the line. In contrast, if a ridge is nearly parallel 
to the projection line and does not cross it, the ridge does 
not produce a sign barrier on the line. Another projection 
line with an orientation substantially different from the 
orientation of the ridge (or, equivalently, from the that of 
the first projection line) will detect such a ridge, since the 
ridge parallel to the first projection line will appear 
perpendicular to the second line and cross it at some point, 
generating a sign barrier on it. For the projection lines to 
have sufficiently different orientations, two orthogonal 
lines would be the best choice [2]. All this is illustrated in 
Fig. 1. A simple H-shaped object and its distance map are 
shown in Fig. 1(a) and (b). Fig. 1(c) and (d) illustrate the 
sign barriers on projection lines parallel to the x and y-axis, 
respectively. Note that the horizontal ridge in the middle 
of the shape is not present in Fig. 1(c), since the ridge is 
parallel to the projection line and does not cross it. As 
expected, however, the horizontal ridge is detected on the 
other orthogonal projection line, as can be seen in Fig. 
1(d). Similarly, two vertical ridges of the shape are not 
detected in Fig. 1(d), but are present in Fig. 1(c). Together, 
the two projection lines reveal all the ridges present in the 
shape. 

 
The discussion above indicates that examining two 
orthogonal projection lines for a sign barrier at a point on 
a distance map suffices to determine whether the point is 
located on a ridge, suggesting a simple scanline algorithm 
for ridge point detection (hereafter, we will refer to a 
projection line as a scanline). 
 

  

(a) (b) 
  

(c) (d) 

Fig. 1. Distance map and sign barriers: (a) Simple H shaped object, (b) 
Distance map of the shape, (c) and (d) Sign barriers on the scanlines 

parallel to x and y-axis, respectively 

If we travel left to right (or top to bottom) along a scanline 
on a distance map, we will encounter various regions. For 
example, when we reach a feature point, probably after 
moving across some background points, we will encounter 
an uphill region and the projected gradient vector will 
change its direction from direction-less (i.e., zero vector 
over the background) to a positive direction (i.e., uphill). 
If we keep moving along the line and cross a ridge, the 
projected gradient vector will reverse its direction from 
positive to negative, and so on. Some of these sign 
changes we encounter on the scanline are indications of 
ridge existence while others are not. The complexity of 
sign change patterns on the line, of course, will vary 
depending on the topology of the distance map. However, 
there are only a small number of basic patterns of which 
the complex patterns on scanlines are composed. To 
identify the sign changes that indicate the existence of a 
ridge, we start with simple cases, i.e., the sign change 
pattern between two neighboring points on a scanline. 
There are only six possible patterns: +−, −+, +o, o+, o−, 
and −o, where + represents a vector with positive direction 
on a scanline, − with negative direction, and o a zero 
vector. In addition, [s…] below indicates one or more 
occurrences of sign s. 
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Pattern +− is the most obvious indication of ridge 
existence. As discussed before, when a ridge intersects a 
scanline, it produces a sign barrier between two 
neighboring points that enclose the ridge, generating +−. If 
the ridge crosses the scanline at an integer coordinate 
point, the pattern should be extended to 3 neighboring 
points, generating the pattern +o−. Therefore, patterns +− 
and +o− are strong indications of ridge existence. 
 
On the other hand, pattern −+ is the most obvious 
indication of a valley. It can only occur in one of the two 
ways. If two ridges exist in such a way that they enclose 
two neighboring points, forming a valley between them, 
pattern −+ occurs at the given points. Since we are only 
interested in ridges, this case is ignored. Another way this 
pattern can occur is when two tapering subshapes (e.g., 
shapes such as wedges, flares, or cups defined in [1]) meet 
at their closing ends forming a concave boundary in such a 
way that the ridge of the shape is roughly aligned with the 
given scanline. In this case, however, the ridge will appear 
as the pattern +− on the other orthogonal scanline and thus, 
can also be ignored here, since it is handled by the other 
scanline. Therefore, in both cases, the pattern −+ is not an 
indication of ridge existence. 
 
Pattern +o can also occur in two places: at the aliased edge 
of a shape due to rasterization and at the beginning of a 
plateau on a given distance map. The pattern occurring at 
an aliased edge should not be considered as an indication 
of ridge existence, since, if we do, a spurious skeleton 
branch would be triggered for each jag on the aliased edge. 
On the other hand, this pattern occurring on a real plateau 
must be considered as an indication of a ridge. Note that, 
when it occurs on a real plateau, it must always occur in 
pairs with such patterns as +o, o−, +−, or +o− on the other 
scanline. Therefore, in both cases, pattern +o is considered 
as a weak indication of ridge existence. However, when it 
is coupled with other patterns such as +o, o−, +−, or +o− 
on the other scanline, this pattern is promoted to being a 
good indication of ridge existence. Pattern o− is similar to 
pattern +o and treated the same. 
 
If pattern o+ is the first sign change detected on a scanline, 
this pattern simply indicates the leftmost or topmost edge 
of a shape. Thus, for pattern o+ to indicate ridge existence 
in any way, it should not be the first sign change on a 
scanline, and must be preceded by others. Let us extend 
the pattern by including the sign change immediately 
preceding this pattern. There are only two possible 
extensions: −[o…]+ and −[o…]+. Pattern −[o…]+ 
suggests the existence of a valley or a basin for the same 
reasons that hold for pattern −+ and is not an indication of 
ridge existence. On the contrary, pattern −[o…]+ implies 

that we are at the end of an uphill, pass through a plateau, 
and then encounter another uphill on a distance map. In 
other words, the + at the end indicates the start of a new 
shape, while the + at the beginning indicates that we are 
already inside of another shape. Therefore, o+ at the end 
of this pattern is merely an indication of the start of a new 
subshape in a composite shape. The interpretation of +o at 
the beginning has previously been discussed. Since the 
extended patterns are not indications of ridge existence or 
can be handled by other cases, pattern o+ is ignored here. 
 
Finally, the pattern −o can be explained in an opposing 
way. If it is the last sign change detected on a scanline, 
pattern −o simply indicates the rightmost or bottommost 
edge of a shape. Thus, for this pattern to indicate ridge 
existence in any way, it should not be the last sign change 
on a scanline, and must be followed by other sign changes. 
Extending the pattern to include the sign change 
immediately following it also yields only two cases: 
−[o…]+ and −[o…]−. Pattern −[o…]+ is not an 
indication of ridge existence as already discussed before. 
Pattern −[o…]− implies that we are at the end of a 
downhill, pass through a basin, and then encounter another 
downhill on a distance map. In other words, the − at the 
beginning indicates the end of a shape, while the − at the 
end indicates that we are still inside of another shape. 
Therefore, −o at the beginning of this pattern is merely an 
indication of the end of a subshape in a composite shape. 
The interpretation of o− at the end has previously been 
discussed. Since the extended patterns are not indications 
of ridge existence or can be handled by other cases, 
pattern −o is ignored here. 
 
By evaluating all the patterns of sign changes between two 
neighboring points and their extensions, we have 
identified four patterns that indicate ridge existence: +−, 
+o−, +o, and o−. These patterns are called prominent sign 
barriers. Note that the patterns +o and o− must be paired 
with one of these four patterns on the other scanline to be 
considered an indication of a ridge. Having identified 
prominent sign barriers, we now describe the ridge 
detection algorithm. Before the algorithm is applied, the 
given image is distance transformed. Then, two 
normalized vector fields, N x  and N y , are computed by 
projecting gradient vectors onto two scanlines, Sx  and 
Sy , respectively, where Sx  is a line parallel to the x-axis 
and Sy  to the y-axis. The ridge detection algorithm 
operates directly on the vector fields, N x  and N y . 
 
The algorithm scans the given image from top to bottom 
and from left to right, searching for the prominent sign 
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barriers. More precisely, it scans N x  with Sx  from top to 
bottom and N y  with Sy  from left to right. For each scan, 
it searches for prominent sign barriers from left to right for 
Sx  and from top to bottom for Sy . When it detects 
prominent sign barriers at points on a scanline, the 
algorithm labels the points appropriately based on the 
prominency, i.e., strong, good, weak, and none. After the 
scanning process is done in both directions, each point in 
the image has an appropriate label and the algorithm 
returns these labels for further processing, i.e., building a 
graph representation. 
 
The algorithm as described so far, however, still has the 
problem of its assumption of a differentiable distance map. 
This assumption was necessary since our algorithm was 
based on the gradient vectors of the distance map and, to 
compute them, the distance map must be differentiable 
everywhere, including ridges. However, this contradicts 
the description of ridges as singularities of the distance 
function. We can rid our algorithm of this contradictory 
assumption with a simple modification. Recall that the 
algorithm operates on two vector fields, N x  and N y . 
More precisely, the algorithm examines only the directions 
or signs of vectors in N x  and N y , to identify the 
prominent sign barriers. These signs can be interpreted in 
a slightly different context: a point with + means that the 
point is at an uphill on the distance map, a point with − at 
a downhill, and a point with o at a flat region or a plateau. 
Then, all the algorithm needs to know is where on the 
distance map a point is located, i.e., uphill, downhill, or 
plateau. Therefore, instead of computing gradients under 
the assumption of the differentiable distance map, we can 
simply use the relative location of points on a scanline 
without the assumption. That is, instead of using N x  and 
N y  computed from gradient vectors, we can use:  

′ N x (x, y) = sign D(x + 1, y) − D(x, y)( )
′ N y (x, y) = sign D(x, y + 1) − D(x, y)( )

 

where, D  is a given distance function, to compute the 
relative location of a point on a scanline. See Fig. 2(a) for 
the result of the algorithm applied to a stylized shape 
image. 
 
 

 

(a)  (b) 

Fig. 2. Ridge points and gaps: (a) Ridge points detected by the algorithm. 
(b) Distance map of 8 by 10 rectangle. Dashed lines are the actual 
skeletons gray boxes present the pixels detected.  Each circled pixel 
forms a sign barrier along with the pixels at its left.  Our algorithm labels 
these pixels as week ridge points. 

(a) (b) 

Fig. 3. Linking and deformation: (a) Result of linking process applied to 
Fig. 2(a). (b) Result after 50 iterations of deformation steps. 

3. Skeletons with Graph Representation 

Our algorithm guarantees the detection of all ridge points. 
However, gaps may be generated due to the discrete nature 
of the image space. Note that the algorithm does not 
compute the exact location of ridge points in continuous 
space but the approximate location in discrete space. For 
example, when a sign barrier is detected between two 
neighboring points, the algorithm labels the point with a 
higher value as a ridge point. This process may cause gaps 
that usually occur around forking points of skeletons 
located at non-integer coordinates. Fig. 2(b) illustrates a 
representative example. The points in the gaps, however, 
are usually labeled as weak by the algorithm and can be 
recovered during the linking process described below. 
Because of the gaps, the linking process consists of two 
passes. Initially, only the points with labels of strong and 
good are considered as ridge points. 
 
In the first pass, each point is connected to at most 2 
neighboring ridge points. The first link is made to the 
nearest ridge point among its 8 neighbors and the second 
to a ridge point among the remaining neighbors that forms 
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an angle close to 180 degrees to the first link. This pass 
converts a set of ridge points into a set of ridgelines. The 
ridgelines are the links of the skeleton graph, but are not 
well connected yet because of the gaps discussed above. 
The second pass tries to fill the gaps by tracing a 
maximum gradient path. For each end point of a ridge line, 
either a point with label weak or a point with maximum 
gradient (if no point with label weak exists) among its 
neighbors that forms an angle close to 180 degree to its 
previous link is selected as the next candidate point. The 
process repeats from the new candidate point until the 
trace reaches one of the ridge points, in which case the 
trace is accepted, or until the trace crosses the boundary of 
the given object, in which case the trace is ignored. After 
the second pass, we have a graph representation of the 
skeleton, in which each object in the image is represented 
by a connected subgraph. Fig. 3(a) illustrates the graph 
representation after the linking process applied to the 
detected ridge points in Fig. 2(a). 

4. Smooth Skeletons via Graph Deformation 

The graph representation computed in the previous section 
is a coarse discrete approximation to the skeleton in 
continuous space. To obtain a continuous counterpart, the 
graph is regarded as a collection of deformable splines and 
the snake model [10] is applied to it. 
 
For each edge in the graph, a snake is initialized on the 
distance map. Then, both ends of the snake are anchored 
to the corresponding branching or branch end points with 
spring forces. After initialization, each snake is deformed 
independently from the others on the distance map. Since 
they are used as anchor points, the positions of branching 
and branch end points are fixed on the distance map. To 
obtain their accurate locations, each anchor point's 
position is recomputed by averaging its position and the 
positions of the snaxels anchored to it after a predefined 
number of snake deformation steps. Note that a snake 
initialized on a steep ridge tends to move toward the 
bottom of the ridge where potential energy is the lowest in 
order to reach an equilibrium state. The steeper the ridge, 
the faster the snake moves to the bottom of the ridge. This 
causes a snake initialized on the steepest ridge to pull the 
anchor point towards it rapidly when averaged, causing 
the anchor point to pass through its optimal position. To 
avoid this effect, we use weighted averaging when 
recomputing the position of an anchor point, giving more 
weight to its original position. Another way to circumvent 
this effect is to resample the snaxels on each snake so that 
the intersnaxel distances are all the same over all snakes 
and then perform simple averaging of the involved snaxels. 
Fig. 3(b) illustrates the result after 50 deformation steps 

applied to the coarse graph in Fig. 3(a). Note how some 
coarse ridgelines are smoothed by the deformation. 

5. Results  

The results of our method to simple binary images are 
shown in Fig. 4.  The initial coarse graphs obtained with 
the method were refined with 50 iterations of deformation 
steps to get smooth skeletons. The results show that the 
objects in the figure are correctly skeletonized. Also note 
in Fig. 4(b) that all disconnected subshapes have been 
automatically detected and represented by separate 
subgraphs. 
 

 (a)
  

 (b)

Fig. 4. Skeletons of simple binary objects. 

Next, we applied our method to more complex binary 
images and the results are illustrated in Fig. 5. The initial 
coarse graphs obtained with the proposed method were 
smoothed with 50 iterations of deformation steps. Again, 
note in the figure that all disconnected subshapes have 
been detected and represented by separate subgraphs.  
 
Finally, we demonstrate that our method applies equally 
well to the skeletonization of grayscale images. In 
grayscale images, however, the distance maps cannot be 
obtained easily since the object boundary required to 
perform the distance transformation is not readily 
available. Fortunately, for some types of grayscale images 
such as medical images, ridges of the intensity landscape 
tend to be at the center of anisotropic grayscale objects. 
Thus, ridges of an intensity landscape profile maps are 
useful skeleton-like descriptors of a shape. Therefore, we 
applied our method to the intensity profile maps of 
grayscale images filtered in scale space [5][15][20]. Fig. 6 
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shows the results of our method applied to grayscale 
images. As in the case of binary images, the initial coarse 
graphs obtained with the proposed method were refined 
with 50 iterations of deformation steps.  From the figure, 
we can see that all the objects present in each image are 
automatically detected and properly skeletonized. 
 

 (a)
  

 (b)

Fig. 5. Skeletons of complex binary objects. 

6. Conclusions 

We have presented a skeletonization method that rapidly 
constructs a coarse graph representation of skeletons. We 
defined and identified four patterns of prominent sign 
barriers by exhaustive review of all possible sign change 
patterns on a scanline. Ridge points are extracted from the 
distance map by detecting prominent sign changes on two 
orthogonal scanlines and connected based on the topology 
of the distance map. Finally, the graph is then converted to 
a set of snakes and deformed on the distance map. The net 
result is smooth connected skeletons.  

(a) (b) 

Fig. 6. Skeletons of grayscale images: (a) CT image of a skull. (b) Finger 
print 

Our algorithm differs significantly from the previous 
approaches in several respects. First, it does not require 
explicit information about object boundaries (i.e., for 
grayscale images) or critical points on them. Second, our 
algorithm operates on the entire image, not on individual 
objects contained in the image. That is, our algorithm can 
automatically detect the presence of multiple objects and 
computes their skeletons simultaneously, representing 
each object with a separate subgraph. Finally, without 
involving any complex computations, our algorithm 
rapidly constructs a coarse graph representation of 
skeletons, which can be further refined using a snake 
model. The algorithm proposed here can be used to 
quickly generate skeleton prototypes of a given image. 
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