
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

220

Manuscript received July 5, 2007

Manuscript revised July 25, 2007

CAS - New Strategies and Techniques

Kostas Zotos†

† Department of Applied Informatics, University of Macedonia, Thessaloniki-Greece

Summary
Computer algebra systems are software packages, usually
Object-oriented, which are used in manipulation of mathematical
formulas. The primary goal of a Computer Algebra System
(CAS) is to automate tedious and sometimes difficult algebraic
manipulation tasks. The specific uses and capabilities of these
systems vary greatly from one system to another. Some of them
include facilities for graphing equations and provide a
programming language for the user to define their own
procedures. In this paper we are going to examine new design
strategies and techniques.
Key words:
Computer algebra systems; Mathematical software design; CAS

1. Introduction

Making programs can be hard, but making code that is
easy to maintain and extend is definitely hard, especially
when the size of the program grows. Without careful
planning and detailed specifications of the program it
quickly becomes impossible to implement anything but the
simplest program. As a consequence, different approaches
to go from some problem through specification to an
actual program exist and a plethora of programming
languages have been created to aid the programmer to
create correct programs faster. Computer scientists,
mathematicians and engineers often rely on Computer
Algebra Systems (CASs) for computations requiring
complicated calculations and their preference for one or
another is due to the system’s capability of solving the
classes of problems of interest for such users. Yet, it is
often desirable to be able to benefit from the functionality
provided by external pieces of software, either of another
Computer Algebra Systems or of the modules written in
other programming languages. To achieve this desiderate
the systems can be extended allowing the execution of
external codes in a transparent way for the user.
 Calculating technology in mathematics has evolved
from four-function calculators to scientific calculators to
graphing calculators and now to calculators (or computers)
with Computer Algebra System (CAS) software. The
advent of CAS software, which can do a great deal of the
problems in a standard algebra or calculus text book at the
push of a few buttons, truly represents a quantum leap in
technology. The community of mathematics educators is in

the throes of a great debate as to whether this is one of the
most exciting or most frightening developments in the
history of mathematics education as mathematics
educators struggle with the implications of having
software in the classroom which can, for example, expand
and factorise algebraic expressions, solve equations,
differentiate functions, and find anti-derivatives [1].
 In the following sections, we are going to examine:
Design principles of CAS (section 2), new
strategies/techniques (section 3) and some results (section
4).

2. Design principles of CAS

There are major differences between mathematical
libraries and CAS (Table 1). Both should consider four
major goals (safety, analyzability, scalability and
flexibility) in order to enable productivity and
performance.

• Safety. Common errors, such as illegal pointer
references, type errors, initialization errors, buffer
overflows are to be ruled out by design.

• Analyzability. Both should be intended to be
analyzable by programs (compilers, static
analysis tools, program refactoring tools).
Simplicity and generality of analyses requires that
the programming constructs – particularly those
concerned with concurrency and distribution – be
conceptually simple, orthogonal in design, and
combine well with as few limitations and corner
cases as possible.

• Scalability. The scalability fundamentally
depends on the properties of the underlying
algorithms.

• Flexibility. It is necessary that the
data-structuring, concurrency and distribution
mechanisms be general and flexible.

It is widely admitted that traditional imperative
programming languages such as FORTRAN or C are not
the best suited for developing CAS. They present major
lacks for extensibility, maintainability, or reusability,
which are crucial objectives in designing libraries.
Object-oriented design provides excellent opportunities to
overcome limitations of traditional languages. Their major

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

221

drawing power is to offer the opportunity to encapsulate
complex coding and provide user-friendly interface [2].
Moreover, they support inheritance which allows one class
(the parent class) to provide all its methods to a second
class (the child class). This is also known as
‘specialization’ or an ‘is a’ relationship. Figure 1 shows
how a simple inheritance relationship is defined between
algebraic number fields. In this case the child classes
comprise a cyclotomic number field and a quadratic
number field [3].

Table 1. Libraries vs CAS

Fig.1 An inheritance hierarchy of algebraic fields.

My recommendation is to use the Java programming
language. A strong driver for this decision is the
widespread adoption of the Java language and its
accompanying documentation and tools. Second, it
supports safety, analyzability and flexibility.

3. Experimental Consideration

The operations typically performed by traditional CAS are
on data that has been abstracted from the original problem.
For instance, one may solve a linear system in order to
solve a system of Ordinary Differential Equations (ODEs).
However, the fact that the linear system comes from ODEs
is lost once the library receives the matrix and right hand

side. By introducing metadata, we gain the facility of
annotating problem data with information that is typically
lost, but which may inform a decision making process.
Meta software mediates between the application program
and the computational platform so that application
scientists (with disparate levels of knowledge of
algorithmic and programmatic complexities of the
underlying numerical software) can easily realize
numerical solvers and efficiently solve their problem.
In finding the appropriate numerical algorithm for a
problem we are faced with two issues:
1. There are often several algorithms that, potentially,
solve the problem, and
2. Algorithms often have one or more parameters of some
sort.
Thus, given user data, we have to choose an algorithm, and
choose a proper parameter setting for it. Self adapting
strategy in determining mathematical algorithms is the
following:
• We solve a large collection of test problems by every
available method, that is, every choice of algorithm, and a
suitable ‘binning’ of algorithm parameters.
• Each problem is assigned to a class corresponding to the
method that gave the fastest solution.
• We also draw up a list of characteristics of each problem.
• We then compute a probability density function for each
class. As a result of this process we find a function pi()
where i ranges over all classes, that is, all methods, and
is in the space of the vectors of features of the input
problems. Given a new problem and its feature vector ,
we then decide to solve the problem with the method i for
which pi() is maximised [4].
Figure 2 describes a meta-object procedure which focuses
on three points: the easy reuse of cryptography-aware code,
the composition of cryptographic services and the
transparent addition of cryptography-based security to
third-party code. The meta-object cryptography model for
adding cryptography-based security has the following
steps:
1. Load base-level classes.
2. Reflect about base-level classes. This means to create
the meta configuration required by the base-level
application.
3. Start up the meta objects from the secure initial state.
4. Load the classes of the base-level application.
5. Execute the base-level application from meta level.
Steps 1, 3 and 4, are the same for any application, having a
few, parameterizable, differences. Steps 2 and 5 are what
can vary among applications [5].
 Mathematicians’ and engineers’ preference for one or
another CAS encounters yet the drawback that even
though CASs excel one another in solving selected classes
of problems they do not offer a complete functionality. It
would be therefore desirable to be able to augment them

Libraries:
• Extend mathematical capabilities of the
language
• Efficiency
• Keep features of the language

CAS:
• Support special scientific computing features
(symbolical computations, matrix computations
etc.)
• Convenience
• Make use of graphics

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

222

with the capabilities of external systems. Grid
architecture provides a solution to the problem. CAS can
be integrated in Grid architecture and interact with
external platforms (i.e. Java) [6]. This direction is followed
in MathGridLink architecture [7]. The connection of
MathGridLink with the Grid environment is bidirectional
since either the deployment of Grid web services is
possible from within Mathematica [8] or Grid. Two
components, namely MathGrid Service Client (MGSC)
and MathGrid Service Generator (MGSG), build up the
system, as depicted in Figure 3. The first intermediates the
access to any available Grid service, regardless the
language this has been written in, allowing the invocation
either in a blocking style in which Mathematica’s kernel is
entirely allocated for the service or in a no blocking
manner such the a semaphore-based synchronization
allows a multitasking in that the service invocation can be
run in parallel mode. MGSG encapsulates a Java web
service generator generating ready-to-deploy Grid archive,
thus creating a web service interface. The resulted service
deploys the Mathematica functions (specified by the
developer) as Grid service methods in a transparent
manner.

Fig. 2 A meta-object model

Fig. 3 MathGridLink middleware extending Mathematica to the Grid

allowing the interaction with the Grid environment in two ways.

 CAS programmers should try to detect and eliminate
all fatal programming errors before the software is placed
into service because, even if they can be detected
efficiently, there probably isn't much that can be done
about them after the application is placed into service
except to log them on some sort of “black box” recorder
and restart the application. Most of the math errors
inherited from built-in types cannot be detected until
run-time. Other programming errors cannot be detected
until run-time because vector, matrix and tensor size
information is not generally available at compile time and
the one dimensional arrays which they reference must be
allocated and deallocated dynamically. These errors
include containment, range, conformance, reference and
memory errors [9].
 Classic algebraic libraries, based on imperative
programming, contain sub algorithms for working with
polynomials, matrices, vectors, etc. Their big
inconvenience is the dependency on types. For example, a
polynomial can be built over any kind of algebraic unitary
commutative ring (R;+;*), and we have to define a
different set of procedures that implement the common
operations with polynomials, for every such ring.
Object-oriented algebraic systems based on design patterns
remove the inconvenience of type dependency [10].
Furthermore, allow us to build not only a flexible
numerical algebraic system, but also a general abstract
algebraic system. Finally, allow automatic conversions
between compatible structures, and dynamic creation of
new classes that correspond to different algebras specified
by the user. For example, the Java Cryptography
Architecture (JCA) specifies design patterns for designing
cryptographic concepts and algorithms. The JCA
architecture separates concepts from their implementations.
These concepts are encapsulated by classes in the
java.security and javax.crypto packages. These classes are
called concept classes. JCA relies heavily on the factory
method design pattern to supply instances of its concept
classes. A factory method is basically a special kind of
static method that returns an instance of a class [11]. Tile
idea here is that a concept class is asked for an instance
that implements a particular algorithm.
 We propose to employ Aspect-oriented programming
(AOP) at several points in the design of CAS. AOP can be
used to decrease the amount of duplicated code, to check
for special cases in a non-intrusive manner, and might
even improve the performance of the system. A simple
example would be the enforcement of domain-specific
rules (e.g., for “add” methods that reside in disparate
sub-classes). Using the additional “degree of freedom,”
more elaborate type systems (e.g., in the spirit of AXIOM)
can be built. In particular, aspects could be used to define
algebraic structures over data types that are defined by
classes, while interfaces would provide for restriction
and/or composition [12]. As applications are almost never

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

223

perfect in their first version, it is also possible for the
developer to add some extra statements for debugging or
tracing purposes. This introduces three natural aspects in
this application: the multi-threading, the timing and the
tracing. For example, the algorithm which multiplies the
matrices A and B can be briefly described as follows:
1. split the matrices A and B into slices,
2. multiply the slices together into sub-matrices of C,
3. store the sub-matrices into the final C matrix.
This could easily fit into a single method. However, doing
so would not make it easy to select the right join points at
which to weave in the aspects. Even without envisaging an
Aspect-oriented approach, writing everything in a single
method does not favor the clarity of the code. Moreover, it
is easier and cleaner to use method calls, as opposed to
accesses to variables, as pointcuts. Indeed, if the code
corresponding to the three steps of the multiplication
algorithm described above is localized within a single
method, defining pointcuts matching the join points
between those steps cannot be done cleanly. Even if it is
possible have pointcuts that select the accesses to some
variable, it is not possible to clearly identify which part of
the program flow is concerned when there is only a single
method. Thus, it is sensible to write one method for each
logical part of the above algorithm. Even though the
component program should not be aware of the aspect
program, it is possible to design the component program
with some prior knowledge of the aspects.

4. Conclusion

The very nature of mathematical software makes the
designing of a system difficult. Unlike other areas of
design, such as building construction and car
manufacturing, the final product of software design is
abstract and intangible. “It is not constrained by materials,
governed by physical laws or by manufacturing processes”
[13]. This is both a positive and a negative characteristic of
software. It is positive in the way that there are no physical
limitations of what software can accomplish, yet negative
due to the fact that such systems can easily become largely
complicated and difficult to comprehend. A commonality
between designing software and designing other products
is that there is no single correct solution. Given a particular
item to develop, or task to complete, developers are faced
with multiple design solutions where the one to implement
is not always apparent. In addition, design involves many
differing dimensions, for example cost, reliability,
maintainability, and efficiency, all of which require
optimisation. It is essential for the developer to find the
right balance between these dimensions for their particular
solution.
The primary goal of my effort in CAS is to develop a new
generation of algorithms and software packages. To

succeed this, we should rethink the way that we build CAS.
The issues to consider include software architecture,
programming languages and environments, compile versus
run-time functionality, data structures, and fundamental
algorithm design.

References
[1] Meagher, M. “Learning in a Computer Algebra System (CAS)

Environment”, Paper presented at the annual meeting of
the North American Chapter of the International Group for
the Psychology of Mathematics Education, 2004.

[2] Pierre Manneback, Guibo Peng. “Towards an Object Oriented
Distributed Matrix Computation Library above C and PVM”,
Laboratoire P.I.P., 1994.

[3] Marc Conrad, Tim French. “Exploring the synergies between
the Object-oriented paradigm and mathematics: a Java led
approach”, International Journal of Mathematical Education
in Science and Technology, 2004.

[4] “Self Adapting Numerical Software (SANS) Effort”,
University of Tennessee and Oak Ridge National Laboratory,
June 2005.

[5] Alexadre Braga, Richard Dahab. “A meta-object library for
cryptography”, Relatorio Technico IC-1999-06.

[6] Diana Dubu. “Interconnecting Computer Algebra Systems
within the Grid”, Master Thesis 2004.

[7] Tepeneu, D., Ida, T., “MathGridLink - A bridge between
Mathematica and the Grid”, 2002.

[8] http:// www.wolfram.com/
[9] http://www.netwood.net/~edwin/svmtl/
[10] Virginia Niculescu, Grigoreta Sofia Moldovan. “Building an

Object-oriented Computational Algebra System Based on
Design Patterns”, INFORMATICA, Volume XLVIII,
Number 1, 2003.

[11]Andrew Burnett, Keith Winters, and Tom Dowling,
“Principles and Practice of Programming in Java”, pages 84,
85. National Umversity of Ireland 2002.

[12]Markus A. Hitz, “Aspect-Oriented Programming in the
Design of Computer Algebra Libraries”, poster in Sigsam
2004.

[13]I. Sommerville. Software Engineering. Pearson Education
Ltd., 2001.

Kostas Zotos is a research
assistant in University of Macedonia
(Department of Applied Informatics)
under professor George Pekos and
also supervised by assistant
professor George Stephanides.

