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Summary 
Computer algebra systems are software packages, usually 
Object-oriented, which are used in manipulation of mathematical 
formulas. The primary goal of a Computer Algebra System 
(CAS) is to automate tedious and sometimes difficult algebraic 
manipulation tasks. The specific uses and capabilities of these 
systems vary greatly from one system to another. Some of them 
include facilities for graphing equations and provide a 
programming language for the user to define their own 
procedures. In this paper we are going to examine new design 
strategies and techniques. 
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1. Introduction 

Making programs can be hard, but making code that is 
easy to maintain and extend is definitely hard, especially 
when the size of the program grows. Without careful 
planning and detailed specifications of the program it 
quickly becomes impossible to implement anything but the 
simplest program. As a consequence, different approaches 
to go from some problem through specification to an 
actual program exist and a plethora of programming 
languages have been created to aid the programmer to 
create correct programs faster. Computer scientists, 
mathematicians and engineers often rely on Computer 
Algebra Systems (CASs) for computations requiring 
complicated calculations and their preference for one or 
another is due to the system’s capability of solving the 
classes of problems of interest for such users. Yet, it is 
often desirable to be able to benefit from the functionality 
provided by external pieces of software, either of another 
Computer Algebra Systems or of the modules written in 
other programming languages. To achieve this desiderate 
the systems can be extended allowing the execution of 
external codes in a transparent way for the user. 
 Calculating technology in mathematics has evolved 
from four-function calculators to scientific calculators to 
graphing calculators and now to calculators (or computers) 
with Computer Algebra System (CAS) software. The 
advent of CAS software, which can do a great deal of the 
problems in a standard algebra or calculus text book at the 
push of a few buttons, truly represents a quantum leap in 
technology. The community of mathematics educators is in 

the throes of a great debate as to whether this is one of the 
most exciting or most frightening developments in the 
history of mathematics education as mathematics 
educators struggle with the implications of having 
software in the classroom which can, for example, expand 
and factorise algebraic expressions, solve equations, 
differentiate functions, and find anti-derivatives [1]. 
 In the following sections, we are going to examine: 
Design principles of CAS (section 2), new 
strategies/techniques (section 3) and some results (section 
4). 
 
2. Design principles of CAS 
 
There are major differences between mathematical 
libraries and CAS (Table 1). Both should consider four 
major goals (safety, analyzability, scalability and 
flexibility) in order to enable productivity and 
performance. 

• Safety. Common errors, such as illegal pointer 
references, type errors, initialization errors, buffer 
overflows are to be ruled out by design.  

• Analyzability. Both should be intended to be 
analyzable by programs (compilers, static 
analysis tools, program refactoring tools). 
Simplicity and generality of analyses requires that 
the programming constructs – particularly those 
concerned with concurrency and distribution – be 
conceptually simple, orthogonal in design, and 
combine well with as few limitations and corner 
cases as possible. 

• Scalability. The scalability fundamentally 
depends on the properties of the underlying 
algorithms.  

• Flexibility. It is necessary that the 
data-structuring, concurrency and distribution 
mechanisms be general and flexible. 

It is widely admitted that traditional imperative 
programming languages such as FORTRAN or C are not 
the best suited for developing CAS. They present major 
lacks for extensibility, maintainability, or reusability, 
which are crucial objectives in designing libraries. 
Object-oriented design provides excellent opportunities to 
overcome limitations of traditional languages. Their major 
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drawing power is to offer the opportunity to encapsulate 
complex coding and provide user-friendly interface [2]. 
Moreover, they support inheritance which allows one class 
(the parent class) to provide all its methods to a second 
class (the child class). This is also known as 
‘specialization’ or an ‘is a’ relationship. Figure 1 shows 
how a simple inheritance relationship is defined between 
algebraic number fields. In this case the child classes 
comprise a cyclotomic number field and a quadratic 
number field [3]. 
 

Table 1. Libraries vs CAS 

 
 
 

 
Fig.1 An inheritance hierarchy of algebraic fields. 

 
My recommendation is to use the Java programming 
language. A strong driver for this decision is the 
widespread adoption of the Java language and its 
accompanying documentation and tools. Second, it 
supports safety, analyzability and flexibility. 
 
 
3. Experimental Consideration  
 
The operations typically performed by traditional CAS are 
on data that has been abstracted from the original problem. 
For instance, one may solve a linear system in order to 
solve a system of Ordinary Differential Equations (ODEs). 
However, the fact that the linear system comes from ODEs 
is lost once the library receives the matrix and right hand 

side. By introducing metadata, we gain the facility of 
annotating problem data with information that is typically 
lost, but which may inform a decision making process. 
Meta software mediates between the application program 
and the computational platform so that application 
scientists (with disparate levels of knowledge of 
algorithmic and programmatic complexities of the 
underlying numerical software) can easily realize 
numerical solvers and efficiently solve their problem. 
In finding the appropriate numerical algorithm for a 
problem we are faced with two issues: 
1. There are often several algorithms that, potentially, 
solve the problem, and 
2. Algorithms often have one or more parameters of some 
sort. 
Thus, given user data, we have to choose an algorithm, and 
choose a proper parameter setting for it. Self adapting 
strategy in determining mathematical algorithms is the 
following: 
• We solve a large collection of test problems by every 
available method, that is, every choice of algorithm, and a 
suitable ‘binning’ of algorithm parameters. 
• Each problem is assigned to a class corresponding to the 
method that gave the fastest solution. 
• We also draw up a list of characteristics of each problem. 
• We then compute a probability density function for each 
class. As a result of this process we find a function pi( ) 
where i ranges over all classes, that is, all methods, and  
is in the space of the vectors of features of the input 
problems. Given a new problem and its feature vector , 
we then decide to solve the problem with the method i for 
which pi( ) is maximised [4]. 
Figure 2 describes a meta-object procedure which focuses 
on three points: the easy reuse of cryptography-aware code, 
the composition of cryptographic services and the 
transparent addition of cryptography-based security to 
third-party code. The meta-object cryptography model for 
adding cryptography-based security has the following 
steps: 
1. Load base-level classes. 
2. Reflect about base-level classes. This means to create 
the meta configuration required by the base-level 
application. 
3. Start up the meta objects from the secure initial state. 
4. Load the classes of the base-level application. 
5. Execute the base-level application from meta level. 
Steps 1, 3 and 4, are the same for any application, having a 
few, parameterizable, differences. Steps 2 and 5 are what 
can vary among applications [5]. 
 Mathematicians’ and engineers’ preference for one or 
another CAS encounters yet the drawback that even 
though CASs excel one another in solving selected classes 
of problems they do not offer a complete functionality. It 
would be therefore desirable to be able to augment them 

Libraries: 
• Extend mathematical capabilities of the 
language 
• Efficiency 
• Keep features of the language 
 
CAS: 
• Support special scientific computing features 
(symbolical computations, matrix computations 
etc.) 
• Convenience 
• Make use of graphics 
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with the capabilities of external systems. Grid 
architecture provides a solution to the problem. CAS can 
be integrated in Grid architecture and interact with 
external platforms (i.e. Java) [6]. This direction is followed 
in MathGridLink architecture [7]. The connection of 
MathGridLink with the Grid environment is bidirectional 
since either the deployment of Grid web services is 
possible from within Mathematica [8] or Grid. Two 
components, namely MathGrid Service Client (MGSC) 
and MathGrid Service Generator (MGSG), build up the 
system, as depicted in Figure 3. The first intermediates the 
access to any available Grid service, regardless the 
language this has been written in, allowing the invocation 
either in a blocking style in which Mathematica’s kernel is 
entirely allocated for the service or in a no blocking 
manner such the a semaphore-based synchronization 
allows a multitasking in that the service invocation can be 
run in parallel mode. MGSG encapsulates a Java web 
service generator generating ready-to-deploy Grid archive, 
thus creating a web service interface. The resulted service 
deploys the Mathematica functions (specified by the 
developer) as Grid service methods in a transparent 
manner.  
 

 
Fig. 2 A meta-object model 

 
 

 
Fig. 3 MathGridLink middleware extending Mathematica to the Grid 

allowing the interaction with the Grid environment in two ways. 
 

 CAS programmers should try to detect and eliminate 
all fatal programming errors before the software is placed 
into service because, even if they can be detected 
efficiently, there probably isn't much that can be done 
about them after the application is placed into service 
except to log them on some sort of “black box” recorder 
and restart the application. Most of the math errors 
inherited from built-in types cannot be detected until 
run-time. Other programming errors cannot be detected 
until run-time because vector, matrix and tensor size 
information is not generally available at compile time and 
the one dimensional arrays which they reference must be 
allocated and deallocated dynamically. These errors 
include containment, range, conformance, reference and 
memory errors [9]. 
 Classic algebraic libraries, based on imperative 
programming, contain sub algorithms for working with 
polynomials, matrices, vectors, etc. Their big 
inconvenience is the dependency on types. For example, a 
polynomial can be built over any kind of algebraic unitary 
commutative ring (R;+;*), and we have to define a 
different set of procedures that implement the common 
operations with polynomials, for every such ring. 
Object-oriented algebraic systems based on design patterns 
remove the inconvenience of type dependency [10]. 
Furthermore, allow us to build not only a flexible 
numerical algebraic system, but also a general abstract 
algebraic system. Finally, allow automatic conversions 
between compatible structures, and dynamic creation of 
new classes that correspond to different algebras specified 
by the user. For example, the Java Cryptography 
Architecture (JCA) specifies design patterns for designing 
cryptographic concepts and algorithms. The JCA 
architecture separates concepts from their implementations. 
These concepts are encapsulated by classes in the 
java.security and javax.crypto packages. These classes are 
called concept classes. JCA relies heavily on the factory 
method design pattern to supply instances of its concept 
classes. A factory method is basically a special kind of 
static method that returns an instance of a class [11]. Tile 
idea here is that a concept class is asked for an instance 
that implements a particular algorithm. 
 We propose to employ Aspect-oriented programming 
(AOP) at several points in the design of CAS. AOP can be 
used to decrease the amount of duplicated code, to check 
for special cases in a non-intrusive manner, and might 
even improve the performance of the system. A simple 
example would be the enforcement of domain-specific 
rules (e.g., for “add” methods that reside in disparate 
sub-classes). Using the additional “degree of freedom,” 
more elaborate type systems (e.g., in the spirit of AXIOM) 
can be built. In particular, aspects could be used to define 
algebraic structures over data types that are defined by 
classes, while interfaces would provide for restriction 
and/or composition [12]. As applications are almost never 
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perfect in their first version, it is also possible for the 
developer to add some extra statements for debugging or 
tracing purposes. This introduces three natural aspects in 
this application: the multi-threading, the timing and the 
tracing. For example, the algorithm which multiplies the 
matrices A and B can be briefly described as follows: 
1. split the matrices A and B into slices, 
2. multiply the slices together into sub-matrices of C, 
3. store the sub-matrices into the final C matrix. 
This could easily fit into a single method. However, doing 
so would not make it easy to select the right join points at 
which to weave in the aspects. Even without envisaging an 
Aspect-oriented approach, writing everything in a single 
method does not favor the clarity of the code. Moreover, it 
is easier and cleaner to use method calls, as opposed to 
accesses to variables, as pointcuts. Indeed, if the code 
corresponding to the three steps of the multiplication 
algorithm described above is localized within a single 
method, defining pointcuts matching the join points 
between those steps cannot be done cleanly. Even if it is 
possible have pointcuts that select the accesses to some 
variable, it is not possible to clearly identify which part of 
the program flow is concerned when there is only a single 
method. Thus, it is sensible to write one method for each 
logical part of the above algorithm. Even though the 
component program should not be aware of the aspect 
program, it is possible to design the component program 
with some prior knowledge of the aspects.   
  
4. Conclusion 
 
The very nature of mathematical software makes the 
designing of a system difficult. Unlike other areas of 
design, such as building construction and car 
manufacturing, the final product of software design is 
abstract and intangible. “It is not constrained by materials, 
governed by physical laws or by manufacturing processes” 
[13]. This is both a positive and a negative characteristic of 
software. It is positive in the way that there are no physical 
limitations of what software can accomplish, yet negative 
due to the fact that such systems can easily become largely 
complicated and difficult to comprehend. A commonality 
between designing software and designing other products 
is that there is no single correct solution. Given a particular 
item to develop, or task to complete, developers are faced 
with multiple design solutions where the one to implement 
is not always apparent. In addition, design involves many 
differing dimensions, for example cost, reliability, 
maintainability, and efficiency, all of which require 
optimisation. It is essential for the developer to find the 
right balance between these dimensions for their particular 
solution. 
The primary goal of my effort in CAS is to develop a new 
generation of algorithms and software packages. To 

succeed this, we should rethink the way that we build CAS. 
The issues to consider include software architecture, 
programming languages and environments, compile versus 
run-time functionality, data structures, and fundamental 
algorithm design.  
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