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Summary 
Linear attack, at the first, introduced for DES encryption system, 
by Matsui. That cryptanalysis was based on linear approximation 
of nonlinear S-boxes of algorithm. Then this kind of attack 
deployed for other kind of block ciphers. The first linear 
cryptanalysis on SAES introduced by Mohammad A. Musa et 
all , so they analyzed linear attack on first round of SAES. This 
paper improve their work on fist round and develop it for full 
round linear attack. We show that this algorithm is vulnerable 
against linear attack. Undoubtly, one of the important results of 
this cryptanalysis is that, it will be possible to propose proper 
linear attack on Rijndael. 
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1. Introduction 

The Advanced Encryption Standard (AES) is the standard 
algorithm adopted by the National Institute of Standards 
and Technology (NIST) on 2001 to replace the ageing 
Data Encryption Standard (DES) for encryption and 
protection of secure and non-classified information. NIST 
chose 128-bit block Rijndael to become the AES. Rijndael 
is a symmetric-key block cipher designed by Joan Daemen 
and Vincent Rijmen [1].  
In this paper, we consider a simplified AES (SAES). 
SAES is proposed as a purely educational encryption 
algorithm to aid cryptography and cryptanalysis persons to 
better understand the concepts behind the real AES [1]. 
The SAES is simpler than AES for understanding, but it 
has a good mathematical structure, such as AES. It means 
that by understanding SAES and expands its concepts; 
reader can understand AES, simpler. 
The first linear cryptanalysis on SAES introduced by 
Mohammad A.Musa et all in[2], so they analyzed linear 
attack on first round of SAES. This paper improve their 
work on fist round and develop it for full round linear 
attack (based on our previous work [3]). We show that this 
algorithm is vulnerable against linear attack. Undoubtedly, 
one of important results of this cryptanalysis is that, it will 
be possible to propose proper linear attack on Rijndael. 
Note that, there is another simplified version of the AES 
algorithm as Mini-AES, where linear cryptanalysis is done 
on second round of it by authors in [4]. 

The paper is organized as follow. Section 2 reviews 
briefly structure of SAES. The SAES encryption process 
is explained, briefly, in section 3. Linear cryptanalysis 
attack on first and second rounds SAES are presented in 
sections 4 and 5, respectively. Conclusion is explained in 
section 6. 

2. Structure of SAES 

SAES has a 16-bit original key, that denoted as 1510 ...kkk . 
This key need to be expanded to a total of 48 key bits 

4710 ...kkk ,where the first 16 key bits are the same as the 
original key and others expand according to key expansion. 
Both the key expansion and encryption algorithms of 
SAES depend on an S-box, that itself depends on the finite 
field whit 16 elements. The finite field )2(GF consists of 
the set {0,1} where all operations work modulo 2. 

])[2( xGF is used to denote polynomials with coefficients 
in )2(GF . The polynomials with coefficients in )2(GF  

modulo )1( 4 ++ xx  are defined as field 

)1/(])[2()16( 4 ++= xxxGFGF . 
The S-box is a non linear, invertible map from nibbles to 
nibbles. Here, at the first, the nibble inverted in )16(GF  
(the nibble 0000 is not invertible, so at this step it is sent to 
itself). Then the output of the inversion nibble ( 3210 bbbb ) 

associated the element 32
2

1
3

0)( bybybybyN +++=  

in )1/(])[2( 4 +yyGF . 1)( 3 ++= yyya  and 1)( 3 += yyb  

are elements in )1/(])[2( 4 +yyGF . The second step of the 
S-box is to send the nibble N(y) to )()()( ybyNya + . Note 

that 44 )1(1 +=+ yy is reducible over )2(GF  so 

)1/(])[2( 4 +yyGF  is not a field and not all of its non-zero 
elements are invertible. The second step can also be 
described an affine matrix map as Fig.(1). 
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Fig.(1)- affine map of S-box 
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All affine maps over )1/(])[2( 4 +yyGF  are affine matrix 
maps, but not vise versa. So it is algebraically more 
informative to know that it is an affine map over 

)1/(])[2( 4 +yyGF . It can be shown that the action of the 
S-box is as fig. (2).In this figure the intermediary output of 
the inversion is not shown. 
 

nib S-box(nib) nib S-box(nib) 
0000 1001 1000 0110 
0001 0100 1001 0010 
0010 1010 1010 0000 
0011 1011 1011 0011 
0100 1101 1100 1100 
0101 0001 1101 1110 
0110 1000 1110 1111 
0111 0101 1111 0111 

Fig.(2)-The action of S-box 

RC[i] is defined as  )16(][ 2 GFxiRC i ∈= +  and 
0000][][ iRCiRCON = (this is a byte and is an 

abbreviations for round constant), so 1000]1[ 3 == xRC  

and 00111]2[ 4 =+== xxRC . If 0N  and 1N  are nibbles, 
then their concatenation denoted as 10 NN . The word 
nibble refers to a four-bit string (half a byte). In this paper 
frequently associated an element 32

2
1

3
0 bxbxbxb +++ of 

)16(GF with the nibble 3210 bbbb .  The function RotNib  is 
defined to be 0110 )( NNNNRotNib = and the function 
SubNib  to be )()()( 1010 NboxSNboxSNNSubNib −−=  
(these are functions for byte to bytes). Their names are 
abbreviations for rotate nibble and substitute nibble, 
respectively. 
An array W  ,whose entries are byte, is considered so that 
the original key fills ]0[W  and ]1[W  in order.  
For 52 ≤≤ i ; If )2(mod0≡i  then :  

]))1[(()2/(]2[][ −⊕⊕−= iWRotNibSubNibiRCONiWiW  
else :                                      

]2[[]1[][ −⊕−= iWiWiW  
The bits contained in the entries of W  can be denoted 

4710 ...kkk . For 20 ≤≤ i  Ki is considered as 
]12[]2[ += iWiWKi  So 15100 ...kkkK = , 3117161 ...kkkK =  

and 4733322 ...kkkK = . For i≤1 , iK is the round key used 
at the end of the i-th round ( 0K is used before the first 
round). 
As explained before, SAES algorithm operates on 16-bit 
plaintext and generates 16-bit ciphertext, using the 
expanded key 4710 ...kkk . Suppose 1510 ...ppp be plaintext 

and the ciphertext be 1510 ...ccc . The encryption algorithm 
consists of the composition of 8 functions applied to 
plaintext. So : 

)...(... 15101510 012
pppAoNSoSRoMCoAoNSoSRoAccc KKK=  (2) 

where pKpA iKi
⊕=)( and each function operates on a 

state. The nibbles configurations are as fig (3). 

111098 pppp  3210 pppp  

15141312 pppp  7654 pppp  

Fig. (3)-The nibble configuration 

The abbreviation NS stands for nibble substitution. The 
function of NS is defined as : 
 
  
      
 
The SR stands for shift row. Its function is defined as : 
 
 
 
 
The abbreviation MC stands for mix column. A column 

],[ ji NN of the state is considered to be the 

element ji NzN + of )1/(])[16( 2 +zzGF . The function MC 

multiplies each column by the polynomial 1)( 2 += zxzc . 
This operation can be considered as: 
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In SAES Encryption, the composition of function 
NSoSRoMCoA

iK is considered to be the i-th round. This 

simplified algorithm has two rounds so, 
0KA  is applied 

prior of first round and MC omitted for second round. 

3. Encryption Process of SAES 

The encryption process is: 
)...(... 15101510 012

pppAoNSoSRoMCoAoNSoSRoAccc KKK=  

At the first step, after pKpAK ⊕= 0)(
0

 the output is: 

111110109988 kpkpkpkp ⊕⊕⊕⊕ 33221100 kpkpkpkp ⊕⊕⊕⊕  

1515141431131212 kpkpkpkp ⊕⊕⊕⊕ 77665544 kpkpkpkp ⊕⊕⊕⊕

Let: 

12,8,4,0

),,,(

321

332211

==

⊕⊕⊕⊕−

+++

++++++

immmm

kpkpkpkpboxS

iiii

iiiiiiii  

and so on. After NS  and SR the state is then : 

2N 0N

3N 1N
NS )( 2NboxS −  )( 0NboxS −

)( 3NboxS −  )( 1NboxS −

SR 
 

2N 0N

3N 1N
2N  0N  

1N  3N  
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111098 mmmm  3210 mmmm  

7654 mmmm  15141312 mmmm  

After MC the output is: 

27115261054

259742486

,
,,

kmmkmmm
kmmmkmm
⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕

 
191331813122

171512116140

,
,,

kmmkmmm
kmmmkmm

⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕

319730986

29118528104

,
,,

kmmkmmm
kmmmkmm

⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕

 
23151221410

21133020122

,
,,

kmmkmmm
kmmmkmm

⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕

Let : 

3210191331813

122171512116140

),
,,(

nnnnkmmkm
mmkmmmkmmboxS

=⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕−

7654231512214

1021133020122

),
,,(

nnnnkmmkm
mmkmmmkmmboxS

=⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕−

  
 

 
111098271152610

54259742486

),
,,(

nnnnkmmkm
mmkmmmkmmboxS

=⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕−  

151413123197309

8629118528104

),
,,(

nnnnkmmkm
mmkmmmkmmboxS

=⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕−    (4) 

At the end of encryption, the final state will be equivalent 
whit ciphertext: 

43114210419408 ,,, knknknkn ⊕⊕⊕⊕  353342331320 ,,, knknknkn ⊕⊕⊕⊕

477466455444 ,,, knknknkn ⊕⊕⊕⊕  3915381437133612 ,,, knknknkn ⊕⊕⊕⊕
so, it is equivalent to : 

111098 cccc  3210 cccc  

15141312 cccc  7654 cccc  
By considering the key expansion: 

)...)(...(]1[]0[ 15987100 kkkkkkWWK ==  
)...)(...(]3[]2[ 3125242317161 kkkkkkWWK ==  
)...)(...(]5[]4[ 4741403933322 kkkkkkWWK ==  

)()(
10000000]0[]2[

11109815141312 kkkkboxSkkkkboxS
WW

−−
⊕⊕=

 
 

]2[]1[]3[ WWW ⊕=    

)()(
00110000]2[]4[

2726252431302928 kkkkboxSkkkkboxS
WW

−−
⊕⊕=

 

]4[]3[]5[ WWW ⊕=                                           (5) 
Let: 

1514131227262524

11109831302928

7654111098

321015141312

)(
)(

)(
)(

llllkkkkboxS
llllkkkkboxS
llllkkkkboxS
llllkkkkboxS

=−
=−
=−
=−

                        (6) 

Therefore: 

 
)39,38,37,36,33,32(

1,1
)23,...,18,17(,1

2416

111935101834

16160016

=⊕=
⊕⊕=⊕⊕=

=⊕=⊕⊕=

−−

−−

ilkk
lkklkk

ilkklkk

iii

iii

(7) 

By considering ]5[,]3[ WW  :                                 

47,...41,40
31,...25,24:168

=
=⊕= −−

i
ikkk iii                        (8) 

The above relation will be used in linear analysis in next 
section. 

4. First Round Linear Cryptanalysis 

Linear attack, at the first, introduced for DES encryption 
system, by Matsui [5]. In linear cryptanalysis assumed that 
a single key has been used to encrypt many plaintexts and 
that Eve (an eavesdropper) has access to many plaintexts 
and corresponding cipher texts from this key so, Eve 
wants determine this key. The idea of linear cryptanalysis 
is to find equations of the form: 

∑∑∑
∈∈∈

=⊕⊕
321 sl

l
sj

j
si

i kcpb                                   (9) 

with probability greater than 0.5 (the greater the better). 
Here b is the bit 0 or 1, ip denotes the i-th plaintext bit, 

jc denotes the j-th cipher text bit, lk  denotes the l-th key 
bit and each sm is a subset of {0,1,…,15}. Since linear 
cryptanalysis requires that Eve has plaintexts and 
corresponding ciphertexts, it is called a known plaintext 
attack [6]. 
The only non-linear function in simplified AES is the S-
box. It is desired to find the linear equations 
corresponding input and output bits of the S-box which 
hold with the highest probabilities (more than0.5). Let 

32103210 )( bbbbaaaaboxS =−  . It is possible that extract 8 
equations with probability 0.75 between input and output 
of S-boxes. So : 

0
0
1
1

13210

11

010

03

=⊕⊕⊕⊕
=⊕
=⊕⊕
=⊕

baaaa
ba

baa
ba

 

0
0

1
1

2210

20

100

1021

=⊕⊕⊕
=⊕
=⊕⊕
=⊕⊕⊕

baaa
ba

bba
bbaa

 (10) 

Each of the above equations (according to Fig. (2)), have 
probability equal to 75.016/12 ==p . By substitution 
these equations in equation (8), probability equations 
system is extracted with probability equal to 0.75. Bu 
using Fig (2) and relation (10): 

9715115157

986141014146

1185133013135

10412212124

11513311113

10541312210102

97415121991

86140880

mmmmkcc
mmmmmmkcc
mmmmmmkcc

mmmmkcc
mmmmkcc

mmmmmmkcc
mmmmmmkcc

mmmmkcc

⊕⊕⊕=⊕⊕
⊕⊕⊕⊕⊕=⊕⊕
⊕⊕⊕⊕⊕=⊕⊕

⊕⊕⊕=⊕⊕
⊕⊕⊕=⊕⊕

⊕⊕⊕⊕⊕=⊕⊕
⊕⊕⊕⊕⊕=⊕⊕

⊕⊕⊕=⊕⊕

   (11) 

It should be noted that, If x and y be two Boolean By pair 
wise adding of equations (11) : 
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12415915971

1351210121042

801311131153

9114814860

mmkkcccc
mmkkcccc

mmkkcccc
mmkkcccc

⊕=⊕⊕⊕⊕⊕
⊕=⊕⊕⊕⊕⊕
⊕=⊕⊕⊕⊕⊕
⊕=⊕⊕⊕⊕⊕

        (12) 

By using relation (4) and equations related to 16k  and 18k  
in firs nibble: 

21813122

016140

ckmmm
ckmm
=⊕⊕⊕
=⊕⊕

                             (13) 

By using probability equations in (10) for relations (12) 
and (13), linear equations system between plaintext, 
ciphertext and keys (18 keys) with probability equal 0.625 
is extracted. By solution of this probability linear 
equations system, key can be fined. 
For example, for first equation in (13) and using relations 

0,0 221020 =⊕⊕⊕=⊕ baaaba   and 103 =⊕ ba  , 
probability equations with probability equal 0.75 is 
extracted, so: 

0
0
1

14141312141312

141212

033

=⊕⊕⊕⊕⊕⊕
=⊕⊕
=⊕⊕

mkkkppp
mkp

mkp
      (14) 

By using (10) for (3), two probability equations with 
probability equal to 0.625 is resulted: 

16141312301413123

161230123

1
1

kkkkkcpppp
kkkcpp

⊕⊕⊕⊕=⊕⊕⊕⊕⊕
⊕⊕=⊕⊕⊕ (15) 

As described prior, it is possible to extract 18 independent 
equations with probability equal to 0.625. This final 
equations system is: 

1812210212210

16141312301413123

1312105121042135

181202120

161230123

149811486091

9715971157

133131153113

1
1

1
1

kkkkkcpppp
kkkkkcpppp

kkkkccccpp
kkkcpp

kkkcpp
kkkkccccpp

kkccccpp
kkccccpp

⊕⊕⊕⊕=⊕⊕⊕⊕⊕
⊕⊕⊕⊕=⊕⊕⊕⊕⊕

⊕⊕⊕=⊕⊕⊕⊕⊕
⊕⊕=⊕⊕⊕
⊕⊕=⊕⊕⊕

⊕⊕⊕=⊕⊕⊕⊕⊕
⊕=⊕⊕⊕⊕⊕
⊕=⊕⊕⊕⊕⊕

 

)16(1514131210965

15121097421141365

141311109821

1413118653010921

151413107654

121042151413127654

151413105

121042151413125

14111093210

148601110983210

14111091

148601110981

151312954

15971131254

15131297

1597113127

13119810

1311539810

1311983

131153983

kkkkkkkk
ccccccccpppp

kkkkkkkk
ccccccccpppp

kkkkkkkk
ccccpppppppp

kkkkk
ccccppppp

kkkkkkkk
ccccpppppppp

kkkkk
ccccppppp

kkkkkk
ccccpppp

kkkkk
ccccppp

kkkkkk
ccccpppp

kkkkk
ccccppp

⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕

 As described above, Eve now takes the known plaintetxts 
and corresponding ciphertexts and evaluates the left-hand 
side of each of the 18 equations. The main question it that, 
how many texts is needed for Eve to break the cipher? 
Let, Eve wants to be 95% certain that all 18 key bit 
choices are correct. For i=1,…,18, let 625.0=ip)  denote 
the random variable whose value is equal to the proportion 
of the n plaintexts and corresponding ciphertexts for 
which the left-hand side of equation i is equal to the 
correct value (0 or 1) of the right-hand side, for the given 
key. For each i , the expected value of ip) is 0.625 and its 

variance is 
n

)625.01(625.0 − . Therefore the standard 

deviation of ip) is 
n

)625.01(625.0 − . 

It is desired that 9972.095.0)5.0( 18 ==>ipprob ) . For 
sufficiently large n, the random variable ip) is essentially 
normal. So it is possible that, standardize ip) by subtracting 
off its expected value and dividing by its standard 
deviation, which will give (approximately) the standard 
normal random variable denoted as Z. 

9972.0)
)625.01(625.0

625.05.0
)625.01(625.0

625.0
( =

−

−
>

−

−

nn

p
prob i

)
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9972.0)
4841.0

625.05.0
4841.0

625.0
( =

−
>

−
⇒

nn

p
prob i

)
 

Then : 

0028.0)2582.0()2582.0(

0028.09972.01)2582.0(

9972.0)2582.0(

==>

=−=<

=−>

nQnZp

nZp

nZp

    (17) 

By using standard Z function table: 
1179.115=n  

Then 116 plaintexts are needed for broken the cipher. If 
none of the keys works, she can get more plaintexts and 
corresponding ciphertexts. 
Thus this linear cryptanalytic attack seems very attractive 
compared to a pure brute force attack for second round 
SAES. However when added rounds (for real AES), more 
addition of equations is needed in order to elimination 
unknown parameters. In this situation, intermediary bits 
and the probabilities associated to the equations then tend 
toward 0.5, is needed (as seen above the probability go 
from 0.75 to 0.625). The result is that, many more 
plaintexts and corresponding ciphertexts is needed in order 
to be fairly certain of picking the correct bit values for 
the∑

∈Sl
lk 's. 

5. Second Round Linear Cryptanalysis 

As told before, the idea of linear cryptanalysis is to find 
equations of the form (9). In this cryptanalysis, one system 
with 32 linear equations for 32 keys 

3933322317161510 ,...,,,...,,,..., kkkkkkkkk  with probability equal 
0.5625 is extracted. The other expanded keys can be 
converted to original key in this linear equations system, 
then it is possible to extract original key by solution this 
system equations. Note that variable indexes from 0 till 15 
correspond to plaintext and cipher text and indexes from 0 
till 47 corresponding to keys. In analysis it is preferred the 
equations be corresponding to original key (if it is 
possible). 
Similar to before section, it is possible to extract 12 
equations with probability 0.75 between input and output 
of S-boxes, i.e., 

1
0
1
1
1
0

32110

301

312

322

332

20

=⊕⊕⊕⊕
=⊕⊕
=⊕⊕
=⊕⊕
=⊕⊕
=⊕

bbbaa
bba
bba
bba
baa

ba

  

1
1
0

0
1
1

100

1021

13210

11

010

03

=⊕⊕
=⊕⊕⊕
=⊕⊕⊕⊕
=⊕
=⊕⊕
=⊕

bba
bbaa

baaaa
ba

baa
ba

(18)  

Each of the above equations (according to Fig.(2)), have 
probability equal to 75.016/12 ==p . By substitution 
these equations in four equations of (4), 48 probability 
equations are extracted with probability equal to 0.75. 
Some of these equations are: 

1)(
0)(
1)(
1)(

35319181232

34216140

3311715121

32019133

=⊕⊕⊕⊕⊕⊕
=⊕⊕⊕⊕
=⊕⊕⊕⊕⊕
=⊕⊕⊕⊕

kckkmmm
kckmm

kckmmm
kckmm

     (19) 

To extract new equations, we should combine above 48 
equations so that, the im  of each equations in (19), 
correspond to one nibble. The probability of 48 resultant 
equations (relation (20)) will be equal to 

625.01)75.0(2)75.0(2 2 =+− . 
As described prior, it is possible to extract 32 independent 
equations from 48 equations with probability equal to 
0.625. These final 32 equations are: 
As described above, Eve now takes the known plaintetxts 
and corresponding ciphertexts and evaluates the left-hand 
side of each of the 32 equations. The main question it that, 
how many texts is needed for Eve to break the cipher? 
Let, Eve wants to be 95% certain that all 32 key bit 
choices are correct. For i=1,…,32, let 5625.0=ip)  denote 
the random variable whose value is equal to the proportion 
of the n plaintexts and corresponding ciphertexts for 
which the left-hand side of equation i is equal to the 
correct value (0 or 1) of the right-hand side, for the given 
key. For each i , the expected value of ip) is 0.5625 and its 

variance is 
n

)5625.01(5625.0 − . Therefore the standard 

deviation of ip) is 
n

)5625.01(5625.0 − . 

It is desired that 998398.095.0)5.0( 32 ==>ipprob ) . For 
sufficiently large n, the random variable ip) is essentially 
normal. So it is possible that, standardize ip) by subtracting 
off its expected value and dividing by its standard 
deviation, which will give (approximately) the standard 
normal random variable denoted as Z. 

9984.0)
)5625.01(5625.0

5625.05.0
)5625.01(5625.0

5625.0
( =

−

−
>

−

−

nn

p
prob i

)
 

998398.0)
496078.0

5625.05.0
496078.0

5625.0
( =

−
>

−
⇒

nn

p
prob i

)
    (21) 
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39342322181615141087610776

393332232217151497698776

393323221918161514111099798

36332315549454

363323157947

393832221514958765

3732211916131198598

37322119161388511

3736353321181213123113

363533211812112311

3938373534232220181514131151413321

3835342220181413143213

373635342118151413123215141312

3736353421181213123213

363534211812112321

383522201918143214332

3736352119181312321312332

37352322201918121331312

3937342322211615131151321

393834231615141151421

39373332232221151311513101

393833322316151432101514103210

39383332231615141151413101

39333222161415101514

393322191817161521512

3633232017131211312

3633232017151212115

3937322322211716151513013

3938322317161514131514013

3936322321201915123151203

373219131013010

3732191331303

1

1

1

1
1

1
1

kkkkkkkkkkkkccpp
kkkkkkkkkkkcccpp

kkkkkkkkkkkkccpp
kkkkkkccpp

kkkkkccp
kkkkkkkkcccp

kkkkkkkkccpp

kkkkkkkccp
kkkkkkkccccp
kkkkkkkcccp

kkkkkkkkkkkkkcccccp
kkkkkkkkcccp

kkkkkkkkccccpppp
kkkkkkkccccp

kkkkkkkcccp
kkkkkkkkkccpp
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kkkkkkcccpp
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kkkkkkkccp
kkkkkkkkkcccp
kkkkkkkkkcccp

kkkkkkkkkkcccp
kkkkkkccpp

kkkkkccp
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⊕⊕⊕⊕⊕=⊕⊕⊕

⊕⊕⊕⊕=⊕⊕
⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕

⊕⊕⊕⊕⊕⊕=⊕⊕
⊕⊕⊕⊕⊕⊕=⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕=⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕=⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕=⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕=⊕⊕⊕⊕
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(20) 

Then : 

001602.0)125988.0()125988.0(

001602.0998398.01)125988.0(

998398.0)125988.0(

==>

=−=−<

=−>

nQnZp

nZp

nZp

 (22) 

By using standard Z-function table: 
3138.547=n  

Then 548 plaintexts are needed for broken the cipher. If 
none of the keys works, she can get more plaintexts and 
corresponding ciphertexts. 
Thus this linear cryptanalytic attack seems very attractive 
compared to a pure brute force attack for second round 

SAES. However when added rounds (for real AES), more 
addition of equations is needed in order to elimination 
unknown parameters. In this situation, intermediary bits 
and the probabilities associated to the equations then tend 
toward 0.5, is needed (as seen above the probability go 
from 0.75 to 0.5625). The result is that, many more 
plaintexts and corresponding ciphertexts is needed in order 
to be fairly certain of picking the correct bit values for 
the∑

∈Sl
lk 's. 
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6. Conclusion 

The linear attack was developed on full rounds SAES, in 
this paper. Using this linear cryptanalysis results, was 
shown that the first and second round SAES is breakable 
with linear calculations. So, we showed that this algorithm 
is vulnerable against linear attack.  This, as a consequence, 
can be led to design a better cryptanalytic attack on real 
AES.  
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