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Summary

Linear attack, at the first, introduced for DES encryption system,
by Matsui. That cryptanalysis was based on linear approximation
of nonlinear S-boxes of algorithm. Then this kind of attack
deployed for other kind of block ciphers. The first linear
cryptanalysis on SAES introduced by Mohammad A. Musa et
all , so they analyzed linear attack on first round of SAES. This
paper improve their work on fist round and develop it for full
round linear attack. We show that this algorithm is vulnerable
against linear attack. Undoubtly, one of the important results of
this cryptanalysis is that, it will be possible to propose proper
linear attack on Rijndael.
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1. Introduction

The Advanced Encryption Standard (AES) is the standard
algorithm adopted by the National Institute of Standards
and Technology (NIST) on 2001 to replace the ageing
Data Encryption Standard (DES) for encryption and
protection of secure and non-classified information. NIST
chose 128-bit block Rijndael to become the AES. Rijndael
is a symmetric-key block cipher designed by Joan Daemen
and Vincent Rijmen [1].

In this paper, we consider a simplified AES (SAES).
SAES is proposed as a purely educational encryption
algorithm to aid cryptography and cryptanalysis persons to
better understand the concepts behind the real AES [1].
The SAES is simpler than AES for understanding, but it
has a good mathematical structure, such as AES. It means
that by understanding SAES and expands its concepts;
reader can understand AES, simpler.

The first linear cryptanalysis on SAES introduced by
Mohammad A.Musa et all in[2], so they analyzed linear
attack on first round of SAES. This paper improve their
work on fist round and develop it for full round linear
attack (based on our previous work [3]). We show that this
algorithm is vulnerable against linear attack. Undoubtedly,
one of important results of this cryptanalysis is that, it will
be possible to propose proper linear attack on Rijndael.
Note that, there is another simplified version of the AES
algorithm as Mini-AES, where linear cryptanalysis is done
on second round of it by authors in [4].
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The paper is organized as follow. Section 2 reviews
briefly structure of SAES. The SAES encryption process
is explained, briefly, in section 3. Linear cryptanalysis
attack on first and second rounds SAES are presented in
sections 4 and 5, respectively. Conclusion is explained in
section 6.

2. Structure of SAES

SAES has a 16-bit original key, that denoted as kgk;..K .

This key need to be expanded to a total of 48 key bits
koK,...K,; where the first 16 key bits are the same as the

original key and others expand according to key expansion.
Both the key expansion and encryption algorithms of
SAES depend on an S-box, that itself depends on the finite
field whit 16 elements. The finite field GF (2) consists of

the set {0,1} where all operations work modulo 2.
GF(2)[x]is used to denote polynomials with coefficients

in GF(2). The polynomials with coefficients in GF(2)
(x*+x+1) are defined as field
GF(16) = GF(2)[x]/(x* + x+1) .

The S-box is a non linear, invertible map from nibbles to
nibbles. Here, at the first, the nibble inverted in GF(16)

(the nibble 0000 is not invertible, so at this step it is sent to
itself). Then the output of the inversion nibble (b,b,b,b;)

N(y) =hyy’ +hy* +b,y +b,
caly)=yi+y+1 and b(y)=y3+1

modulo

associated the element

in GFQ)[yl/(y* +1)
are elements in GF (2)[y]/(y* +1) . The second step of the
S-box is to send the nibble N(y) to a(y)N(y) +b(y) . Note
that y*+1=(y+1)* is reducible over GF(2) so

GF(2)[y]/(y* +1) is not a field and not all of its non-zero

elements are invertible. The second step can also be
described an affine matrix map as Fig.(1).
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Fig.(1)- affine map of S-box
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Al affine maps over GF(2)[y]/(y* +1) are affine matrix

maps, but not vise versa. So it is algebraically more
informative to know that it is an affine map over

GF (2)[y]/(y* +1) . It can be shown that the action of the

S-box is as fig. (2).In this figure the intermediary output of
the inversion is not shown.

nib S-box(nib) | nib S-box(nib)
0000 1001 1000 0110
0001 0100 1001 0010
0010 1010 1010 0000
0011 1011 1011 0011
0100 1101 1100 1100
0101 0001 1101 1110
0110 1000 1110 1111
0111 0101 1111 0111

Fig.(2)-The action of S-box

RC[i] is defined as RC[i]=x""? e GF(16) and
RCON[i]=RCJi]J0000 (this is a byte and is an
abbreviations for round constant), so RC[1] = x* =1000

and RC[2] = x* =x+1=0011. If N, and N, are nibbles,
then their concatenation denoted as NyN, . The word
nibble refers to a four-bit string (half a byte). In this paper
frequently associated an element byx® +b,x* +b,x + b, of
GF (16) with the nibble b,b,b,b,. The function RotNib is
defined to be RotNib(N,N,)=N;N, and the function
SubNib to be SubNib(NyN,) =S —box(N,)S —box(N,)
(these are functions for byte to bytes). Their names are
abbreviations for rotate nibble and substitute nibble,
respectively.

An array W ,whose entries are byte, is considered so that
the original key fills W[0] and W[1] in order.

For 2<i<5;If i=0(mod2) then:

WIi]=WI[i — 2] ® RCON(i / 2) ® SubNib(RotNib(W[i —1]))
else :

W[il=W[i-1]®WI[i-2]

The bits contained in the entries of W can be denoted
Koki..k;;. For 0<i<2 K; is considered as
K, =W[2iW[2i +1] So K, =kok;..k;s, K; =kky;...Ky
and K, =Kg,ks...k,, . For 1<i, K is the round key used
at the end of the i-th round (K, is used before the first

round).

As explained before, SAES algorithm operates on 16-bit
plaintext and generates 16-bit ciphertext, using the
expanded key K.k;..k,, . Suppose p,p;...p;s be plaintext

and the ciphertext be c,c,...c;; . The encryption algorithm

consists of the composition of 8 functions applied to
plaintext. So :

CoCy--Ci5 = A 0 SRONS0 A 0MCoSRONSO A, (P P;---Pss) (2)
where A, (p) =K; ® pand each function operates on a

state. The nibbles configurations are as fig (3).
pB p9 plO pll pO pl pZ p3

p12 p13 p14 p15 p4 p5 pB p7

Fig. (3)-The nibble configuration

The abbreviation NS stands for nibble substitution. The
function of NS is defined as :

N, | N, NS S —box(N,) | S—box(N,)
N3 N, > S —box(N;) | S—box(N,)
The SR stands for shift row. Its function is defined as :
N, | N SR N, | N,
N, [ N N, | N;

The abbreviation MC stands for mix column. A column
[N;,N;] of the state is considered to be the

element N;z + N of GF(16)[z]/(z? +1) . The function MC

multiplies each column by the polynomial ¢(z) = X’z +1.
This operation can be considered as:

N, N 2N, N
0 2| 12 X 0 2 ?)
N; N, x* 1Ny Ny
In SAES Encryption, the composition of function
A, 0MCo SRoNS is considered to be the i-th round. This

simplified algorithm has two rounds so, A is applied
prior of first round and MC omitted for second round.

3. Encryption Process of SAES

The encryption process is:
CoCi- €5 = A 0 SRONS0 A OMCoSRONSO A (P, p;---Pis)
At the first step, after A, (p) =K, ® p the output is:

ROk RSk PPk BBk | RS REK RSk RSk

BBk, P RaBKy BsBKs | ROk RSk RSk Pk

Let:
S —box(p; @K;, Pis @ Kiiyy Pivas @Kz Piis DKiys)
= MMy Mo Mg i=04812
and so on. After NS and SR the state is then :
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m8m9m10m11 m0m1m2m3

m4m5m6 m7 m12 m13 ml4 mlS
After MC the output is:
m, Om Bky,, M, OmM Em, Bk, | M OM, Bk M SM,EMDK;,,
m, OM OM,; Sk, M OM,; By, | M, S, M Dk, M OM, Dk
M, OM, Bk M OMOM,; Bhiyg, | M, BM, Bk, My SMy BM, DK,
m, Sm, &m, Oky, M OM Sk, | M Om O, Dk, M OM; Bk,

Let:

S —box(m, ®m,, ®k,s,m; ®m;, ®m;; k;;,m, ®m,,
@m, &k, m, ®@m,; k) =nynn,n,

S —box(m, @m,, ®k,,,m, ®m, &m,; Sk,,,m, &m
©my, ©ky,,m ®mys ©ky;) =n,N5ngn;

S —box(mg ®m; ®Kk,,,m, ®m, ®my @ Kk,;, m, ®m,
@AMy @Ky, mg ®my; DKy, ) =ngngnyony,

S —box(m, ®my; @ k,s,m; @m, ®my; Ky, m; Smy

(4)

®m, ® kso ,m, &m, ® k31) =N Ny3NyyNis
At the end of encryption, the final state will be equivalent

whit ciphertext:

r!i ®k40'rb ®k41'r50@k42’rh@k43 If.'O @kQZ’ nl ®k33’ nZ ®k34’ nS ®k35
Ny DKyl ey Py 1y Dy | 1, Bl 1 Dl 1y Dl N5 heg
S0, it is equivalent to :

CSCQClOCII COCICZCB

012013014015 CACSCGC7

By considering the key expansion:
Ko =WIOMWI[I] = (Koky...k7 )(KgKg.. Kis)

K, =W[2W[3] = (k16kl7"'
Kz :W[4]W[5] = (kazkas--

W[2] =W[0] ®100000006

k23)(k24k25 " 'k31)
'k39)(k40 I(41" 'k47)

S—box(k; K, K, K;5)S —hox(Kgkgk ki)

W3] =W[1] @W[2]
W[4] =W[2]©00110000 ®

S —boX(KygK,9K30K31)S —DOXK,KosK6K,7 )

W[B]=W[3]®W[4] (%)
Let:
S —box(kykyzkiskys) = lolyll,
S —box(kgkekioki ) =1,15ll
8KoKoKyy alslgly ©)

S —box(KygkgkaoKs ) = lglgliglis
S —box(ky,KasKaskar) = liplislislis

Therefore:

Ky =k, @101, , k =k i ®1 (i =1718,...,23)
k34 = le 1O |10 ) k35 = k19 1 |11 )
Ki =Ki_is @15, (i =32,33,36,37,38,39)

By considering W[3],W[5] :

259

K, = ks ®K,_j51=24,25.31 @
i = 40,41,...47

The above relation will be used in linear analysis in next
section.

4. First Round Linear Cryptanalysis

Linear attack, at the first, introduced for DES encryption
system, by Matsui [5]. In linear cryptanalysis assumed that
a single key has been used to encrypt many plaintexts and
that Eve (an eavesdropper) has access to many plaintexts
and corresponding cipher texts from this key so, Eve
wants determine this key. The idea of linear cryptanalysis
is to find equations of the form:
b@Zpi®ch=|Zk, 9)
ies; jes, €8,

with probability greater than 0.5 (the greater the better).
Here b is the bit 0 or 1, p, denotes the i-th plaintext bit,

¢, denotes the j-th cipher text bit, k, denotes the I-th key

bit and each s, is a subset of {0,1,...,15}. Since linear
cryptanalysis requires that Eve has plaintexts and
corresponding ciphertexts, it is called a known plaintext
attack [6].

The only non-linear function in simplified AES is the S-
box. It is desired to find the linear equations
corresponding input and output bits of the S-box which
hold with the highest probabilities (more than0.5). Let
S —box(a,a,a,a;) = b,bb,b, . It is possible that extract 8

equations with probability 0.75 between input and output
of S-boxes. So :

a; ®b, =1 a,®a,®b, ®b =1
a, ®a, ®h, =1 a,®b, @b, =1 (10)
a, ®b, =0 a,®h, =0

a,da dDa,dDa, ®b,=0 a,Pa ®a,®b, =0
Each of the above equations (according to Fig. (2)), have
probability equal to p=12/16=0.75. By substitution
these equations in equation (8), probability equations
system is extracted with probability equal to 0.75. Bu
using Fig (2) and relation (10):
CoDC@ky=my ®m, ®m, &m,
C,BC,®ky=m AEm, ®m;Ddm, dm, ®m,
C,DCyDkyy=m,&m, Em,Em, &m, &m,,
C,®c, Bk, =m,&m,; dm; &m,;,
c,®c,®k,=m,&m, dm, dm,,
C;DCy Dk y=my®@m; @m,; &m; ®m, dmy,
Ce@Cy, Bky=my®dm &m, ®m; &m; & m,
C, ®Cs Dkis=m A m; ®m,dm,
It should be noted that, If x and y be two Boolean By pair
wise adding of equations (11) :

(11)
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C,Dc, e, e, Dk Dk, =m &m,
C,DC, D, D, Dk, Dkz=m, ®m,
C,®c, D, e, Dk, @k, =m; ®my,
C,OC, D, DCy DKy DKe =m, &my,
By using relation (4) and equations related to k,; and ki,
in firs nibble:
m, ®my, kg =G
m, ®m, ®m, ®k, =c,
By using probability equations in (10) for relations (12)
and (13), linear equations system between plaintext,
ciphertext and keys (18 keys) with probability equal 0.625
is extracted. By solution of this probability linear
equations system, key can be fined.
For example, for first equation in (13) and using relations
a,®b,=0,a,®a ®a,®dh, =0 and a;®b, =1 |,
probability equations with probability equal 0.75 is
extracted, so:
p; @k, ©m; =1
P ©k, ®my, =0 (14)
Pre © Pz @ Py Ok, Okyy Dkyy ®my, =0
By using (10) for (3), two probability equations with
probability equal to 0.625 is resulted:
P ®p, ®c, B1 =k; ®k;,®kiq (15)
Ps @ P, ® Piy © Py D¢y L=k, Dk, Dkyz DKy, Dk
As described prior, it is possible to extract 18 independent
equations with probability equal to 0.625. This final
equations system is:
P; @ P, OC; Dy Doy Dy =k; Dk
p;, ® ps ®C, B, Dy ®c; =k, Dk
p,®p, Bc, ®cs®cy ®c,, =k Dk Dk, Dk,
P @ p, DC, B1 =k; @ ky, Oky
P ® pp, ®cC, D1 :ko®klz®k18
Ps D Py ®C, ®C, Dy @C), =k DKy DKy, Dy
p3 @ p12 @ p13 @ p14 @CO ®1 :k3 ®k12 @km @kIA ®k16
PoOP®P,®p, Dc, ®1 =k, Dk, Ok, Dk;, Dk

12)

(13)

P; © Ppg @ py DC; DC; Dy DCyy
=k, @k Dk, DKk, Dkiy
P ® P, D p; @ p, DC, DC; Dy DCyy
=k, @k, Dky Dky DK, Dkis
p7 @ p12 @ p13 @Cl @07 @C9 EBClS
=k, @k, Dk,, DK;; Dk,
p4 @ pS @ p12 @ p13 ®Cl ®C7 @CQ G_)CIS
=k, @k, Dk, Dk;, Dk;s DKy,
P, DP; @ py © Py @ Py DCy DC; DC; Dy
=k, @k, ®k,, ®k;; Dk,
PoOP,OP, DP; ® Py D Py @y @ Py C, BC DC Dy
=k, @k, Dk, Dk, @k, Dk, Dk, Dk,
p5 @ p12 ® p13 ® p14 @ p15 ®CZ ®C4 @3010 ®C12
=k; ®k; Dkjz Dky, Dkyg
p4 ® pS @ ps @ p7 @ p12 ® p13 @ p14 ® p15 ®C2 ®C4 ®C10 ®C12
=k, Dk, Dk, Dk, @k, Dk, Dk, Dk
PO P, D Py D Py OC, DC; DC; Dy DCy Dy Dy, Dy
=k, @k, @k, @k, DK,y Dk;; @k, Dk,
Ps @ Ps D Pz @ pyy, BC, OC, DC, DC; DTy DYy DCy, DCig
=k, ®ks DKy Dkyy Dk;, Dk DKy, DKis (16)
As described above, Eve now takes the known plaintetxts
and corresponding ciphertexts and evaluates the left-hand
side of each of the 18 equations. The main question it that,
how many texts is needed for Eve to break the cipher?

Let, Eve wants to be 95% certain that all 18 key bit
choices are correct. For i=1,...,18, let p, =0.625 denote
the random variable whose value is equal to the proportion
of the n plaintexts and corresponding ciphertexts for
which the left-hand side of equation i is equal to the
correct value (0 or 1) of the right-hand side, for the given
key. For each i, the expected value of p;is 0.625 and its

0.625(1-0.625)
n

variance is . Therefore the standard

deviation of p, is 1/—0'625(1_0'625) .
n

It is desired that prob(p; >0.5)=%0.95 =0.9972 . For
sufficiently large n, the random variable p;is essentially
normal. So it is possible that, standardize p, by subtracting

off its expected value and dividing by its standard
deviation, which will give (approximately) the standard
normal random variable denoted as Z.

p;, —0.625 0.5-0.625

\/0.625(1—0.623 - \/0.625(1—0.625)

n n

pro )=0.9972
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L orop(PLm0625 | 050625
Prob{—5 2841 0.4841

Jn Jn
Then :

p(Z > -0.2582+4/n) = 0.9972
p(Z < 0.25824/n) =1-0.9972 = 0.0028 17)

p(Z > 0.25824/n) = Q(0.2582+/n) = 0.0028

By using standard Z function table:
n=115.1179

Then 116 plaintexts are needed for broken the cipher. If
none of the keys works, she can get more plaintexts and
corresponding ciphertexts.

Thus this linear cryptanalytic attack seems very attractive
compared to a pure brute force attack for second round
SAES. However when added rounds (for real AES), more
addition of equations is needed in order to elimination
unknown parameters. In this situation, intermediary bits
and the probabilities associated to the equations then tend
toward 0.5, is needed (as seen above the probability go
from 0.75 to 0.625). The result is that, many more
plaintexts and corresponding ciphertexts is needed in order
to be fairly certain of picking the correct bit values for
the >k, 's.

leS

) =0.9972

5. Second Round Linear Cryptanalysis

As told before, the idea of linear cryptanalysis is to find
equations of the form (9). In this cryptanalysis, one system
with 32 linear  equations  for 32 keys
Ko Ky, Kigs Kigr Kigsee Koz, Kap, Kag, - Kag With  probability equal
0.5625 is extracted. The other expanded keys can be
converted to original key in this linear equations system,
then it is possible to extract original key by solution this
system equations. Note that variable indexes from O till 15
correspond to plaintext and cipher text and indexes from 0
till 47 corresponding to keys. In analysis it is preferred the
equations be corresponding to original key (if it is
possible).

Similar to before section, it is possible to extract 12
equations with probability 0.75 between input and output
of S-boxes, i.e.,

a, ®h, =0 a;®b, =1
a, ®a, dh, =1 a,®a Dh, =1
a, ®b, ®b, =1 a @b =0 (18)
a, ®b, @b, =1 a,®a Pa,Pa;®b =0
a, ®b, ®h, =0 a ®a,®h, ®b, =1

a,®a, ®b, ®b, b, =1 a, b, Db, =1

Each of the above equations (according to Fig.(2)), have
probability equal to p=12/16=0.75. By substitution
these equations in four equations of (4), 48 probability

equations are extracted with probability equal to 0.75.
Some of these equations are:

ms ®my; Dk; @ (¢ @ks,) =1
m ®&m, ®m; ®k;; ®(c, Dky,) =1 (19)
m, ®m,, ®k,s ®(c, DKy,) =0

m, ®m, ®m, ®k,; Dk, ®(C; Dky) =1
To extract new equations, we should combine above 48
equations so that, the m; of each equations in (19),
correspond to one nibble. The probability of 48 resultant
equations  (relation  (20)) will be equal to
2(0.75)? —2(0.75) +1=0.625 .
As described prior, it is possible to extract 32 independent
equations from 48 equations with probability equal to
0.625. These final 32 equations are:
As described above, Eve now takes the known plaintetxts
and corresponding ciphertexts and evaluates the left-hand
side of each of the 32 equations. The main question it that,
how many texts is needed for Eve to break the cipher?
Let, Eve wants to be 95% certain that all 32 key bit
choices are correct. For i=1,...,32, let p, =0.5625 denote
the random variable whose value is equal to the proportion
of the n plaintexts and corresponding ciphertexts for
which the left-hand side of equation i is equal to the
correct value (0 or 1) of the right-hand side, for the given
key. For each i, the expected value of p;is 0.5625 and its
0.5625(1-0.5625)
n
0.5625(1 - 0.5625)
. .
It is desired that prob(p; > 0.5) =%0.95 = 0.998398 . For
sufficiently large n, the random variable p;is essentially
normal. So it is possible that, standardize p, by subtracting

off its expected value and dividing by its standard
deviation, which will give (approximately) the standard
normal random variable denoted as Z.

variance is . Therefore the standard

deviation of p;is J

orob——P 05625  05-05625 o0,
\/0.5625(1—0.5623 ‘/0.5625(1—0.562@
n n
p, —0.5625 0.5-0.5625,
= Prob(7og07 ~ 0496078 )~ 0098398 (2D

Jn Jn
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P; OC, DCyy =ky Dk Bk Oky, Ok,
Po @ P, DC, DCyy =k, @k, Dk, kg DKy, DKy
p3 ®c0 ®c12 ®C].5 = k3 @ k12 @ k15 @ k19 @ kZO @ k21 @ k23 @ k32 @ k36 @ k39
pl3 @ CO @ C14 @ C15 = k13 @ k14 @ k15 @ k16 @ I(17 @ k23 @ k32 @ k38 @ k39
pl3 @ C0 @ Cl3 @ C15 = le @ k16 @ k17 @ k21 @ k22 @ k23 @ k32 @ k37 @ k39
Pis DC, DCpy =k, ©kis Dk, DKy Dkyg Dkyy Dkg
P, © Py ®C, Dy, =Kz @ kyy DKy Dkyps Dkyy DKyg
p, ®c, dc, D1 =k, Dk, Dk, Dky; DKig DKy DKy, DKyy @ Kyg
pl4 @ plS ®CO ®cl ®C15 ®1 = k14 @ le ®k22 @ k32 @ k33 @ k39
p, ®c, ®c, dc,; Dc, Dey, =k, @k, @k @k @Ky DKy @ Kyy DKy DKy
PP Dp,dp,dc,dc, e, Dcy =k, Dk, Dk, Dk, Dk, ks DKo DK DK, D Kyy DKyg DKy
p,®c,®c, ®c; ey, =k, @k;; @k;z Dk, DK,, Dky, @Ky, DKyy DKy, Dy
p, ®c, dc, e, DL =k, @k, Dk DKy @Ky DKy, @ Kog DKy
p, ®c, dc,, De, DL =k, ®Kk;; @k ®Kyg @Ky DK,y DKy DKy DKyy @ Kyg
P ® Py OC, OCy, =k, D kg Dkig DKy Dky, DKyy Dkys DKy,
p, ®p; ®c; e, D, D1 =k, ®k, Dk, DKy kg kg DKy DKy D Kyg DKy,
p, ®p,®c; Dy, =k, Dk; ©kyy O kg O kg Oy DKy, DKy Dkyg
p, ®c, dc, ey, =k, @k, Dk;g Dk, DKy, DKy DKy
pl3 @ CZ @ CS @ C12 (_B C13 :klZ @ k18 (_B k21 @ k34 @ k35 (_B k36 @ k37
Pio © Py @ Py @ pys DC, DC; DCy, DCyy =Ky Dkys Dkyg Dk Dk, DKyg Ok 35Dk,
P ®c, dc, dc, @1 =K @Ky DKy @Ky DKy, DKy DKyg @Ky
p,®c,®c, Dc,, e, De =k, ®K;; @Ky ®kis DKig DKyg DKy, DKy DKyy @Ky DKyy DKyg DKy
p, ®c, dc, dc,, =k, @Ky, ® Ky DKy @Kyy @ Kyg DKy
pl3 @ Cl (_B CS @ ClZ @ ClS = k12 (_B k18 @ k21 @ k33 @ k35 (_B k36 @ k37
Py DC; Dy =ks @ky; Okys Okyy Oky Dk, DKy (20)
Ps © Py DC; Dy =k, Dk Oky; ki ki ky Dk, DKy
ps @cs Dc, Dy =k, @k, ®k, Dk Dk,, DKy, Dkyg @ Kog
p; ®c, ®cy =k; @kys Okyy Dkys DKy
P, © ps BC, DCy =K, B ks Dkys Dkyy Okyy Dk
Ps @ Py ®C, D, =Ky @k D ky; DKy DK DKy DKy @Ko DKy, DKyy D Kyy DKy
Pe @ p; D, ey, dey, D1 =k; DK, @Ky DK,y DK DKy DK, DKy B Ky, Ky DKy
P © P; ©C, ey =ks ©k; Dky Dkyp Dkyy Dkys Dkyg Dkyg Dk BKyy Okyy Dy
Then : SAES. However when added rounds (for real AES), more
p(Z > -0.125988y/n) = 0.998398 addition of equations is needed in order to elimination
unknown parameters. In this situation, intermediary bits
p(Z < —0-125988\/5) =1-0.998398 = 0.001602  (22) and the probabilities associated to the equations then tend
p(Z > 0.125988v/n) = Q(0.125988+/n) = 0.001602 toward 0.5, is needed (as seen above the probability go
By using standard Z-function table: from 0.75 to 0.5625). The result is that, many more
n—547.3138 plaintexts and corresponding ciphertexts is needed in order

. . to be fairly certain of picking the correct bit values for
Then 548 plaintexts are needed for broken the cipher. If

none of the keys works, she can get more plaintexts and theg;k, s
corresponding ciphertexts.

Thus this linear cryptanalytic attack seems very attractive

compared to a pure brute force attack for second round
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6. Conclusion

The linear attack was developed on full rounds SAES, in
this paper. Using this linear cryptanalysis results, was
shown that the first and second round SAES is breakable
with linear calculations. So, we showed that this algorithm
is vulnerable against linear attack. This, as a consequence,
can be led to design a better cryptanalytic attack on real
AES.
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