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Summary 
Technology has seen the development of processor industry right 
from micro to the latest Nano-technology with Speed and 
performance being important criteria, not much attention has 
been given to the power requirement for these integrated Circuits. 
Present fully synchronous processors have evolved with a Global 
clock which is supplied throughout the die; this has resulted in 
unwanted power consumption and dissipation. The other 
significant problem is supply of this global clock with a low 
skew through the entire die. Each and every existing 
synchronous processor cannot be converted to Asynchronous 
processors due to certain design constraints such as complexity 
and compatibility. An architecture, which is a hybrid between a 
fully synchronous and an Asynchronous processor, termed as 
Globally Asynchronous and Locally Synchronous processor 
(GALS) is being incorporated in our design. We propose to 
analyze a Very Long Instruction Word (VLIW) processor which 
exploits Instruction Level Parallelism (ILP) to increase the speed 
of execution. Simulation analysis is done on a prototype VLIW 
processor under GALS multiprocessor environment to reduce 
power with same performance. 
Key words: 
Globally Asynchronous Locally Synchronous (GALS), Very Long 
Instruction Word (VLIW), Field programmable gate array 
(FPGA) etc 
1 Introduction to GALS Design 
 

The trend towards system-on-chip designs leads 
to chips containing several memories and IP modules 
which all have different cycle times. In future technologies 
it will become increasingly difficult to distribute high-
speed low-skew clock signals. Therefore, future chips will 
contain several locally clocked sub modules, which 
communicate through dedicated glue logic. These 
heterogeneous systems are called GALS (Globally 
Asynchronous Locally Synchronous).   

 
The GALS basically consists of a large number 

of synchronous modules, which are synchronized by a 
clock locally and communicate asynchronously with other 
synchronous blocks. As the global clock net gets divided, 
the constraints of clock skew on the synchronous modules 
get eased. The GALS methodology is well effective only 
as long as the overheads due to local clock generation and 
asynchronous handshaking are kept low compared to the 

gain achieved from the elimination of global clock. The 
self-timed approach is efficient, since it does away with 
the need to time-align the operation of all modules within 
the framework of a common base clock period. Instead, 
each module is driven from a local clock generator in its 
self-timed wrapper [3]. The local generator is made 
pausable and controlled such as to prevent any timing 
violations from occurring within the locally synchronous 
island’s data interface. By this method metastability is 
prevented rather than resolved. No extra latency is 
required for synchronizers, FIFO.  The local clock 
frequency is chosen to perfectly fit the needs of the 
particular module.  The basic block diagram is shown in 
figure 1.1 

In this paper we try to emulate the importance of 
high performance pipelined processors under this GALS 
technology and how efficient they are when it comes to 
obeying low power norms.  

 
 

 
 

1.1.1 Figure 1 GALS architecture 

 
1.2     VLIW Processor  
 

Very Long Instruction Word (VLIW) is one 
particular style of processor design that tries to achieve 
high levels of instruction level parallelism (ILP) by 
executing long instruction words composed of multiple 
operations [1,2]. The long instruction word called a 
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MultiOp consists of multiple arithmetic, logic and control 
operations each of which would probably be an individual 
operation on a simple RISC processor. The VLIW 
processor concurrently executes the set of operations 
within a MultiOp thereby achieving instruction level 
parallelism. MultiOp consists of many tightly coupled 
independent operations each of which execute in a small 
and statically predictable number of cycles. In such a 
system the task of grouping independent operations into a 
MultiOp is done by a compiler or binary translator.  

 
 
Figure 2 Format of MultiOP 
 
1.3 Conditions for using VLIW Processor 
 

Usage of VLIW processor has a few constraints: 
• There must be high degree of ILP in the program. 

Functional units must be duplicated which posses 
hardware design difficulties. 

• Efficient compiler is required which can predict 
the path of branch instructions more accurately. 

 
VLIW processor requires duplication of hardware. 

In this design there are 2 fixed point ALU, 1 fixed point 
multiplication/division unit, 1 floating point 
addition/subtraction unit, 1 floating point 
multiplication/division unit, 1 load unit, 1store unit and 1 
branch unit. This hardware duplication facilitates 
execution of several instructions simultaneously. 

 
 
Figure 3 Functional Unit Duplication in VLIW Processor 
 

2. 2 Implementation of functional blocks 
 

The ALU is capable of handling 16 bits Addition, 
Subtraction, Increment and Decrement of data 
simultaneously and it has an input carry bit Cin .The 
outputs are 16-bit sum and carry output bit Cout. The logic 
unit is also capable of handling16 bit data and it performs 
four basic logical operations AND, OR, NOT and XOR 
using the two select lines S1, S0. The carry input and output 
bit are ‘don’t care’ bits for logical operations.  

 
The arithmetic unit and logic unit are 

differentiated using the Mode select line S2. It takes one bit 
of inputs Ai, Bi and carry Ci and performs the 
corresponding arithmetic and logic operation based on the 
operation select lines S1, S0. The output Gi is selected from 
either arithmetic unit or logical unit output using a 2 to 1 
Mux with S2 as select line. The block diagram and truth 
table are shown below 
 

 

2.1.1.1.1.1.1  

2.1.1.1.1.1.2 Figure 4 One Bit Operation of ALU 

 

 
Table 1 Truth Table of ALU 

2.1.1.2  
2.1 Multiplication and division unit 

The multiplication unit performs both unsigned 
and signed multiplication. It takes two 8 bit inputs A and 
B and the output P is 16 bit. The multiplication is done 
using Modified Extended Booth Algorithm which is 
preferred to other multiplication algorithm like Repeated 
Addition and Booth algorithm because of its rapid 
computation efficiency. Modified Booth’s Algorithm 
needs just ‘n/2’ steps to arrive at the product of two n bit 
numbers. The select line is used to choose between 
unsigned and signed multiplication outputs. 

The division unit performs both unsigned and 
signed division. It takes two inputs 16 bit dividend A and 
8 bit divisor B and the outputs are quotient Q 16 bits and 
remainder R 8 bit. Both the division is done using Non-
Restoring algorithm. Non-Restoring Algorithm needs just 
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‘n’ additions or subtractions.  The select line is used to 
choose between unsigned and signed division outputs. 

2.2 Floating point  operation  
Floating point is represented by IEEE 754 

standard which   comprises of 23-bit mantissa M, an 8-bit 
exponent field E and a sign bit S. The mantissa is said to 
be normalized if the digit to the right of the radix point is 
not zero, that is, no leading zeros appear in the magnitude 
part of the number. Hence the magnitude part of the 
normalized mantissa is always ‘1’. To facilitates to test for 
zero the  floating point exponents should be encoded in 
excess-K code similar to excess-3 code, where the 
exponent field E contains an integer that is the desired 
exponent value plus K (K=127).  

 

 

2.1.1.2.1.1.1  

2.1.1.2.1.1.2 Figure 5 IEEE 754 standard 

The number N represented by a 32-bit floating point  has 
the following set of interpretations: 

1. If 0 < E < 255, then N= (-1)S * 2E-127 * (1.M) 
2. If E = 0 and M != 0,  then N =(-1)S * 2E-126 *  (0.M) 
3. If E = 0 and M = 0, then N = (-1)S*0 

 
For the addition and subtraction of two floating 

point numbers, their exponents must be made equal before 
the corresponding mantissa can be added or subtracted. 
This exponent equalization is done by right shifting the 
mantissa XM associated with the smaller exponent XE a 
total of YE-XE digits to form the new mantissa XM *2(X

E 
- 

Y
E ) which can be combined directly with YM.  Addition 

and subtraction has four steps: 
1. Compute YE-XE, a fixed point of subtraction. 
2. Shift XM by YE-XE laces to the right to form XM*2  
    (X

E
-Y

E). 
3. Compute XM *2 XE-YE ±YM, a fixed point addition or  
    subtraction. 
4. Normalize the result 
 

Floating point multiplication involves a fixed-
point multiplication of the mantissas and a fixed-point 
addition of their exponents. The multiplication is done 
using Modified Booth’s Algorithm.  

X * Y = (Xm * Ym) * 2Xe+Ye ……...........(1) 

Floating point division involves a fixed-point division of 
the mantissas and a fixed-point subtraction of their 

exponents. The division is done using Non-Restoring 
Algorithm.  

X / Y = (Xm / Ym) * 2Xe-Ye ......................(2) 

 
3 VLIW Format 
 

The VLIW processor designed is a 16-bit processor 
and it is capable of executing 6 instructions per cycle. Two 
separate register sets for fixed and floating-point 
operations are available. Each register set has 64 registers. 
The fixed-point registers are 16 bit in length and floating-
point registers are 32 bit in length. The individual registers 
are addresses with a six bit address. The processor is 
designed with Harvard architecture. It has separate code 
memory and data memory. So, the processor has access to 
code and data at the same time. This enables execution 
speedup. The code memory address bus is 16 bit and its 
data bus is 128 bit. The data memory address bus is 8 bit 
and its data bus is 16 bit.  It has a prefetch queue of size 6.  
The block diagram is shown in figure 3.1. 

The processor executes 6 instructions per cycle. It can 
perform 

• One floating point addition/subtraction 
• One floating point multiplication/division 
• Two fixed point ALU operation 
• One fixed point multiplication/division 
• One load/store operation. 

 

 
 

 
 
Figure 6 VLIW Format 

 

4 GALS Modules implementation 
The VLIW processor designed is split into three 

GALS modules operating in different frequencies. The 
GALS modules are 

o Memory-Prefetch Queue Module 
o Decoder Module 
o Functional Unit - Register Module. 
 

4.1 Memory - prefetch module 
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Figure 7 Memory - Prefetch Module 

 
 The memory-prefetch module fetches the 128 bit 
VLIW instructions from the memory and places it in the 
prefetch queue of size 6. This enables increasing the speed 
of the processor through pipelining. The module passes 
the VLIW from the queue to the decoder module. The 
module operates at 80 MHz.  
 
4.2 Decoder module 
 
 The decoder module decodes the VLIW passed 
by the memory-prefetch module and generates the control 
signals and register addresses for all the six instructions. 
The module operates at 60 MHz. 
 
4.3 Functional unit-register module 
 
The functional unit-register module consists of  

• Functional units 
o One floating point addition/subtraction 

unit 
o One floating point 

multiplication/division unit  
o Two fixed point ALU  
o One fixed point multiplication/division 

unit 
o One load/store unit 

• Register set 
o Fixed-point register set 
o Floating-point register set. 

 
The module uses the controls signals and register 
addresses from decoder module. It accesses the registers 
for data and passes them to functional units to compute the 
result. The result is then stored back into the register. The 
module is operated at 50 MHz.  The block diagram is 
shown below 
 

 
 
Figure 8 Functional Unit – Register Module 
 
5. Simulation results  
 

The simulation result of VLIW processor is 
shown below and it can performs 6 instructions at a time.  
 

 
 
Figure 9 Simulation result of VLIW processor 

 
The VHDL code is synthesized using FPGA 

Advantage tool and reports are shown below 
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Figure 10 Synthesis report of decoder 
 

 
 
Figure 11 Synthesis report of ALU 
 
The VLIW processor is simulated with global clock and 
the synthesis report gives 30.2 MHz operation.   In this 
design we found that the minimum clock required is about 
50 MHz.  There will be 1.5 times increase in the speed of 
operation and also the circuit is free from the metastability 
and clock skew.   
 
6 Conclusion and future work 
 
 The VLIW processor is implemented using 
GALS architecture with pipeline and each module is 
running at different clock frequency.  Using this 
architecture the power is reduced due to local clock and 
the ALU which is not operational will consume less power 
due to low clock speed. 
 

The future work of the project is to include 
Dynamic voltage scaling for further reduction in power 
and also this architecture can be implemented in ASIC. 
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