
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

264

Manuscript received July 5, 2007

Manuscript revised July 25, 2007

IMPLEMENTATION OF NOVEL PIPELINE VLIW
ARCHITECTUR IN FPGA

R.SESHASAYANAN * and Dr S.K.SRIVATSA**

* Lecturer, Department of Electronics and Communication, Anna University , Chennai – 25
** Professor, Department of Electronics and Communication, Anna University, Chennai –25

Summary
Technology has seen the development of processor industry right
from micro to the latest Nano-technology with Speed and
performance being important criteria, not much attention has
been given to the power requirement for these integrated Circuits.
Present fully synchronous processors have evolved with a Global
clock which is supplied throughout the die; this has resulted in
unwanted power consumption and dissipation. The other
significant problem is supply of this global clock with a low
skew through the entire die. Each and every existing
synchronous processor cannot be converted to Asynchronous
processors due to certain design constraints such as complexity
and compatibility. An architecture, which is a hybrid between a
fully synchronous and an Asynchronous processor, termed as
Globally Asynchronous and Locally Synchronous processor
(GALS) is being incorporated in our design. We propose to
analyze a Very Long Instruction Word (VLIW) processor which
exploits Instruction Level Parallelism (ILP) to increase the speed
of execution. Simulation analysis is done on a prototype VLIW
processor under GALS multiprocessor environment to reduce
power with same performance.
Key words:
Globally Asynchronous Locally Synchronous (GALS), Very Long
Instruction Word (VLIW), Field programmable gate array
(FPGA) etc
1 Introduction to GALS Design

The trend towards system-on-chip designs leads
to chips containing several memories and IP modules
which all have different cycle times. In future technologies
it will become increasingly difficult to distribute high-
speed low-skew clock signals. Therefore, future chips will
contain several locally clocked sub modules, which
communicate through dedicated glue logic. These
heterogeneous systems are called GALS (Globally
Asynchronous Locally Synchronous).

The GALS basically consists of a large number

of synchronous modules, which are synchronized by a
clock locally and communicate asynchronously with other
synchronous blocks. As the global clock net gets divided,
the constraints of clock skew on the synchronous modules
get eased. The GALS methodology is well effective only
as long as the overheads due to local clock generation and
asynchronous handshaking are kept low compared to the

gain achieved from the elimination of global clock. The
self-timed approach is efficient, since it does away with
the need to time-align the operation of all modules within
the framework of a common base clock period. Instead,
each module is driven from a local clock generator in its
self-timed wrapper [3]. The local generator is made
pausable and controlled such as to prevent any timing
violations from occurring within the locally synchronous
island’s data interface. By this method metastability is
prevented rather than resolved. No extra latency is
required for synchronizers, FIFO. The local clock
frequency is chosen to perfectly fit the needs of the
particular module. The basic block diagram is shown in
figure 1.1

In this paper we try to emulate the importance of
high performance pipelined processors under this GALS
technology and how efficient they are when it comes to
obeying low power norms.

1.1.1 Figure 1 GALS architecture

1.2 VLIW Processor

Very Long Instruction Word (VLIW) is one
particular style of processor design that tries to achieve
high levels of instruction level parallelism (ILP) by
executing long instruction words composed of multiple
operations [1,2]. The long instruction word called a

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

265

MultiOp consists of multiple arithmetic, logic and control
operations each of which would probably be an individual
operation on a simple RISC processor. The VLIW
processor concurrently executes the set of operations
within a MultiOp thereby achieving instruction level
parallelism. MultiOp consists of many tightly coupled
independent operations each of which execute in a small
and statically predictable number of cycles. In such a
system the task of grouping independent operations into a
MultiOp is done by a compiler or binary translator.

Figure 2 Format of MultiOP

1.3 Conditions for using VLIW Processor

Usage of VLIW processor has a few constraints:
• There must be high degree of ILP in the program.

Functional units must be duplicated which posses
hardware design difficulties.

• Efficient compiler is required which can predict
the path of branch instructions more accurately.

VLIW processor requires duplication of hardware.

In this design there are 2 fixed point ALU, 1 fixed point
multiplication/division unit, 1 floating point
addition/subtraction unit, 1 floating point
multiplication/division unit, 1 load unit, 1store unit and 1
branch unit. This hardware duplication facilitates
execution of several instructions simultaneously.

Figure 3 Functional Unit Duplication in VLIW Processor

2. 2 Implementation of functional blocks

The ALU is capable of handling 16 bits Addition,
Subtraction, Increment and Decrement of data
simultaneously and it has an input carry bit Cin .The
outputs are 16-bit sum and carry output bit Cout. The logic
unit is also capable of handling16 bit data and it performs
four basic logical operations AND, OR, NOT and XOR
using the two select lines S1, S0. The carry input and output
bit are ‘don’t care’ bits for logical operations.

The arithmetic unit and logic unit are

differentiated using the Mode select line S2. It takes one bit
of inputs Ai, Bi and carry Ci and performs the
corresponding arithmetic and logic operation based on the
operation select lines S1, S0. The output Gi is selected from
either arithmetic unit or logical unit output using a 2 to 1
Mux with S2 as select line. The block diagram and truth
table are shown below

2.1.1.1.1.1.1

2.1.1.1.1.1.2 Figure 4 One Bit Operation of ALU

Table 1 Truth Table of ALU

2.1.1.2
2.1 Multiplication and division unit

The multiplication unit performs both unsigned
and signed multiplication. It takes two 8 bit inputs A and
B and the output P is 16 bit. The multiplication is done
using Modified Extended Booth Algorithm which is
preferred to other multiplication algorithm like Repeated
Addition and Booth algorithm because of its rapid
computation efficiency. Modified Booth’s Algorithm
needs just ‘n/2’ steps to arrive at the product of two n bit
numbers. The select line is used to choose between
unsigned and signed multiplication outputs.

The division unit performs both unsigned and
signed division. It takes two inputs 16 bit dividend A and
8 bit divisor B and the outputs are quotient Q 16 bits and
remainder R 8 bit. Both the division is done using Non-
Restoring algorithm. Non-Restoring Algorithm needs just

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

266

‘n’ additions or subtractions. The select line is used to
choose between unsigned and signed division outputs.

2.2 Floating point operation
Floating point is represented by IEEE 754

standard which comprises of 23-bit mantissa M, an 8-bit
exponent field E and a sign bit S. The mantissa is said to
be normalized if the digit to the right of the radix point is
not zero, that is, no leading zeros appear in the magnitude
part of the number. Hence the magnitude part of the
normalized mantissa is always ‘1’. To facilitates to test for
zero the floating point exponents should be encoded in
excess-K code similar to excess-3 code, where the
exponent field E contains an integer that is the desired
exponent value plus K (K=127).

2.1.1.2.1.1.1

2.1.1.2.1.1.2 Figure 5 IEEE 754 standard

The number N represented by a 32-bit floating point has
the following set of interpretations:

1. If 0 < E < 255, then N= (-1)S * 2E-127 * (1.M)
2. If E = 0 and M != 0, then N =(-1)S * 2E-126 * (0.M)
3. If E = 0 and M = 0, then N = (-1)S*0

For the addition and subtraction of two floating

point numbers, their exponents must be made equal before
the corresponding mantissa can be added or subtracted.
This exponent equalization is done by right shifting the
mantissa XM associated with the smaller exponent XE a
total of YE-XE digits to form the new mantissa XM *2(X

E
-

Y
E) which can be combined directly with YM. Addition

and subtraction has four steps:
1. Compute YE-XE, a fixed point of subtraction.
2. Shift XM by YE-XE laces to the right to form XM*2
 (X

E
-Y

E).
3. Compute XM *2 XE-YE ±YM, a fixed point addition or
 subtraction.
4. Normalize the result

Floating point multiplication involves a fixed-
point multiplication of the mantissas and a fixed-point
addition of their exponents. The multiplication is done
using Modified Booth’s Algorithm.

X * Y = (Xm * Ym) * 2Xe+Ye ……...........(1)

Floating point division involves a fixed-point division of
the mantissas and a fixed-point subtraction of their

exponents. The division is done using Non-Restoring
Algorithm.

X / Y = (Xm / Ym) * 2Xe-Ye(2)

3 VLIW Format

The VLIW processor designed is a 16-bit processor
and it is capable of executing 6 instructions per cycle. Two
separate register sets for fixed and floating-point
operations are available. Each register set has 64 registers.
The fixed-point registers are 16 bit in length and floating-
point registers are 32 bit in length. The individual registers
are addresses with a six bit address. The processor is
designed with Harvard architecture. It has separate code
memory and data memory. So, the processor has access to
code and data at the same time. This enables execution
speedup. The code memory address bus is 16 bit and its
data bus is 128 bit. The data memory address bus is 8 bit
and its data bus is 16 bit. It has a prefetch queue of size 6.
The block diagram is shown in figure 3.1.

The processor executes 6 instructions per cycle. It can
perform

• One floating point addition/subtraction
• One floating point multiplication/division
• Two fixed point ALU operation
• One fixed point multiplication/division
• One load/store operation.

Figure 6 VLIW Format

4 GALS Modules implementation
The VLIW processor designed is split into three

GALS modules operating in different frequencies. The
GALS modules are

o Memory-Prefetch Queue Module
o Decoder Module
o Functional Unit - Register Module.

4.1 Memory - prefetch module

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

267

Figure 7 Memory - Prefetch Module

 The memory-prefetch module fetches the 128 bit
VLIW instructions from the memory and places it in the
prefetch queue of size 6. This enables increasing the speed
of the processor through pipelining. The module passes
the VLIW from the queue to the decoder module. The
module operates at 80 MHz.

4.2 Decoder module

 The decoder module decodes the VLIW passed
by the memory-prefetch module and generates the control
signals and register addresses for all the six instructions.
The module operates at 60 MHz.

4.3 Functional unit-register module

The functional unit-register module consists of

• Functional units
o One floating point addition/subtraction

unit
o One floating point

multiplication/division unit
o Two fixed point ALU
o One fixed point multiplication/division

unit
o One load/store unit

• Register set
o Fixed-point register set
o Floating-point register set.

The module uses the controls signals and register
addresses from decoder module. It accesses the registers
for data and passes them to functional units to compute the
result. The result is then stored back into the register. The
module is operated at 50 MHz. The block diagram is
shown below

Figure 8 Functional Unit – Register Module

5. Simulation results

The simulation result of VLIW processor is
shown below and it can performs 6 instructions at a time.

Figure 9 Simulation result of VLIW processor

The VHDL code is synthesized using FPGA

Advantage tool and reports are shown below

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

268

Figure 10 Synthesis report of decoder

Figure 11 Synthesis report of ALU

The VLIW processor is simulated with global clock and
the synthesis report gives 30.2 MHz operation. In this
design we found that the minimum clock required is about
50 MHz. There will be 1.5 times increase in the speed of
operation and also the circuit is free from the metastability
and clock skew.

6 Conclusion and future work

 The VLIW processor is implemented using
GALS architecture with pipeline and each module is
running at different clock frequency. Using this
architecture the power is reduced due to local clock and
the ALU which is not operational will consume less power
due to low clock speed.

The future work of the project is to include
Dynamic voltage scaling for further reduction in power
and also this architecture can be implemented in ASIC.

REFERENCES

1. Joseph A. Fischer (1983) ‘Very Long Instruction Word

Architectures and the ELI-512’,Proceedings of the
10'th Symposium on Computer Architectures, pp. 140-
150.

2. Joseph A. Fisher (1998) ‘Very Long Instruction Word

Architectures and the ELI-512', 25 Years ISCA: pp.
263-273.

3. John P. Hayes (1998) ‘Computer Architecture and

Organization’, McGraw-Hill.

4. Jens Muttersbach (2001) ‘Globally-Asynchronous
Locally Synchronous Systems for VLSI Systems’. PhD
thesis, ETH, Zurich.

Mr..R. Seshasayanan was born
in the year 1958 and received his
B.E degree from College of
Engineering and M.E. degree
from Anna university in the year
1980 and 1983 respectively .He is
presently working as Lecturer in
the Department of Electronics
and Communication, Anna
University, and pursuing his
Doctoral degree in the field of
Embedded system and area of
interests are VLSI Design,

Reconfigurable architecture and Low power design.

