
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

321

Design and Development of a Unified framework
 for Secure Group Communications

Nagesh H.R†, K. Chandra Sekaran††

†Department of Computer Engineering, P.A. College of Engineering, Mangalore, Karnataka, INDIA

††Department of Computer Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, INDIA

Summary
 Many emerging network applications (e.g. teleconference,
information services, distributed interactive simulation and
collaborative network) are based on a group
communications model. As a result, securing group
communications, i.e., providing confidentiality,
authenticity, and integrity of messages delivered between
group members, will become networking issue. A secure
group is a triple (U, K, R) where U denotes a set of users,
K a set of keys held by the users, and R is a user-key
relation. Secure groups are specified using key graphs.
Three rekeying strategies: user-oriented, key-oriented, and
group-oriented for securely distributing rekey messages
after a join or leave are designed. Protocols for joining and
leaving secure groups are designed and implemented. The
rekeying strategies and join or leave protocols are
implemented in a key server. This paper deals with design
and development of a unified framework for secure group
communications which implements join/leave protocols
for all three rekeying strategies. The strategy is worked on
client/server basis in a hierarchical fashion, structured as a
tree with the server at the root and groups forming the
nodes ending up in clients. The height of the tree has been
kept as constant (=3). Because of this height, join and
leave operations will become easier. Public key
cryptosystem has been used for encryption, decryption of
rekey messages, and original messages (key length=1024-
bits). Behavior of the system for user-oriented, key-
oriented, and group-oriented rekeying strategies is
experimented and reported in this paper. Our
implementation of secure group communications provides
authentication, confidentiality and integrity of the
messages delivered between the group members.
Key words:
Confidentiality, Group communications, Group key
management, Key distribution, Multicast, Privacy,
Rekeying, Security.

1. Introduction

Most network applications are based on the client-server
paradigm and make use of unicast packet delivery. Many
emerging applications on the other hand, are based upon a
group communications model. In particular, they require

packet delivery from one or more authorized sender(s) to a
large number of authorized receivers. In the Internet,
multicast has been used successfully to provide an
efficient, best effort delivery service to large groups [2].
Securing group communications, i.e., providing
confidentiality, authenticity, and integrity of messages
delivered between members, will become a critical
networking issue.
 With a hierarchy of keys, there are many different ways
to construct rekey messages and securely distribute them
to users. Three rekeying strategies are used: user-oriented,
key-oriented, and group-oriented. Join/leave protocols will
be designed based upon these three rekeying strategies.
Key-oriented and user-oriented rekeying, use multiple
rekey messages, whereas group-oriented rekeying uses a
single rekey message [8].
 In [1] implementation of the three rekeying strategies
and protocols for larger group size with more number of
levels with DES 56-bit secret key algorithm has been done.
In case of DES algorithm only one secret key is used for
communication between the sender and receiver, which
will be sent through network. This will reduce the security
of the system. Hence public key algorithm (RSA) [6] is
used in this paper. Public key algorithm uses two key pairs
for communication. One is public key pair and another is
private key pair. Only public key pair is sent through the
network, which is known to everybody. Private key pair
will not be sent in the network. This paper uses key length
of 1024-bits. The increase in key length and the use of
public key crypto system will increase the security of the
system.

2. Secure Groups

This section deals with secure group, key graph, and
different rekeying strategies: user-oriented, key-oriented,
and group-oriented. It also deals with join/leave protocols
for all three rekeying strategies.
A secure group is a triple (U, K, R) where:

• U is a finite and nonempty set of users,
• K is a finite and nonempty set of keys,
• R is a binary relation between U and K, R ⊂ U ×

K,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

322

called the user-key relation of the secure group. User u has
key k if and only if (u, k) is in R. Each secure group has a
trusted key server responsible for generating and securely
distributing keys in K to users in the group. Specifically,
the key server knows the user set U and the key set K and
maintains the user-key relation R. Every user in U has a
key in K, called its public key, which is sent by the user to
server for pairwise confidential communication with the
key server. There is a group key in K, shared by the key
server and all users in U. The group key can be used by
each user to send messages confidentially to other
members of the group [10] [11].

2.1 Key Graphs

A key graph is a directed acyclic graph G with two types
of nodes: u-nodes representing users and k-nodes
representing keys. Each u-node has one or more outgoing
edges but no incoming edge. Each k-node has one or more
incoming edges. If a k-node has incoming edges only and
no outgoing edge, then this k-node is called a root.
 Given a key graph G, it specifies a secure group (U, K,
R) as follows.

1) There is a one-to-one correspondence
between U and the set of u-nodes in G.

2) There is a one-to-one correspondence
between K and the set of k-nodes in G.

3) (u, k) is in R if and only if G has a
directed path from the u-node that
corresponds to u to the k-node that corresponds to k. As an
example, the key graph in Fig. 1 specifies the following
s e c u r e g r o u p :

U = {u1, u2, u3, u4}
K = {k1, k2, k3, k4, k12, k234, k1234}
R = {(ul, kl), (ul, k12), (ul, k1234), (u2, k2), (u2, k12),

(u2, k234), (u2, k1234), (u3, k3), (u3, k234), (u3,
k1234), (u4, k4), (u4, k234), (u4, k1234)}.

 Associated with each secure group (U, K, R) are two
functions, keyset() and userset(), defined as follows:

keyset(u) = {k | (u, k) ∈ R}
userset (k) = {u | (u, k) ∈ R}.

 Intuitively, keyset(u) is the set of keys that are held by
user u in U, and userset(k) is the set of users that hold key
k in K. For examples, referring to the key graph in Fig. 1,
we have keyset(u4) = {k4, k234, k1234} and userset(k234) =
{u2, u3, u4}.
 Generalized definition of function keyset() to any subset
U ’ of U, and function userset() to any subset K’ of K, in a
straightforward manner, i.e., keyset(U ') is the set of keys
each of which is held by at least one user in U ’, and
userset(K ’) is the set of users each of which holds at least
one key in K ’.

Fig. 1 A key Graph

 When a user u leaves a secure group (U, K, R), every
key that has been held by u and shared by other users in U
should be changed. Let k be such a key. To replace k, the
server randomly generates a new key knew and sends it to
every user in userset(k) except u. To do so securely, the
server needs to find a subset K’ of keys such that userset (
K ') = userset(k) - {u} and use keys in K ' to encrypt knew
for distribution [10] [11].

2.2 Rekeying Strategies and Protocols

In this section, we illustrate three rekeying strategies: user-
oriented, key-oriented, and group-oriented for a tree key
graph and the protocols used when a new user joins/leaves
the group.
 A user u who wants to join (leave) a secure group sends
a join (leave) request and the public key pair to the server,
denoted by s. A join request initiates an authentication
exchange between u and s. If user u is not authorized to
join the group, server s sends a join-denied reply to u. If
the join request is granted, then the user sends its public
key pair to the server in response to authentication
exchange [3, 4, 5]. The key pair generated by the user will
be used as the individual key ku, of u.

s ⇔ u: authenticate u and store public key pairs
of u
to represent the authentication exchange between server s
and user u.
 After each join or leave, a new secure group is formed.
Server s has to update the group’s key graph by replacing
the keys of some existing k-nodes, deleting some k-nodes
(in the case of a leave), and adding some k-nodes (in the
case of a join). It then securely sends rekey messages
containing new group/subgroup keys to users of the new
secure group.

2.3 Joining a Tree Key Graph

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

323

After granting a join request from u, server s creates a new
u-node for user u and a new k-node for its individual key
ku. Server s finds an existing k-node (called the joining
point for this join request) in the key tree and attaches k-
node ku to the joining point as its child.
 To prevent the joining user from accessing past
communications, all keys along the path from the joining
point to the root node need to be changed. After generating
new keys for these nodes, server s needs to securely
distribute them to the existing users as well as the joining
user. For example, as shown in Fig. 2, suppose u9 is
granted to join the upper secure group in the figure. The
joining point is k-node k78 in the upper key graph, and the
key of this k-node is changed to k789 in the lower key graph.
Moreover, the group key at the root is changed from kl-8 to
kl-9. Users u1, . . ., u6 only need the new group key kl-9 ,
while users u7, u8, and u9 need the new group key kl–9 as
well as the new subgroup key k789.
 To securely distribute the new keys to the users, the
server constructs and sends rekey messages to the users. A
rekey message contains one or more encrypted new key(s),
and a user needs to decrypt it with appropriate keys in
order to get the new keys. Three different approaches are
used to construct and send the rekey messages. They are
user-oriented, key-oriented, and group-oriented rekeying.

Fig. 2 A key tree graph before and after a join (leave).

2.3.1 User-Oriented Rekeying

Consider each user and the subset of new keys it needs.
The idea of user-oriented rekeying is that for each user, the
server constructs a rekey message that contains precisely
the new keys needed by the user and encrypts them using a
key held by the user. For example, as shown in Fig. 2, for
user u9 to join the upper secure group in the figure, server s
needs to send the following three rekey messages:
 s {u1,…,u6}: {k1-9}k1-8
 s {u7,u8} : {k1-9, k789}k78

 s u9 : {k1-9, k789)k9.
Note that users u1, …, u6 need to get the new group key kl-9.
There is no single key that is shared only by u1, …, u6.
However, key k l-8 can be used to encrypt the new key kl-9
for u1, …, u6 without security breach since users u7 and u8
will also get this new group key from another rekey
message.
 User-oriented rekey messages can be constructed as
follows. For each k-node x whose key has been changed,
say, from k to k', the server constructs a rekey message by
encrypting the new keys of k-node x and all its ancestors
(up to the root) by the old key k. This rekey message is
then sent to the subset of users that need precisely these
new keys. Either unicast or subgroup multicast may be
used. Moreover, one rekey message is sent to the joining
user, which contains all of the new keys encrypted by the
individual key of the joining user. This approach needs h-
rekey messages [9] (h-height of the tree).

2.3.2 Key-Oriented Rekeying

In this approach, each new key is encrypted individually
(except keys for the joining user). For each k-node x
whose key has been changed, say, from k to k', the server
constructs two rekey messages. First, the server encrypts
the new key k' with the old key k and sends it to userset(k),
which is the set of users that share k. All of the original
users that need the new key k' can get it from this rekey
message. The other rekey message contains the new key k'
encrypted by the individual key of the joining user and is
sent to the joining user.
 As described above, a user may have to get multiple
rekey messages in order to get all the new keys it needs.
For example, as shown in Fig. 2, for user u9 to join the
upper secure group in the figure, server s needs to send the
following four rekey,
 s {u1, … ,u8} : {k1-9}k1-8
 s u9 : {k1-9}k9
 s {u7,u8} : {k789}k78
 s u9 : {k789}k9
This approach requires 2(h-1) rekey messages.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

324

2.3.3 Group-Oriented Rekeying

In key-oriented rekeying, each new key is encrypted
individually (except keys for the joining user). The server
constructs multiple rekey messages, each tailored to the
needs of a subgroup. Specifically, the users of a subgroup
receive a rekey message containing precisely the new keys
each needs. An alternative approach, called group-oriented,
is for the server to construct a single rekey message
containing all new keys. This rekey message is then
multicasted to the entire group. Clearly, such a rekey
message is relatively large and contains information not
needed by individual users. The group-oriented approach
has several advantages over key-oriented and user-oriented
rekeying. First, multicast can be used instead of unicast or
subgroup multicast. Second, with fewer rekey messages,
the server's per rekey message overheads are reduced.
 For example, as shown in Fig. 2, for user u9 to join the
upper secure group in the figure, server s needs to send the
following two rekey messages; one is multicasted to the
group and the other is unicasted to the joining user:

s {u1,…,u8}: {k1-9}k1-8 , {k789}k78
s u9 : {k1-9 , k789}k9

This approach reduces the number of rekey messages to
one multicast message and one unicast message.

2.4 Leaving a Tree Key Graph

After granting a leave request from user u, server s updates
the key graph by deleting the u-node for user u and the k-
node for its individual key from the key graph. The parent
of the k-node for its individual key is called the leaving
point. To prevent the leaving user from accessing future
communications, all keys along the path from the leaving
point to the root node need to be changed. After generating
new keys for these k-nodes, server s needs to securely
distribute them to the remaining users. For example, as
shown in Fig. 2, suppose u9 is granted to leave the lower
secure group in the figure. The leaving point is the k-node
for k789 in the lower key graph, and the key of this k-node
is changed to k78 in the upper key graph. Moreover, the
group key is also changed from kl-9 to kl-8 . Users ul, . . .,u6
only need to know the new group key kl-8 . Users u7 and u8
need to know the new group key k1-8 and the new subgroup
key k78. To securely distribute the new keys to users after a
leave, same rekeying strategies are used.

2.4.1 User-Oriented Rekeying

In this approach, each user gets a rekey message in which
all the new keys it needs are encrypted using a key it holds.
For example, as shown in Fig. 2, for user u9 to leave the
lower secure group in the figure, server s needs to send the
following four rekey messages:
 s {u1,u2,u3} : {k1-8}k123

 s {u4,u5,u6} : {k1-8}k456

 s u7 : {k1-8, k78}k7
 s u8 : {k1-8 , k78}k8.
User-oriented rekey messages for a leave can be
constructed as follows. For each k-node x whose key has
been changed, say, from k to k', and for each unchanged
child y of x, the server constructs a rekey message by
encrypting the new keys of k-node x and all its ancestors
(up to the root) by the key K of k-node y. This rekey
message is then multicasted to userset(K) [8].
2.4.2 Key-Oriented Rekeying

In this approach, each new key is encrypted individually.
For example, as shown in Fig. 2, for user u9 to leave the
lower secure group, server s needs to send the following
four rekey messages:

s {u1,u2,u3} : {k1-8}k123
 s {u4,u5,u6} : {k1-8}k456

 s u7 : {k1-8}k78, {k78}k7
 s u8 : {k1-8 },k78,{k78}k8.

2.4.3 Group-Oriented Rekeying

A single rekey message is constructed containing all new
keys. For example, as shown in Fig. 2, for user u9 to leave
the lower secure group in the figure, server s needs to send
the following rekey message:
let L0 denote {k1-8}k123, {k1-8}k456, {k1-8}k78

 let L1 denote {k78}k7, {k78}k8

 s {u1,…, u8}: L0,L1.
Note that for a leave, this single rekey message is about d
times bigger than the rekey message for a join, where d is
the average degree of a k-node. This approach uses only
one rekey message, which is multicasted to the entire
group [8].

3. UML State Diagram

A state diagram (also called a state chart diagram) shows
the sequence of states that an object goes through during
its life in response to outside stimuli and messages. The
state is the set of values that describes an object at a
specific point in time and is represented by state symbols
and arrows connecting the state symbols represent the
transitions. A state diagram represents the state of the
method execution (that is, the state of the object executing
the method), and the activities in the diagram represent the
activities of the object that performs the method. The
purpose of the state diagram is to understand the algorithm
involved in performing a method. The Fig. 3 and Fig. 4
represent the state diagram of a server and a user (client)
respectively (see after author biography).

 The Start object initiates the server program and
accepts the number of subgroups to be created from the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

325

administrator. The Start_server object activates the server
program and generates the public and private key pairs for
the server, which will be stored in the Oracle database. It
also creates the given number of subgroups with public
and private key pairs and stores them in the database along
with subgroupID. The wait object waits for the connection
request (join/leave/message) from the user. If the request
is join request, then the server authenticates the user with
username and password by comparing it with the already
stored database of different users. If the user is a valid user
then the public key pairs of the user is stored in the server
database. If the user is an invalid user then the server sends
the message “invalid user name or password” to the user.
 The Add_to_subgroup object randomly generates the
subgroup number to which the new user is going to join.
Then the user will be added to that randomly generated
subgroup. The key_updation object regenerates the public
and private key pairs for the server and the public and
private key pairs for the subgroup to which the new user is
joined. The Rekeying object generates the rekey message
that contains the new keys needed by different users
depending on the rekeying strategy, which was discussed
in chapter 3. Sending_rekey_message object distributes
rekey message to different users.
 The Receive_message object receives the encrypted
message with the users public key along with destination
address. Then it checks whether the destination user is
active or inactive. If the destination user is inactive then
the message “Destination user in not logged in” will be
sent to that user. If the destination user is active then it
calls Decrypt_and_encrypt object, which will decrypt the
message by using sender’s public key and then encrypts it
with destination user’s public key and then it calls
Send_message to the destination user.
 The Start object will initiate the client program. The
Start_user object generates the public and private key
pairs for the user and stores them in the Oracle database. It
calls Connect object, which will check whether server is
reachable. If the server is not reachable, then the message
“Server not started” will be received by the user. If the
server is reachable then it will calls login object.
 The login object accesses the public key pair stored in
the database and accepts the username and password. It
sends all these information to the server for authentication.
Once the user gets logged in, then if the request is for
sending message, then it will call Message object. The
Message object accepts the message and the destination
address, which encrypts the message with user’s private
key pair and stores the message in the database. Then the
Send_message object will be invoked, which will access
the encrypted message from the database and sends the
message to the specified destination. If the login object
calls Disconnect object, it will disconnects the user from
the server.

4. Experiments and Performance
Comparisons

We have designed and constructed a separate group key
server, as well as a client, which implement join/leave
protocols for all three rekeying strategies: user-oriented,
key-oriented, and group-oriented. The experiments are
carried out on Pentium-III, 128MB RAM, 700 MHz
machine. The software’s used for conducting the
experiments are: Visual Basic 6.0, JDK 1.3 [7], Oracle8i
client-server version, Windows NT workstations/
Windows 98 workstations. The server is initialized from
number of groups to be created. When a user sends a join
request it generates the random group number for that user
and attaches the user to that group.
The system we have implemented provides following
security services:
Confidentiality: It is the protection of transmitted data
from passive attacks, that is, it ensures that the information
in a computer system and transmitted information are
accessible for reading by authorized parties. One method
to achieve this confidentiality is to encrypt data before
transmitting it at the sending end and to decrypt the
received message at the receiving end. We have
implemented the RSA algorithm to preserve the
confidentiality of the messages transmitted within the
group. All messages transmitted within the group are
encrypted using the group key that is shared by all users in
the group. Also the message transferred between the
clients and the server is encrypted using the user’s
individual key or session key. The confidentiality of the
rekey messages is also preserved using the same technique.
By this approach, only the authorized users will be able to
decrypt the message, since they will possess the key
required to decrypt the message.
Authenticity: The authentication service is concerned with
assuring that a communication is authentic. In the case of a
single message, the function of the authentication service
is to assure the recipient that the message is from the
source that it claims to be from. Our implementation
supports basic authentication service of checking the user
name and passwords. The server maintains a database of
all users in the Oracle database, which consists of all
users’ user name and password. Every user who wishes to
join the group provides a user name and password to the
server, which verifies them against a database of user
details. The confidentiality of this authentication messages
is maintained using the RSA algorithm [6], which is a
public key cryptosystem.
Integrity: It ensures that only authorized parties are able to
modify the transmitted information. There is a very critical
necessity that the clients are able to confirm that the rekey
messages were actually sent by the server and not by any
other unauthorized processes. To implement such checks,
we use MD5 message digest algorithm in the following

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

326

way: when sending a rekey message the server computes
the message digest of the rekey message and sends it to the
respective client encrypted with the server’s private key
along with the actual rekey message. On the receiving end,
the client recomputes the message digest on the received
rekey message, decrypts the message digest that the server
had sent using the server’s public key and compares both

of them. If both the message digests are equal, the client
accepts the rekey message and the client’s keys are
updated. Otherwise the rekey message is discarded, as it is
not a message from the authorized server. The Fig. 5 and
Fig. 6 represent the implementation of these services at
server and client side.

 C1
 Rekey
 Message (M)

 C2

Fig. 5 Integrity check at server side

 C1

 C2 C

Fig. 6 Integrity check at client side

To evaluate the performance of different rekeying
strategies, we have measured rekey message sizes (in
bytes) and processing time (in seconds) used by the server
per join/leave request. Specifically, the processing time
per join/leave consists of the following components:

i) Time required for generating the new key
pairs.

ii) Time required for encryption of new keys
and constructing rekying
messages.

We also measured size of rekey messages received by
clients for join/leave. Table 1 presents the number and size
of rekey messages with encryption sent by the server.
Table 2 presents the size of rekey message received by

different clients per join. Table 3 presents the size of rekey
message received by different clients per leave. The rekey
message size received by different users is more in group-
oriented when compared to key-oriented and user-oriented.
So the time required by the user to decrypt the rekey
message for getting its new keys is more in group-oriented
when compared to user-oriented and key-oriented. Table
4 presents the server processing time per request for 32
and 64 users. Processing time required by the server when
a new user joins the group is more in user-oriented and
key-oriented when compared to group-oriented. So if we
use group-oriented rekeying users will get quicker
response when a new user joins the group.

Table 1: Number and size of rekey messages sent by the server

Rekey message size (bytes) Per join

No. of rekey

messages Per

join
Rekeying

strategies

Others Current new

User-oriented 7296 4256 608 3

Key-oriented 7296 4256 608 4

Group-oriented 18848 ----- 608 2

 RSA Encryption

Calculate MD5 RSA Encryption
using private key

 RSA Decryption Calculate MD5

RSA Decryption
using public key

COMPARE
MD5’s

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

327

Table 2: Size of rekey messages received by clients for join (32 clients)

Table 3: Size of rekey messages received by clients for leave (32 clients)

Table 4: Server processing time in seconds

No. of users Rekeying strategies Join (sec) Leave (sec)

User-oriented 16 29

Key-oriented 15.59 29 32

Group-oriented 14.3 30

User-oriented 17 30

Key-oriented 16.2 30 64

Group-oriented 14.3 30

5. Conclusion

We have experimented three rekeying strategies: user-
oriented, key-oriented, and group-oriented and the
protocols when a user joins/leaves the group, where one
user can join only one group at a time. We have measured
number and size of rekey messages sent by the server, size
of rekey messages received by clients for join/leave and
server processing time. We have used height of the tree as
three.
 From the experimental results on the server side, group-
oriented rekeying provides the best performance, with key-
oriented rekeying in second place, and user-oriented
rekeying in the third place. At the client side size of the

rekey message received by the client is more in group-
oriented, which requires more time for decryption and it is
less in case of user-oriented and key-oriented. So client
requires less time for decrypting the rekey message. The
number of rekey messages generated by the server is less
in case of group-oriented rekeying when compared to user-
oriented and key-oriented.
 The model we have developed can be easily extended to
other applications such as teleconferencing, distributed
interactive simulation, information services like instant
news service or share market related application and any
other application that involves secure communication
between groups of users. We have used RSA algorithm of
key length of 1024 bits. Time required to hack the key is
more (300,000,000,000 MIPS years) as factoring method

Join (message size in bytes)

New user Other users in the new
users group

Users of other
subgroup

User-oriented 608 608 304

Key-oriented 608 608 304

Group-oriented 608 ---- 608

Leave (message size in bytes)
Rekeying
strategies Users in the other group Users in the current

group

User-oriented 304 608

Key-oriented 304 608

Other users Group-
oriented 18848

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

328

is used to hack the key. Because of this key length,
communication that takes place between the group
members is more secure. Disadvantage of this system is
that it takes more time when compared with DES. Speed
compromise should be made to achieve more security. If a
faster system such as Sun Ultra Sparc is used, we might
get better speed. The other disadvantage of this system is
that it uses only tree of height three. Hence as the number
of users increases the degree of the node increases, in turn
increasing the size of rekey messages. Since the height of
the tree is three, joining and leaving operations will
become easier. As a whole, this system can be used for a
small organization for secure group communication.

References
[1] C.K. Wong, M. Gouda, and S.S. Lam, “Secure Group
Communications Using Key Graphs,” IEEE/ACM Trans.
Networking, February 2000.
[2] S.E.Deering, “Multicast routing in internetworks and
extended LANs,” in Proc.ACM SIGCOMM’88, Aug. 1988,
pp.55-64.
[3] A.O. Freier, P.Karlton, and P.C.Kocher, The SSL Protocol
Version 3.0, 1996. Work in progress, Netscape Communication.
[4] J.G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An
authentication service for open network systems,” in Proc.
USENIX Winter Conf., Feb. 1988, pp. 191-202.
[5] T.Y.C. Woo, R. Bindignavle, S. Su, and S.S Lam, “SNP: An
interface for secure network programming,” in Proc.
USENIX’94 Summer Technical Conf., Boston, M.A, June 1994.
[6] William Stallings, “Cryptography and Network Security:
Principles and Practice,” Second Edition, Prentice Hall.
[7] http://vsys-www.infomatic.uni-hamburg.de /documents/docs
/jdk1.3/api /java
[8] Nagesh H.R, K. Chandra Sekaran, K.M Hebbar “Design,
Implementation and Performance Analysis of Secure Group
Communications”, Proceedings of the 15th International
Conference on Computer Communications, Bombay, India, Aug.
2003, Pp.880-890, International Council for Computer
Communication, Washington, DC, USA
[9] Nagesh H.R, K. Chandra Sekaran, Niranjan N. Chiplunkar
“SURAKSHA: An Implementation of Secure Group
Communications”, Proceedings of the 12th International
Conference on Advanced Computing and Communications,
Ahamadabad, India, Dec. 2004, pp. 286-294.

[10] Nagesh H.R, K. Chandra Sekaran, Niranjan N. Chiplunkar
“Design, Implementation and Analysis of Secure Group
Communications Using Key Graphs ”, Proceedings of the
National Conference on Recent Trends in Networking
Technology, Coimbature, India, Dec. 2003, pp. 180-190.
[11] Nagesh H.R, K. Chandra Sekaran “An Efficient Key
Agreement Protocol for Group Communications”, Proceedings of
the National Conference on Distributed Computing, India, March.
2004, pp. 188-193.

Acknowledgement
The authors wish to thank the anonymous reviewers for
their constructive comments.
Biography:

Nagesh H.R received the B.E. and M.Tech. degrees, from
Mangalore Univ. in 1996 and 2002, respectively. After working
as a lecturer (from 1996), an assistant professor (from 2003) in
the Dept. of Computer Science and Engineering, the NMAM
Institute of Technology, and an associate professor (from 2005) ,
a Professor (from 2007) in the Dept. of Computer Science and
Engineering , the P.A. College of Engineering., India. His
research interest includes computer networks, cryptography,
network security and distributed computing. He has published
more than 20 publications in International and National
proceedings.

K.Chandra Sekaran is a Professor of Computer
Engineering at National Institute of Technology Karnataka, India.
His research includes Computer Networks, Dependable Network
/ Distributed computing, Autonomic computing and Community
Informatics. He has 20 years of teaching and research and one
year Industry experience. He has published more than 86
publications in International and National proceedings and
authored two books. He was the Organizing Chair of 14th
International Conference ADCOM 2006, International
Symposium on Ad Hoc and Ubiquitous Computing ISAHUC'06.
He also served as a member of PC in various International
conferences, reviewer in many Journals. He has supervised
sponsored projects and IT consultant to some corporates in this
region of India.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

329

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.7, July 2007

330

