
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

1

Manuscript received August 5, 2007.
Manuscript revised August 20, 2007.

DRESPA: An Integrated System for Reconfigurable

High-speed Signal Processing Applications

Ramadass Narayanadass, Natarajan Somasundaram and J. Raja Paul Perinbam
 ramadassn@annauniv.edu boltrani@yahoo.co.uk jrpp@annauniv.edu

Department of Electronics and Communication Engineering
College of Engineering, Anna University, Chennai – 600 025, INDIA.

Summary
This paper describes DRESPA (Dynamically Reconfigurable
Embedded Signal Processing Architecture) developed for the
class of real-time high-speed signal processing applications.
DRESPA is a coarse-grained, multi-programmable and
dynamically reconfigurable architecture. The architecture consists
of arithmetic operation-level configurable modules interconnected
through multiple data buses that can be logically configured to
form one or more computation pipelines before a specific
application is initiated, and remains unchanged till the completion
of the application. On-chip integration of reconfigurable logic
reduces the memory access cost and the reconfiguration cost. It
neither requires an external processor to configure it, nor does it
consume context change-over time. The suitability of DRESPA for
the target application domain is evaluated with real-time signal
processing applications such as video processing, image
processing and speech processing. The results show that there is a
performance improvement in terms of speedup in comparison with
other systems.
Key words:
Reconfigurable Computing, Embedded System, Digital Signal
Processing, High Speed Architecture.

1. Introduction

Reconfigurable systems combine a reconfigurable
hardware processing unit with a software-programmable
processor. The main goal is to take advantage of the
capabilities of both resources. While the processor takes
care of all sequential computation, the reconfigurable
hardware takes care of specialized vector operations. With
such an integrated system architecture, specific properties
of applications, such as parallelism, regularity of
computation, and data granularity can be exploited by
creating custom operators, pipelines, and interconnection
pathways.

 Real-time digital signal processing applications [1][2]
are characterized by a large volume of real-time data input
at variable rates and repetitive arithmetic operations on
these data. Solutions for such computational problems are
mainly driven by the demanded speed and the budget

available. The high speed computational requirement
usually necessitates hardware based solutions, such as
using Application Specific Integrated Circuit (ASIC) [3] or
Field Programmable devices [4]. The ASIC will certainly
fulfill the speed criteria, but if a slight change in the
algorithm occurs, the same ASIC cannot be used. Also, it
involves high development cost and development time,
besides requiring most of the time for testing and debugging.
These drawbacks tend to inhibit the rapid and economical
implementation of such systems.

 On the other hand, when the speed is not critical, a
processor (a software system) can be used. The advantage
of this solution is that a change in the algorithm can easily
be overcome with a change in the software and therefore be
used again. It is clear that processor has more flexibility
than the ASIC, but is slower. Beside the speed and the
flexibility, the used area is also a consideration. The size of
the processor is huge because of the presence of generalized
control unit. But ASIC’s are comparatively small, since
they are application specific and therefore do not need large
controlling overhead.

 To handle the conflicting requirements of being a
flexible architecture and implement some application-
specific algorithms, a dynamically reconfigurable
embedded architecture is proposed in this paper. The
proposed architecture consists of arithmetic operation-level
configurable modules interconnected through multiple data
buses that can be logically configured to form one or more
computation pipelines before a specific application is
initiated and remains unchanged till the completion of the
application. This architecture is targeted at high-throughput
and real-time signal processing applications.

 The organization of the paper is as follows: Section II
introduces the system model for DRESPA and the proposed
architecture is described in detail in Section III. Section IV
illustrates the performance evaluation for various digital
signal processing applications. The paper concludes finally
in Section V.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

2

2. DRESPA Design Model

The set of criteria that are frequently used to characterize
the design of a reconfigurable computing system are
granularity, depth of programmability, reconfigurability,
type of interface and computation model [5].

 Many researchers have proposed other models of
reconfigurable systems targeting different applications.
Sonic [6] and PADDI [7] are some of the coarse-grain
reconfigurable computing systems. Reconfigurable systems
with fine-grain granularity include Splash [8], Chimaera [9],
Garp [10] and DPGA [11]. Among these, DPGA and GARP
are not based on FPGAs. RAW [12] is a mixed-grain
reconfigurable system. As evident, all the above systems
vary greatly. Since the existing computing systems are not
suitable for the target class of real-time applications, a new
architecture has to be designed that is capable of handling
the target real-time data. The architecture should have a
system structure that permits flow of a large volume of
real-time data smoothly without any blockage. Since the
volume of data is large, it should process data in an on-line
fashion; it has to store data in a memory. The major timing
constraints of any embedded system come from the
periodicity of the input data. All the required tasks for a set
of input data must finish before the next set of data comes in.
For such a timing requirement, the statistical or
probabilistic behavior of the system is undesirable. If there
are many statistical factors in the architecture, it is very
difficult to ensure the timing correctness of the system, and
it is also difficult to trace the timing errors when they ever
occur.

 In order to flow data freely, the system needs to have
some form of pipeline processing. In pipelining multiple
instructions are allowed to overlap in execution. Pipeline
processing does not involve any statistical or probabilistic
behavior; operations are applied on data at each pipeline
stage, regularly at each clock cycle. Each pipeline stage
makes some contribution to the instruction and can operate
in parallel with other stages. Pipelining does not decrease
the time to execute individual instructions, but it will
execute more instructions per time unit, resulting in speed
up.

 At one of the system-level pipeline stages, vector
operations are performed on the input data in an execution
unit. It is not reasonable to have a pipeline for each
computation of the application, since it requires an
unreasonable amount of hardware. Computational
resources must be shared among all the computational
aspects of the application to make the amount of hardware
reasonable. No matter how complicated a vector operation
is, they can be decomposed into arithmetic-operation-level
vector operations, such as arithmetic-logic, shift, and

multiply operations. Therefore, in the new architecture, the
arithmetic-operation-level functional modules are the
computational resources to be shared and to be
interconnected to form one or more pipelines for the
required computations.

 The interconnections of the computational resources
need to be changed dynamically for different vector
operations. A cross-bar switch could provide all the
possible interconnections of the computational resources,
but would be very expensive. The detailed analysis of the
vector computations required by the application can
determine the set of computational resources (number and
kind) and their possible interconnections. All the
interconnections of computational resources should form
pipelines to support the pipelined vector operations; each
computational resource also needs to be pipelined so that
the interconnected resources can be pipelined. Given a set
of computational resources, the design of a pipeline for a
vector operation determines the processing time, which can
be computed from the total number of pipeline stages from
input to output. Thus the dynamically reconfigurable
computation model addresses the issues of timings as well
as those of resource sharing. To cater to the requirements of
the real-time high-speed signal processing applications, the
embedded architecture should be composed of
arithmetic-operation-level configurable modules, that is,
granularity should be coarse-grained granularity. The
architecture designed in this work puts together, in a
cohesive structure, the main prominent features of previous
reconfigurable systems, that is, coarse-grain granularity,
multiple programmability and dynamic reconfiguration.

 The general system architecture, shown in Figure 1,
comprises an embedded processor, a reconfigurable unit, a
high bandwidth memory unit and input/output (I/O) unit, all
implemented as a single chip.

Figure 1. General System Architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

3

Given the nature of target applications, the reconfigurable
component is organized as an array or reconfigurable cells
(RCs). The RCs are coarse-grained structures. The
embedded processor is an autonomous processing unit. It
performs scalar operations and controls the operations of
RC array. The reconfigurable unit performs vector
operations under the control of the embedded processor. A
specialized memory unit handles data transfers between
external memory and the RC array, and stores input,
intermediate and output data. Also, there is a separate
memory for storing context data. A dedicated I/O unit
handles real-time data input and output.

 The performance model for the proposed architecture
is based on Amdahl’s Law [13]. The performance model
gives the theoretical performance achieved by vector
operations and pipeline processing, upon which the new
architecture is based. They show the limits of the
performance gain with vector and pipeline operations.

 Let N be the number of processors, s be the time spent
by a serial processor on a sequential portion of a program,
and p be the time spent by a serial processor on a portion of
a program that can be executed in parallel. Then Amdahl's
Law says that the speedup S obtained by executing the
program with N processors is given by

p/N s
1S
+

=

where s + p = 1. Hence,

s)/N (1s
1S
−+

=

 Assume that a task T consists of two portions, Ts and Tv,
where Ts is the sequential portion of the task that can be
performed only by sequential operations, and Tv the vector
portion that can be performed by vector operations. Let rs
and rv be the fractions of the task corresponding to Ts and Tv,
respectively, where 1r r v s =+ .
Let ts be the sequential execution time of T, and tv be the
execution time of T when Tv is performed by vector
operations, respectively. This is illustrated in Figure 2.

Figure 2. Sequential versus Vector Execution.

Let A be the acceleration factor defined as the ratio of
vector operations to sequential operations for Tv. Then, the
total speedup S obtained by vector operations for T is
represented by

 A /r r
1

t
t S

vsv

s

+
== .

Given S and rs, A is calculated as

s

s

r 1/S
r1A
−
−

=

For example, if S = 10 and rs = 0.05, then A = 19. It means
that if the required speedup is 10 for an application with the
sequential portion of 5%, then a system must be designed
that executes the vector operations 19 times faster than the
corresponding sequential operations. Since the feasible
value of A must be positive, the following condition must
be satisfied:

1 S.rs <
That is, the product of the speedup and the sequential
portion must be less than 1. This is the theoretical limit on
performance gain achieved by vector operations

3. DRESPA System Components

The organization of proposed DRESPA reconfigurable
computing system is shown in Figure 3. It is composed of
an array of reconfigurable cells (RC array) with context
memory, an embedded processor, data buffer and I/O unit.
The RC array with its context memory corresponds to
reconfigurable SIMD array controlled by an embedded
processor, and the high bandwidth memory unit is
implemented through data buffer and memory controller.
Typically, the embedded processor executes sequential
tasks of the application, while the reconfigurable unit (RC
array) is dedicated to the exploitation of parallelism
available in an application.

 These system components are interconnected via four
system buses consisting of two I/O buses and two memory
buses. Two I/O buses are used to transfer data between Data
Buffer and I/O unit; the two memory buses are used to
transfer data between Data Buffer and reconfigurable unit.
These four system buses allow the system to perform I/O
operations and vector operations at the same time. Each bus
can be used for any type of data transfer operation. In one of
the typical system activities, the following data transfer
operations might be performed in parallel:

(1) I/O unit to data buffer: real-time data input.
(2) Data buffer to I/O unit: result data output.
(3) Data Buffer to Reconfigurable unit: Input for

vector operations.
(4) Reconfigurable unit to data buffer: Output of

vector operations.

IJCNS International Journal of Computer Science and Network Security, Vol. 5 No.8 August 2005

Figure 3. Block Diagram of DRESPA Implementation.

The capability of these four parallel data transfer
operations enables the system to operate globally in
pipeline. The system-wide pipeline consists of five stages:
the first stage for real-time data input, the second for
reconfigurable unit data input, the third for vector
operations, the fourth for reconfigurable unit data output,
the fifth stage for result data output. The time period of
this system-wide pipeline is upper-bounded by the cycle
time of periodic real-time data, which is the maximum
time allowed for data transfer operations and vector
operations at the pipeline stages.

 The DRESPA system consists of five main
components as, embedded processor, reconfigurable cell
array, context memory, data buffer and Input/ Output Unit.

3.1 Embedded Processor

The controlling component of DRESPA is a 16-bit
embedded processor with a 4-stage scalar pipeline, as
instruction fetch, decode, execute and memory operation.
It has sixteen 16-bit registers and a 16-bit ALU. It has an
instruction and data cache memory which minimizes the
access to external main memory. The embedded processor
performs scalar operations and controls the other system
components through special instructions added to its
architecture. It also initiates all data transfers to or from
the Data Buffer and configuration program load for the
context memory. It is an autonomous processor that
executes programs stored in the program memory. It reads
machine instructions from the program memory and
executes them. Data referenced by an instruction are also
fetched from the program memory and the results of the
instruction execution are stored back to it. The
Controller-Datapath diagram of embedded processor is

shown in Figure 4.

Figure 4. Embedded Processor.

The embedded processor controls the other
components through its control signals. This interface is
used to initiate vector operations in the reconfigurable unit.
In a typical case, the embedded processor first prepares
for a vector operation Vi in the reconfigurable cell RCi and
then initiates the reconfigurable unit using the control
signal. After the reconfigurable unit starts performing the
vector operation, the embedded processor does its own
scalar task Si. When the reconfigurable unit terminates the
vector operation, it is sensed by the embedded processor.
The embedded processor prepares for the next vector
operation Vi+1 and repeats the process.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

5

3.2 Reconfigurable Cell Array

The basic programmable component of DRESPA is the
Reconfigurable Cell (RC). Each RC has an
ALU-multiplier and two registers and is configured
through a 32-bit context word. The context words for the
RC array are stored in context memory. Each RC is the
basic unit of reconfiguration. The RC architecture is
shown in Figure 5.

Figure 5. Reconfigurable Cell Architecture.

 Each RC comprises of six components: the
ALU-multiplier, the shift unit, the input multiplexers,
register file with four 16-bit registers, an output register
and the context word register. A context word, loaded
from context memory and stored in the context register,
defines the functionality of the RC. There are 256 RCs,
arranged as a 16 x 16 matrix called RC array.

 Most multimedia applications required that one of the
data input to the multiplier be less than or at most equal to
12 bits. So, the ALU-Multiplier unit includes a 16 x 12
multiplier and a 32-bit ALU. It has four input ports. Two
16-bit ports receive data from the input multiplexers, one
16-bit port takes data from output register and a 12-bit
port takes a constant from context word. The shift unit
output is also 16-bits wide. There are a total of sixteen
ALU functions. The two input multiplexers select one of
several inputs for the ALU, based on control bits from the
context word in the context register. In addition to
arithmetic and logic functions, multiply-accumulate
operations can also be performed. The multiplier

architecture is carry-save array multiplier. This is the
component that has the longest delay in the RC Unit.

 Multiplexer MUX_A selects one input from fifteen
other RCs in the same row, from fifteen other RCs in the
same column, from the Data Buffer, or from internal
register. The register file is composed of four 16-bit
registers. Multiplexer MUX_B selects one input from
eight RCs in the neighborhood, from the Data Buffer, or
from internal registers. The feedback register allows reuse
of previous operands.

 There is a 32-bit register containing the context word
for configuring each RC, called as Context Register. It is a
part of each RC, whereas the Context Memory is separate
from the RC Array. The fields MUX_A and MUX_B
specify control bits for the input multiplexers of the RC.
The field OP specifies the function for the
ALU-Multiplier unit. The fields DIR and SHIFTCOUNT
specify the direction and number of shifts, respectively.
The field REGSEL determines the register in which the
result of an operation is to be stored. The field named
CONSTANT is used to supply immediate operands to the
ALU-Multiplier unit in each RC. This is useful for
operations that involve constants (such as multiplication
by a constant over several computations) in which case
this operand can be provided through the context word. At
the global level, there are buses that run across rows and
columns. These buses provide data from any one cell to
other adjacent cell.

3.3 Context Memory

The Context Memory provides context words to the RC
Array. These context words configure the RC and are also
the basis for programming the interconnection network.
The context word from the Context Memory is loaded into
the Context Register in each RC. It is of size 3 x 32 x 16 x
16 bits or 3 KBytes. Each context word is of size 4 Bytes.

 The Context Memory is organized into three blocks
which store the contexts for row-wise operation,
column-wise operation of the RC Array and additional
context respectively. Each block has sixteen sets, with
each set corresponding to a row/column of the RC Array.
Each set can store thirty two context words. Thus, three
contexts can be stored for a single RC. The major focus of
this architecture is on regular and data-parallel
applications. Based on this idea of parallelism, each
context word is broadcast to a row or column of RCs.
Thus, all sixteen RCs in a row or column share the same
context word, and perform the same operations. They can
also have individual contexts. The Context Memory can
be updated concurrently with RC array execution. This
process is called as dynamic (run-time) reloading of the
contexts. Dynamic reconfiguration allows reduction of

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

6

effective reconfiguration time to zero.

3.4 Data Buffer

The data buffer is an internal data memory, which is
similar to a data cache. It is organized into two sets. Each
set has 512 rows of 16 bits each; therefore the data buffer
has 512 x 4 Bytes. The memory bus operates in 16-bit
mode. This two set organization makes memory accesses
transparent to the RC array, by overlapping of
computation with data load and store, alternately using the
two sets. One of the two sets provides computation data to
the RC array and also stores processed data back from the
RC Array, while the other set sends processed data to the
external interface through the I/O unit and receives data
for the next round of computations. These operations
proceed concurrently, thus preventing the latency of data
I/O from adversely affecting system performance.
DRESPA performance benefits tremendously from this
data buffer. A dedicated data buffer has been missing in
most of the contemporary reconfigurable systems, with
consequent degradation of performance.

3.5 Input / Output Unit

The input/output unit depends heavily on the I/O
requirements. Input unit takes real-time data at a certain
interval and transfers them to the data buffer via one of the
I/O buses. Output unit sends processed data to external
world. It reads from data buffer through other I/O bus.

3.6 VLSI Implementation

The simulation model of DRESPA is implemented as a
HDL model using Verilog HDL. The individual
components have been simulated at behavioral level and
functional verification is done in Windows platform using
Modelsim SE/EE PLUS release 5.4e from Mentor
Graphics. The architecture is synthesized into custom
ASIC using Leonardo Spectrum release 2002e, for 0.12 µ,
2.5 V, CMOS technology. Table 1 lists the computation
time of each of the components as per timing analysis.
The RC computational part is the critical path for the
entire architecture. It can be noticed that the DRESPA will
perform at a clock rate of 75 MHz (or clock period of 13
nS).

4. Performance Evaluation

To evaluate the performance of DRESPA, several signal
processing applications were implemented on HDL
simulation model of DRESPA. DRESPA achieves a
performance improvement and shows a speedup range
from 2.27 to 21.00 for different applications. The results

Table 1. Timing Report

Computational Unit Computation Time
(nS)

Embedded Processor 10.11

Reconfigurable Cell (total) 12.92

RC : MUX_A 1.04

RC : 4 to 1 MUX 0.30

RC : 16 x 12 MULTIPLIER 6.40

RC : ALU 2.21

RC : 2 to 1 MUX 0.27

RC : SHIFTER 2.70

show that dynamic reconfiguration helps improve the
performance, especially when high-speed applications are
executed on reconfigurable structures. The performance
speedup obtained for the tested signal processing
applications are summarized in Table 2.

Table 2. Performance Report

Application Speedup

Second order IIR Filter 3.00

MPEG Motion Estimation 16.06

2-D Discrete Cosine Transform 12.30

CELP Algebraic Codebook
Search

21.00

AMDF Pitch Estimation 2.27

5. Conclusion

In this paper, the existing major embedded
architectures used for system design were reviewed and
the proposed architecture, DRESPA was described in
detail. Many of these technologies have reached relative
maturity. Based on the applications in this work, it appears
that the number of contexts does not need to be large to
achieve good performance improvement with a
Reconfigurable Unit. In these applications, more than one
context was used for each application and a considerable
speedup was obtained. The question of how many
contexts is an optimal number is still unanswered. In case
an application used more than two, a configuration
allocation algorithm implemented in the compiler could
be used to reduce the number of context reconfigurations.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

7

 There is still a big gap between the hardware
and the software. To close this gap, further investigation is
necessary in the area of compilers for reconfigurable
embedded systems. It is also desirable to study the
behavior of the architecture in presence of operating
system. As a final note, investigating the previously
mentioned topics will lead to the development of a high
performance reconfigurable system. After a complete
study of the interactions between architecture, compiler,
and operating systems for reconfigurable systems, one
would be able to determine the best track to follow in the
reconfigurable world.

References
[1] William H. Smith, “Technical Challenges for Designing

Personal Digital Assistants”, Design Automation for
Embedded Systems, 4(1) Jan 1999, pp23-40.

[2] Chu Yu, Hwai Hu, Chen-Yen Lin, “Design and
Implementation of an ASIC for 1.6 KBPS Speech
Synthesis”, in IEEE Transactions on Consumer Electronics,
Vol. 49, Issue 3, August 2003, pp.731-736.

[3] M.J.Smith, 1997, “Application-Specific Integrated
Circuits”, Pearson Education Inc., ISBN: 81-7808-007-9.

[4] S.Brown and J.Rose, 1996, “FPGA and CPLD
Architectures: a tutorial”, IEEE Design and Test of
Computers, pp.42-57.

[5] S.Natarajan, N.Ramadass, 2005, “Self-Modifiable
Mixed-Signal SoC Architecture for Embedded
Applications”, in Proc. National Conference on Signals,
Systems and Communications (NCSSC 2005).

[6] Haynes S.D., J.Stone and W.Luk, “Video Image Processing
with the Sonic Architecture”, Computer: Innovative
Technology for Computer Professionals, Vol. 33, No.4,
IEEE Computer Society, April 2000, pp.50-57.

[7] D.C.Chen and J.M.Rabey, “PADDI” Programmable
Arithmetic Devices for Digital Signal Processing”, In VLSI
Signal Processing IV, pp.240-249, IEEE Press, Nov. 1990.

[8] M.Rencher and B.L.Hutchings, “Automated Target
Recognition on SPLASH”, Proc. IEEE Symposium on
FPGAs for Custom Computing Machines, April 1997.

[9] S.Hauck, M.M.Hosler and J.P.Kao, “The Chimaera
Reconfigurable Functional Unit”, Proc. of IEEE
Symposium on Field- Programmable Custom Computing
Machines, April 1997, pp. 87-96.

[10] Callahan.T.J., J.R.Hauser and J. Wawrzyneck. “The Garp
Architecture and C Compiler”, Computer: Innovative
Technology for Computer Professionals, Volume 33,
Number 4, IEEE Computer Society, April 2000, pp. 62-69.

[11] E.Tau, D.Chen and A.DeHon, “A First Generation DPGA
implementation”, FPD-95, Canadian Workshop of Field
–Programmable Devices, May 1995.

[12] J.Babb, M.Frank and V.Lee, “The RAW benchmark Suite:
Computation structures for general-purpose computing”,
Proc. of IEEE Symposium on Field- Programmable
Custom Computing Machines, April 1997, pp.134-143.

[13] G. M. Amdahl, “Validity of the Single Processor Approach
to Achieving Large Scale Computing Capabilities,"
Proceedings of the AFIPS Spring Joint Computer
Conference, 1967, pp.483-485.

Ramadass Narayanadass was
born in Chennai, Tamilnadu state,
India in 1975. He received the B.E.
Degree in Electrical and Electronics
Engineering from Madras
University in 1997, and the M.E.
Degree in Applied Electronics from
Anna University in 2001. Since
2005, he has been in the Faculty of
Information and Communication
Engineering, Anna University,

where he is currently a lecturer with the Department of
Electronics and Communication Engineering.

He is currently working towards the Ph.D. Degree in
the Department of Electronics and Communication Engineering
at Anna University. His current research interests are Embedded
Systems, VLSI Design, Reconfigurable Computing and
Embedded Speech Coding.

Natarajan Somasundaram was
born in Coimbatore, Tamilnadu state,
India in 1980. He received the B.E.
Degree in Electronics and
Communication Engineering from
Barathiyar University in 2002, and the
M.E. Degree in Embedded System
Technologies from Anna University in
2005.

He was a Junior Scientist
under Dr.A.P.J.Abdul Kalam in

College of Engineering, Anna University, Chennai. He received
a gold medal in his M.E. course. He is selected for Senior
Research Fellowship by Council for Scientific and Industrial
Research (CSIR), India. He is currently a scientist and working
in the Department of Electronics and Communication
Engineering at College of Engineering, Anna University,
Chennai. His research interests include Mixed-Signal VLSI
Design, Image Compression, Reconfigurable Embedded
Computing, and related VLSI circuits design.

Raja Paul Perinbam was born in
Tamilnadu state, India in 1948. He
received the B.E. Degree in
Electrical and Electronics
Engineering from Madras
University in 1970, M.Sc.(Engg)
Degree in Applied Electronics from
Anna University in 1973, and the
Ph.D. Degree from IIT Madras in
1984. Since 1975, he has been in the

Faculty of Information and Communication Engineering, Anna
University, where he is currently a Professor with the
Department of Electronics and Communication Engineering.

He has been a R&D consultant for various UPS based
companies. His research interests are Embedded Systems, VLSI
Design, Power Electronics and Signal Integrity.

