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Summary 
This paper describes DRESPA (Dynamically Reconfigurable 
Embedded Signal Processing Architecture) developed for the 
class of real-time high-speed signal processing applications. 
DRESPA is a coarse-grained, multi-programmable and 
dynamically reconfigurable architecture. The architecture consists 
of arithmetic operation-level configurable modules interconnected 
through multiple data buses that can be logically configured to 
form one or more computation pipelines before a specific 
application is initiated, and remains unchanged till the completion 
of the application. On-chip integration of reconfigurable logic 
reduces the memory access cost and the reconfiguration cost. It 
neither requires an external processor to configure it, nor does it 
consume context change-over time. The suitability of DRESPA for 
the target application domain is evaluated with real-time signal 
processing applications such as video processing, image 
processing and speech processing. The results show that there is a 
performance improvement in terms of speedup in comparison with 
other systems. 
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1. Introduction 

Reconfigurable systems combine a reconfigurable 
hardware processing unit with a software-programmable 
processor. The main goal is to take advantage of the 
capabilities of both resources. While the processor takes 
care of all sequential computation, the reconfigurable 
hardware takes care of specialized vector operations. With 
such an integrated system architecture, specific properties 
of applications, such as parallelism, regularity of 
computation, and data granularity can be exploited by 
creating custom operators, pipelines, and interconnection 
pathways.   
 
 Real-time digital signal processing applications [1][2] 
are characterized by a large volume of real-time data input 
at variable rates and repetitive arithmetic operations on 
these data. Solutions for such computational problems are 
mainly driven by the demanded speed and the budget 

available. The high speed computational requirement 
usually necessitates hardware based solutions, such as 
using Application Specific Integrated Circuit (ASIC) [3] or 
Field Programmable devices [4]. The ASIC will certainly 
fulfill the speed criteria, but if a slight change in the 
algorithm occurs, the same ASIC cannot be used. Also, it 
involves high development cost and development time, 
besides requiring most of the time for testing and debugging. 
These drawbacks tend to inhibit the rapid and economical 
implementation of such systems. 

 
 On the other hand, when the speed is not critical, a 
processor (a software system) can be used. The advantage 
of this solution is that a change in the algorithm can easily 
be overcome with a change in the software and therefore be 
used again. It is clear that processor has more flexibility 
than the ASIC, but is slower. Beside the speed and the 
flexibility, the used area is also a consideration. The size of 
the processor is huge because of the presence of generalized 
control unit. But ASIC’s are comparatively small, since 
they are application specific and therefore do not need large 
controlling overhead. 
 
 To handle the conflicting requirements of being a 
flexible architecture and implement some application- 
specific algorithms, a dynamically reconfigurable 
embedded architecture is proposed in this paper. The 
proposed architecture consists of arithmetic operation-level 
configurable modules interconnected through multiple data 
buses that can be logically configured to form one or more 
computation pipelines before a specific application is 
initiated and remains unchanged till the completion of the 
application. This architecture is targeted at high-throughput 
and real-time signal processing applications. 
 
 The organization of the paper is as follows: Section II 
introduces the system model for DRESPA and the proposed 
architecture is described in detail in Section III. Section IV 
illustrates the performance evaluation for various digital 
signal processing applications. The paper concludes finally 
in Section V.  
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2. DRESPA Design Model 
 
The set of criteria that are frequently used to characterize 
the design of a reconfigurable computing system are 
granularity, depth of programmability, reconfigurability, 
type of interface and computation model [5]. 
 
 Many researchers have proposed other models of 
reconfigurable systems targeting different applications. 
Sonic [6] and PADDI [7] are some of the coarse-grain 
reconfigurable computing systems. Reconfigurable systems 
with fine-grain granularity include Splash [8], Chimaera [9], 
Garp [10] and DPGA [11]. Among these, DPGA and GARP 
are not based on FPGAs. RAW [12] is a mixed-grain 
reconfigurable system. As evident, all the above systems 
vary greatly. Since the existing computing systems are not 
suitable for the target class of real-time applications, a new 
architecture has to be designed that is capable of handling 
the target real-time data. The architecture should have a 
system structure that permits flow of a large volume of 
real-time data smoothly without any blockage. Since the 
volume of data is large, it should process data in an on-line 
fashion; it has to store data in a memory. The major timing 
constraints of any embedded system come from the 
periodicity of the input data. All the required tasks for a set 
of input data must finish before the next set of data comes in. 
For such a timing requirement, the statistical or 
probabilistic behavior of the system is undesirable. If there 
are many statistical factors in the architecture, it is very 
difficult to ensure the timing correctness of the system, and 
it is also difficult to trace the timing errors when they ever 
occur.  
 
 In order to flow data freely, the system needs to have 
some form of pipeline processing. In pipelining multiple 
instructions are allowed to overlap in execution. Pipeline 
processing does not involve any statistical or probabilistic 
behavior; operations are applied on data at each pipeline 
stage, regularly at each clock cycle. Each pipeline stage 
makes some contribution to the instruction and can operate 
in parallel with other stages. Pipelining does not decrease 
the time to execute individual instructions, but it will 
execute more instructions per time unit, resulting in speed 
up. 
 
 At one of the system-level pipeline stages, vector 
operations are performed on the input data in an execution 
unit. It is not reasonable to have a pipeline for each 
computation of the application, since it requires an 
unreasonable amount of hardware. Computational 
resources must be shared among all the computational 
aspects of the application to make the amount of hardware 
reasonable. No matter how complicated a vector operation 
is, they can be decomposed into arithmetic-operation-level 
vector operations, such as arithmetic-logic, shift, and 

multiply operations. Therefore, in the new architecture, the 
arithmetic-operation-level functional modules are the 
computational resources to be shared and to be 
interconnected to form one or more pipelines for the 
required computations. 

 
 The interconnections of the computational resources 
need to be changed dynamically for different vector 
operations. A cross-bar switch could provide all the 
possible interconnections of the computational resources, 
but would be very expensive. The detailed analysis of the 
vector computations required by the application can 
determine the set of computational resources (number and 
kind) and their possible interconnections. All the 
interconnections of computational resources should form 
pipelines to support the pipelined vector operations; each 
computational resource also needs to be pipelined so that 
the interconnected resources can be pipelined. Given a set 
of computational resources, the design of a pipeline for a 
vector operation determines the processing time, which can 
be computed from the total number of pipeline stages from 
input to output. Thus the dynamically reconfigurable 
computation model addresses the issues of timings as well 
as those of resource sharing. To cater to the requirements of 
the real-time high-speed signal processing applications, the 
embedded architecture should be composed of 
arithmetic-operation-level configurable modules, that is, 
granularity should be coarse-grained granularity. The 
architecture designed in this work puts together, in a 
cohesive structure, the main prominent features of previous 
reconfigurable systems, that is, coarse-grain granularity, 
multiple programmability and dynamic reconfiguration. 
 
 The general system architecture, shown in Figure 1, 
comprises an embedded processor, a reconfigurable unit, a 
high bandwidth memory unit and input/output (I/O) unit, all 
implemented as a single chip.  
 

 
 

Figure 1. General System Architecture. 
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Given the nature of target applications, the reconfigurable 
component is organized as an array or reconfigurable cells 
(RCs). The RCs are coarse-grained structures. The 
embedded processor is an autonomous processing unit. It 
performs scalar operations and controls the operations of 
RC array. The reconfigurable unit performs vector 
operations under the control of the embedded processor. A 
specialized memory unit handles data transfers between 
external memory and the RC array, and stores input, 
intermediate and output data. Also, there is a separate 
memory for storing context data. A dedicated I/O unit 
handles real-time data input and output.  
 
 The performance model for the proposed architecture 
is based on Amdahl’s Law [13]. The performance model 
gives the theoretical performance achieved by vector 
operations and pipeline processing, upon which the new 
architecture is based. They show the limits of the 
performance gain with vector and pipeline operations.  
 
 Let N be the number of processors, s be the time spent 
by a serial processor on a sequential portion of a program, 
and p be the time spent by a serial processor on a portion of 
a program that can be executed in parallel. Then Amdahl's 
Law says that the speedup S obtained by executing the 
program with N processors is given by 

p/N  s
1S
+

=  

where s + p = 1. Hence,  

s)/N  (1s
1S
−+

=  

 Assume that a task T consists of two portions, Ts and Tv, 
where Ts is the sequential portion of the task that can be 
performed only by sequential operations, and Tv the vector 
portion that can be performed by vector operations. Let rs 
and rv be the fractions of the task corresponding to Ts and Tv, 
respectively, where 1r  r v  s =+ .  
Let ts be the sequential execution time of T, and tv be the 
execution time of T when Tv is performed by vector 
operations, respectively. This is illustrated in Figure 2.  
 

 
 

Figure 2. Sequential versus Vector Execution. 

Let A be the acceleration factor defined as the ratio of 
vector operations to sequential operations for Tv. Then, the 
total speedup S obtained by vector operations for T is 
represented by  
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Given S and rs, A is calculated as 
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For example, if S = 10 and rs = 0.05, then A = 19. It means 
that if the required speedup is 10 for an application with the 
sequential portion of 5%, then a system must be designed 
that executes the vector operations 19 times faster than the 
corresponding sequential operations. Since the feasible 
value of A must be positive, the following condition must 
be satisfied:               

1    S.rs <  
That is, the product of the speedup and the sequential 
portion must be less than 1. This is the theoretical limit on 
performance gain achieved by vector operations 
 
 
3. DRESPA System Components 
 
The organization of proposed DRESPA reconfigurable 
computing system is shown in Figure 3. It is composed of 
an array of reconfigurable cells (RC array) with context 
memory, an embedded processor, data buffer and I/O unit. 
The RC array with its context memory corresponds to 
reconfigurable SIMD array controlled by an embedded 
processor, and the high bandwidth memory unit is 
implemented through data buffer and memory controller. 
Typically, the embedded processor executes sequential 
tasks of the application, while the reconfigurable unit (RC 
array) is dedicated to the exploitation of parallelism 
available in an application. 
  
 These system components are interconnected via four 
system buses consisting of two I/O buses and two memory 
buses. Two I/O buses are used to transfer data between Data 
Buffer and I/O unit; the two memory buses are used to 
transfer data between Data Buffer and reconfigurable unit. 
These four system buses allow the system to perform I/O 
operations and vector operations at the same time. Each bus 
can be used for any type of data transfer operation. In one of 
the typical system activities, the following data transfer 
operations might be performed in parallel:  
 

(1) I/O unit to data buffer: real-time data input. 
(2) Data buffer to I/O unit: result data output. 
(3) Data Buffer to Reconfigurable unit: Input for 

vector operations. 
(4) Reconfigurable unit to data buffer: Output of 

vector operations. 



IJCNS International Journal of Computer Science and Network Security, Vol. 5 No.8 August 2005  
 
 
 

 

Figure 3. Block Diagram of DRESPA Implementation. 
 
The capability of these four parallel data transfer 
operations enables the system to operate globally in 
pipeline. The system-wide pipeline consists of five stages: 
the first stage for real-time data input, the second for 
reconfigurable unit data input, the third for vector 
operations, the fourth for reconfigurable unit data output, 
the fifth stage for result data output. The time period of 
this system-wide pipeline is upper-bounded by the cycle 
time of periodic real-time data, which is the maximum 
time allowed for data transfer operations and vector 
operations at the pipeline stages. 
  
 The DRESPA system consists of five main 
components as, embedded processor, reconfigurable cell 
array, context memory, data buffer and Input/ Output Unit. 
 
3.1 Embedded Processor  

 
The controlling component of DRESPA is a 16-bit 
embedded processor with a 4-stage scalar pipeline, as 
instruction fetch, decode, execute and memory operation. 
It has sixteen 16-bit registers and a 16-bit ALU. It has an 
instruction and data cache memory which minimizes the 
access to external main memory. The embedded processor 
performs scalar operations and controls the other system 
components through special instructions added to its 
architecture. It also initiates all data transfers to or from 
the Data Buffer and configuration program load for the 
context memory. It is an autonomous processor that 
executes programs stored in the program memory. It reads 
machine instructions from the program memory and 
executes them. Data referenced by an instruction are also 
fetched from the program memory and the results of the 
instruction execution are stored back to it. The 
Controller-Datapath diagram of embedded processor is 

shown in Figure 4.  

Figure 4. Embedded Processor. 

The embedded processor controls the other 
components through its control signals. This interface is 
used to initiate vector operations in the reconfigurable unit. 
In a typical case, the embedded processor first prepares 
for a vector operation Vi in the reconfigurable cell RCi and 
then initiates the reconfigurable unit using the control 
signal. After the reconfigurable unit starts performing the 
vector operation, the embedded processor does its own 
scalar task Si. When the reconfigurable unit terminates the 
vector operation, it is sensed by the embedded processor. 
The embedded processor prepares for the next vector 
operation Vi+1 and repeats the process. 
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3.2 Reconfigurable Cell Array 

The basic programmable component of DRESPA is the 
Reconfigurable Cell (RC). Each RC has an 
ALU-multiplier and two registers and is configured 
through a 32-bit context word. The context words for the 
RC array are stored in context memory. Each RC is the 
basic unit of reconfiguration. The RC architecture is 
shown in Figure 5. 
 

Figure 5. Reconfigurable Cell Architecture. 

 Each RC comprises of six components: the 
ALU-multiplier, the shift unit, the input multiplexers, 
register file with four 16-bit registers, an output register 
and the context word register. A context word, loaded 
from context memory and stored in the context register, 
defines the functionality of the RC. There are 256 RCs, 
arranged as a 16 x 16 matrix called RC array. 

 
 Most multimedia applications required that one of the 
data input to the multiplier be less than or at most equal to 
12 bits. So, the ALU-Multiplier unit includes a 16 x 12 
multiplier and a 32-bit ALU. It has four input ports. Two 
16-bit ports receive data from the input multiplexers, one 
16-bit port takes data from output register and a 12-bit 
port takes a constant from context word. The shift unit 
output is also 16-bits wide. There are a total of sixteen 
ALU functions. The two input multiplexers select one of 
several inputs for the ALU, based on control bits from the 
context word in the context register. In addition to 
arithmetic and logic functions, multiply-accumulate 
operations can also be performed. The multiplier 

architecture is carry-save array multiplier. This is the 
component that has the longest delay in the RC Unit.  

 
 Multiplexer MUX_A selects one input from fifteen 
other RCs in the same row, from fifteen other RCs in the 
same column, from the Data Buffer, or from internal 
register. The register file is composed of four 16-bit 
registers. Multiplexer MUX_B selects one input from 
eight RCs in the neighborhood, from the Data Buffer, or 
from internal registers. The feedback register allows reuse 
of previous operands. 
 
 There is a 32-bit register containing the context word 
for configuring each RC, called as Context Register. It is a 
part of each RC, whereas the Context Memory is separate 
from the RC Array. The fields MUX_A and MUX_B 
specify control bits for the input multiplexers of the RC. 
The field OP specifies the function for the 
ALU-Multiplier unit. The fields DIR and SHIFTCOUNT 
specify the direction and number of shifts, respectively. 
The field REGSEL determines the register in which the 
result of an operation is to be stored. The field named 
CONSTANT is used to supply immediate operands to the 
ALU-Multiplier unit in each RC. This is useful for 
operations that involve constants (such as multiplication 
by a constant over several computations) in which case 
this operand can be provided through the context word. At 
the global level, there are buses that run across rows and 
columns. These buses provide data from any one cell to 
other adjacent cell. 
 
3.3 Context Memory 

The Context Memory provides context words to the RC 
Array. These context words configure the RC and are also 
the basis for programming the interconnection network. 
The context word from the Context Memory is loaded into 
the Context Register in each RC. It is of size 3 x 32 x 16 x 
16 bits or 3 KBytes. Each context word is of size 4 Bytes. 
 
 The Context Memory is organized into three blocks 
which store the contexts for row-wise operation, 
column-wise operation of the RC Array and additional 
context respectively. Each block has sixteen sets, with 
each set corresponding to a row/column of the RC Array. 
Each set can store thirty two context words. Thus, three 
contexts can be stored for a single RC. The major focus of 
this architecture is on regular and data-parallel 
applications. Based on this idea of parallelism, each 
context word is broadcast to a row or column of RCs. 
Thus, all sixteen RCs in a row or column share the same 
context word, and perform the same operations. They can 
also have individual contexts. The Context Memory can 
be updated concurrently with RC array execution. This 
process is called as dynamic (run-time) reloading of the 
contexts. Dynamic reconfiguration allows reduction of 
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effective reconfiguration time to zero.  
 

3.4 Data Buffer 

The data buffer is an internal data memory, which is 
similar to a data cache. It is organized into two sets. Each 
set has 512 rows of 16 bits each; therefore the data buffer 
has 512 x 4 Bytes. The memory bus operates in 16-bit 
mode. This two set organization makes memory accesses 
transparent to the RC array, by overlapping of 
computation with data load and store, alternately using the 
two sets. One of the two sets provides computation data to 
the RC array and also stores processed data back from the 
RC Array, while the other set sends processed data to the 
external interface through the I/O unit and receives data 
for the next round of computations. These operations 
proceed concurrently, thus preventing the latency of data 
I/O from adversely affecting system performance. 
DRESPA performance benefits tremendously from this 
data buffer. A dedicated data buffer has been missing in 
most of the contemporary reconfigurable systems, with 
consequent degradation of performance.  
 

3.5 Input / Output Unit 

The input/output unit depends heavily on the I/O 
requirements. Input unit takes real-time data at a certain 
interval and transfers them to the data buffer via one of the 
I/O buses. Output unit sends processed data to external 
world. It reads from data buffer through other I/O bus. 
 

3.6 VLSI Implementation 

The simulation model of DRESPA is implemented as a 
HDL model using Verilog HDL. The individual 
components have been simulated at behavioral level and 
functional verification is done in Windows platform using 
Modelsim SE/EE PLUS release 5.4e from Mentor 
Graphics. The architecture is synthesized into custom 
ASIC using Leonardo Spectrum release 2002e, for 0.12 µ, 
2.5 V, CMOS technology. Table 1 lists the computation 
time of each of the components as per timing analysis. 
The RC computational part is the critical path for the 
entire architecture. It can be noticed that the DRESPA will 
perform at a clock rate of 75 MHz (or clock period of 13 
nS). 

 

4. Performance Evaluation 
 
To evaluate the performance of DRESPA, several signal 
processing applications were implemented on HDL 
simulation model of DRESPA. DRESPA achieves a 
performance improvement and shows a speedup range 
from 2.27 to 21.00 for different applications. The results    

Table 1. Timing Report 

Computational Unit Computation Time 
(nS) 

Embedded Processor 10.11 

Reconfigurable Cell (total) 12.92 

RC : MUX_A 1.04 

RC : 4 to 1 MUX 0.30 

RC : 16 x 12 MULTIPLIER 6.40 

RC : ALU 2.21 

RC : 2 to 1 MUX 0.27 

RC : SHIFTER 2.70 

  
show that dynamic reconfiguration helps improve the 
performance, especially when high-speed applications are 
executed on reconfigurable structures. The performance 
speedup obtained for the tested signal processing 
applications are summarized in Table 2. 
 

Table 2. Performance Report 

Application Speedup 

Second order IIR Filter 3.00 

MPEG Motion Estimation 16.06 

2-D Discrete Cosine Transform 12.30 

CELP Algebraic Codebook 
Search 

21.00 

AMDF Pitch Estimation 2.27 

  
 
5. Conclusion 
 

In this paper, the existing major embedded 
architectures used for system design were reviewed and 
the proposed architecture, DRESPA was described in 
detail. Many of these technologies have reached relative 
maturity. Based on the applications in this work, it appears 
that the number of contexts does not need to be large to 
achieve good performance improvement with a 
Reconfigurable Unit. In these applications, more than one 
context was used for each application and a considerable 
speedup was obtained. The question of how many 
contexts is an optimal number is still unanswered. In case 
an application used more than two, a configuration 
allocation algorithm implemented in the compiler could 
be used to reduce the number of context reconfigurations.  
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 There is still a big gap between the hardware 
and the software. To close this gap, further investigation is 
necessary in the area of compilers for reconfigurable 
embedded systems. It is also desirable to study the 
behavior of the architecture in presence of operating 
system. As a final note, investigating the previously 
mentioned topics will lead to the development of a high 
performance reconfigurable system. After a complete 
study of the interactions between architecture, compiler, 
and operating systems for reconfigurable systems, one 
would be able to determine the best track to follow in the 
reconfigurable world. 
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