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Summary 
In response to proliferated attacks on enterprise systems today, 
many practitioners employ multiple, diverse sensors for 
increased information assurance because a single sensor cannot 
detect all types of attacks. A multi-sensor environment is 
characterized by deployment of a homogeneous and/or 
heterogeneous suite of sensors to monitor different entities in the 
corresponding environment. These multiple sensors may employ 
different strategies based on the model they use, the data source 
they monitor and the techniques they employ. Essentially, the 
primary advantage of using multiple sensors is to improve the 
detection rate and the coverage within the system. In multi-
sensor environments, the sensors can collaborate with or 
complement each other to provide increased assurance of 
information. Although it makes good engineering sense to 
employ multiple sensors in a secure environment, however, 
managing data from these sensors is critically important. In this 
paper, we address the alert correlation aspect of sensor alert 
fusion in a multi-sensor environment. Here we describe the use 
of a causal knowledge-based inference technique with Fuzzy 
Cognitive Modeling to discover causal relationships in sensor 
data.  
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1. Introduction 

In response to proliferated attacks on enterprise systems 
today, many practitioners employ multiple, diverse sensors 
for increased information assurance because a single 
sensor cannot detect all types of attacks. A multi-sensor 
environment is characterized by deployment of a 
homogeneous and/or heterogeneous suite of sensors to 
monitor different entities in the corresponding 
environment. These multiple sensors may employ different 

strategies based on the model they use, the data source 
they monitor and the techniques they employ. Essentially, 
the primary advantage of using multiple sensors is to 
improve the detection rate and the coverage within the 
system. In multi-sensor environments, the sensors can 
collaborate with or complement each other to provide 
increased assurance of information.  

Although it makes good engineering sense to employ 
multiple sensors in a secure environment, however, 
managing data from these sensors is critically important as 
the workload for the security administrator is increased in 
many folds and large alert volume from different sensors 
can potentially overwhelm the security administrator - 
making analysis of such alerts extremely difficult. These 
factors necessitate fusion of the sensor alerts to provide 
sophisticated reasoning capabilities outside the sensors’ 
core functions. Potential advantages of sensor alert fusion 
in a single or multi-sensor environment include 
elimination or reduction of the need for manual analysis of 
reported data; compression or reduction of alert volume; 
and identification of context by associating alerts from 
different sensors. 

In this paper, we address the alert correlation aspect of 
sensor alert fusion in a multi-sensor environment. Here we 
describe the use of a causal knowledge-based inference 
technique with Fuzzy Cognitive Modeling to discover 
causal relationships in sensor data. The following sections 
will provide necessary background information, outline 
our technical approach, report on experimental results on a 
benchmark dataset and lastly conclude.  
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2. Related Background 

Research in the area of alert fusion/alert aggregation/alert 
clustering/alert correlation has emerged in last few years 
and primarily concerns information modeling and high 
level reasoning. Among them, the ones that are most 
relevant to our work are the following [16]. 

Julisch introduces attribute generalization in alarm (i.e., 
alert) clustering as a method to support root cause 
discovery [4]. This work outlines a semi-automatic 
approach for reducing false positives in alarms by 
identifying the root causes with clustering of alerts by 
abstraction and then eliminating the root causes to reduce 
alarm overload. Ning et al. proposes an alert correlation 
model based on prerequisites and consequences of 
intrusion [9]. With knowledge of prerequisites and 
consequences, the correlation model can correlate related 
alerts by matching the consequences of previous alerts 
with prerequisites of later ones and then hyper alert 
correlation graphs are used to represent the alerts. In the 
prerequisite-consequence model, the authors conduct 
reasoning with predicate logic where predicates are used 
as basic constructs to represent the prerequisites and 
consequences of attacks. This approach requires extensive 
modeling of attacks in terms of specifying prerequisite and 
consequence of each alert type in the sensor report. Yu 
and Frincke propose a model for Alert Correlation and 
Understanding (ACU) based on Hidden Colored Petri-
Nets (HPCN) [18]. HPCNs model agents, resources, 
actions, and functions of a system with transition and 
observation probabilities. To perform correlation, a model 
based on prerequisites and consequences is generated 
using domain knowledge. Training of model is required to 
best fit the model parameters. Qin and Lee generate high 
level aggregated alerts from low level sensor data and then 
conduct causal analysis based on a statistical technique, 
known as the Granger Causality Test, to discover new 
patterns of attack relationships [13]. Although this 
approach does not require apriori knowledge of attacks 
behavior, it still requires some human intervention in 
background alert identification used in the statistical 
technique employed. 

Fuzzy Cognitive Maps (FCMs) originated from the 
combination and synergism of fuzzy logic and neural 
networks. Researchers have used FCMs for many tasks in 
several different domains. Use of FCMs was first reported 
in our previous work [15] for fusing alert information in 
an intrusion detection environment to assess network 
health. Fuzzy Intrusion Recognition Engine, a network 
based IDS, also use FCMs in detecting attacks from 
features extracted from network traffic [17].  

In this research, a new alert correlation technique has been 
described that uses fuzzy cognitive modeling with 
generalization to correlate alerts that are linked in multi-
staged attacks. We have developed an abstract incident 
model for alert correlation with generalized security events 
to deal with scalability issues in sensor fusion. By 
focusing on the effects of the intrusions, such an abstract 
incident model captures the essence of typical or 
commonly occurring techniques used the attackers in 
multi-staged attacks and correlates alerts, even though 
intermediate alerts are missing in the sensor reports.  

3. Alert Correlation with Abstract Incident 
Model 

Alert correlation involves discovering causal relationships 
between alerts such that alerts that are associated in multi-
staged attacks can be linked together. With the premise 
that every cause is bound to have an effect – whether the 
effect is critical or non-critical, we view the alerts 
generated by the sensors as causes with the potential to 
generate various impacts or effects in systems. Different 
alerts in sensor reports relate to different actions of the 
attackers which may have different objectives [16]. The 
effects generated can potentially be coupled together in a 
causal chain to reveal the possible correlations between 
the alerts that initiate them.  

We use cognitive modeling with Fuzzy cognitive maps 
(FCM)s to represent these different cause and events in the 
system and the nature of relationships between them. 
Fuzzy cognitive modeling [16] offers a straightforward 
structural representation of causal knowledge and allows 
what-if kinds of reasoning for causal analysis of data. 
Proposed by Kosko, FCMs model the world as concepts 
and causal relations between concepts in a structured 
collection [5,6,7]. Concepts (nodes) in an FCM are events 
that originate in the system and whose values change over 
time. The causality links between concepts are represented 
by directed edges that denote how much one concept 
impacts the other(s). The concepts, as well as the edges, in 
the FCMs can be crisp or fuzzy. For a detailed description 
of FCMs and their workings readers are referred to 
[1,5,6,7]. 

For alert correlation, we employ abstract incident 
modeling where reasoning is based upon generalized 
events rather than specific/exact events in the environment. 
Problems with specific/exact knowledge modeling have 
been discussed in [16]. Such abstract incident modeling 
with generalized events captures the essence of typical or 
commonly occurring techniques used by the attackers in 
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multi-staged attacks focusing on the effects of the 
intrusions.  

The abstract incident model shown in Figure 1. that show 
how different attacks in a system facilitate other attacks - 
all being part of coordinated multi-staged attacks. In an 
abstract incident model, an event can cause other events to 
occur or it can occur because of other events occurring in 
the system. Primarily, there can be two types of events 
activated in the system: Cause Events (CEvents) and Effect 
Events (EEvents). The difference between the two types of 
events is that, as the names reflect, CEvents essentially 
contribute to EEvents or EEvents are activated by CEvents. 
The events in the abstract incident model of Figure 1. are 
described below: 

− The events at far most left of the model (colored blue) 
are considered CEvents, which are generated as a 
result of alerts seen in the sensor reports and 
correspond to possible actions taken by the intruder to 
achieve some goal. 

− The events at middle of the model (colored yellow) 
are considered: 
• EEvents, when they are generated as combined 

effects of the CEvents that correspond to the sensor 
alerts and the CEvents that correspond to existing 
risks in systems. EEvents are security incidents 
indicating a possible security violation in the 
system. 

• CEvents when they contribute to generation of risks 
of security incidents. 

− The events at far right of the model (colored green) 
are considered: 
• EEvents, when they are generated as effect of the 

CEvents that correspond to some security incidents 
that have occurred in the system. Although not 
shown here, other external factors like, 
vulnerabilities or threats can also contribute to the 
activation of these events. 

CEvents, when as risks they contribute to generate 
other security incidents in the system.  
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The leftmost CEvents in the abstract incident model of 
Figure 1. correspond to the generalized alert types in the 
attack name generalization hierarchy of Figure 2., which 
shows how specific attack names are generalized into 
different abstract categories of attacks at different 
abstraction levels. Some of the abstract concepts used in 
this hierarchy are adapted from [12]. In this generalization 
hierarchy, commonality of alerts is considered based on 
the nature of impact of the attacks that generate the alerts, 
i.e., it focuses on what the attacker achieves by executing 
the attacks on systems.  

 
The following is a description of the subset of concept 
nodes in the hierarchy that corresponds to the leftmost 
CEvents in the abstract incident model of Figure 1.   

− Surveillance: Designates alerts that are attributed to 
general activities which collect information about 
networks or systems. Surveillance activities are 
considered non-critical threats to the system but they 
may be used as preludes to conducting specific attacks 
on systems. For example, alerts for IPSweep and Ping.  

− Reconnaissance: Designates alerts that can be 
attributed to activities that collect specific information 
about networks or systems. Reconnaissance activities 
are considered non-critical threats to the system but 
they may be used to conduct further malicious acts 
which may cause harm to systems.  Probe_of_Service 
is a reconnaissance activity that designates alerts that 
are targeted to a particular system to specifically 
obtain information about specific services supported 
by the system (for example, alerts for Port Scan, Ping 
of Service). 

− Access Control Violation: Designates alerts attributed 
to intrusive activities that compromise the system 
security perimeter. Examples are exploitation or 
manipulation of weak/insecure/inadequate system 
features or configuration/implementation errors to Fig. 1 An Abstract FCM Incident Model for Multi-Staged Attacks in General 

Fig. 2. Generalization Hierarchy for Attack Names 
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gain access to a system. Access control violation 
activities pose an immediate critical threat to the 
system and may cause further impacts on the system. 
For example, alerts for Dictionary and Fdformat.  

− Active Communication: Designates alerts that are 
attributed to general suspicious activities which open 
a communication channel between systems that may 
be used to transfer files to and from those systems. 
Active communication activities are considered to 
pose an immediate critical threat to the system and 
may be used for further attacks. For example, alerts 
for command shell or alerts for remote shell. 

− Goal Execution: Designates alerts that indicate 
malicious attacks that unconditionally conflict with 
the security policy and have the potential to cause a 
system to behave in an unwarranted way. These 
activities are considered the most critical threats to a 
system. For example, alerts for Mstream_Zombie 
attack or Tripwire integrity alerts or alerts for Syn 
Flood attack. 

The middle EEvents in the abstract incident model of 
Figure 1. correspond to various security incidents and are 
described below: 

− Disclosure_of_Host (DHS): This event occurs when 
there is evidence that a resource’s identity is exposed 
or disclosed to outside users. Surveillance CEvent 
triggers this event in system. The knowledge about 
the existence of the resource can be used by the 
intruder in further probing to gain additional 
information to continue with additional attacks.  

− Disclosure_of_Service (DSV): This event occurs 
when there is evidence that existence of a particular 
service resided on a particular resource is revealed 
and when there is pre-existing risk of such disclosure 
present. Probe_of_Service CEvent triggers this event 
in the system. The knowledge of the existence of a 
particular service that has known 
vulnerabilities/weaknesses can be exploited by the 
intruder for further attacks.  

− System_Environment_Corruption (SEC): This event 
occurs when there is evidence of activity that may 
result in unauthorized access to resources such that 
the resource’s security perimeter is breached and 
when there is pre-existing risk of such activity present. 
Access_Control_Violation CEvent triggers this event 
in system. Once the security perimeter is breached, an 
intruder can take necessary measures to attack the 
resource itself or to use the compromised resource to 
launch further attacks against other resources in the 
network.  

− System_Seizure (SSZ): This event occurs when there 
is evidence of an unauthorized communication 
channel with the resource in question indicating total 

control over the resource and when there is pre-
existing risk of such activity present. 
Active_Communication CEvent triggers this event in 
system. With transferring necessary files or tools, the 
intruder can proceed to attack the resource itself or 
use the compromised resource to launch attacks 
against other resources in the network. 

− System_Distress (SDT): This event occurs when there 
is evidence of definitive malicious attack and when 
there is pre-existing risk of such an activity present. 
Goal_Execution CEvent triggers this event in the 
system.  

All these events are linked together by cause and effect 
relationships in the abstract incident model of Figure 1. 
For a DHS incident, there is no predecessor incident in the 
correlation chain and all other DSV, SEC, SSZ and SDT 
incidents are considered its successors. For a DSV 
incident, the predecessor incident in the correlation chain 
is DHS and SEC, SSZ and SDT incidents are considered 
its successors. For an SEC incident, DHS and DSV 
incidents are considered its predecessors and SSZ and 
SDT incidents are considered its successors in the 
correlation chain. For an SSZ incident, DHS, DSV and 
SEC incidents are considered its predecessors and an SDT 
incident is considered its successor. For an SDT incident, 
all other DHS, DSV, SEC, and SSZ incidents are 
considered its predecessors and it has no successor 
incident in the correlation chain. 

The following properties hold for inference with the 
abstract incident model: 

− Suppose, IP denotes a predecessor incident and IS 
denotes a successor incident in a correlation scenario 
found for a resource Ri. If the earliest occurrence time 
of alerts contributing to IP is tstart-ip, latest occurrence 
time of alerts contributing to IS is tend-is, occurrence 
time of an alert contributing to IP is tip, and occurrence 
time of an alert contributing to IS is tis, then the 
following must be true for the alerts to be correlated:  

o with predecessor incident 
 tis => tstart-ip 

o with successor incident 
 tip <= tend-is 

− For IP and IS to be correlated, they must occur 
between the same pair of hosts with one of them 
being the resource in question. (An exception is a 
System_Distress incident, which may involve the 
resource in question with any other host. This is 
because once a multi-staged attack proceeds to the 
SDT level, alerts can designate definitive attacks 
directed to the host in question (e.g., 
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DDOS_shaft_handler_to_agent 2  alert) or alerts can 
designate attacks originating from the host in question 
(e.g., Mstream_Zombie_Respons3 alert). Nevertheless, 
in both cases, the host in question is considered as the 
target of the attack.) 

 
For abstract alert correlation, evidence in the sensor 
reports (i.e., sensor generated alerts) are initially 
generalized to abstract alert types (Figure 2.) and then 
mapped to the leftmost CEvents as shown in Figure 1. For 
example, if there is an alert that indicates a sadmind buffer 
overflow, then instead of generating a specific event like 
SadmindAmslverifyOverflow, abstract alerts are used to 
activate more generalized CEvents like 
Access_Control_Violation.  

Note that the same CEvent will also be generated for 
similar types of alerts such as StatdOverfllow 4  or 
SolarisLPDOverflow 5 . Instead of generating specific 
events like VulnerableToSadmind, more generalized 
EEvents like Disclosure_of_Service are activated. Note 
that this same EEvent can also replace other specific 
events like VulnerableToStatd, or 
VulnerableToSolarisLPD.  

Different actions of an attacker, targeted at a particular 
host, activate different incidents for that resource [16]. The 
extent to which such an incident occurs depends not only 
on the evidence of the corresponding action taken by the 
attacker as found in the sensor generated report, but also 
on the existing risk of such an incident taking place 
(Figure 1.), i.e., the determination of what has happened 
jointly depends on what was reported to have happened 
(i.e., current evidence of the incident) and what could have 
happened (i.e., the possibility of the incident). For 
example, the EEvent, System_Environment_Corruption 
(SEC) primarily depends on the sensor reporting of the 
CEvent, Access_Control_Violation (alert impact 
designated by an FCM edge of +1.00). This type of action 
is not always successful and therefore, sensor notification 
of this alert does not guarantee that such an incident 
actually took place. The abstract incident model deals with 
this uncertainty by taking additional information into 
account, i.e., the pre-existing risk of such an incident 
happening for the particular resource in question as shown 

                                                           
2 This is an alert generated by Snort denoting that a DDoS Shaft handler 
is directing a DDoS Shaft agent (compromised host) to launch an attack 
(http://www.snort.org). 
3  This is an alert generated by RealSecure denoting that an mstream 
agent/zombie (compromised host) is responding to an mstream 
handler/master (http://xforce.iss.net/xforce/search.php)  
4  StatdOverflow: An attack that exploits vulnerability associated with 
Solaris system’s statd program that provides network status monitoring 
and crash and recovery functions. 
5 SolarisLPDOverflow: An attack that exploits vulnerability associated 
with Solaris BSD print protocol daemon. 

by the middle CEvents in Figure 1. It shows this risk 
impact designated by the FCM edge of +0.50 for the 
incident System_Environment_Corruption. Note the 
difference between alert and risk impact. This is because 
security administrators tend to pay more attention to the 
report of the alert itself than to its existing risk. Sometimes 
when alerts such as - rsh, Telnet XDisplay, Ftp_Put 
(which generate Active_Communication CEvent) are 
issued by sensors, the existing risk (or possibility) of such 
an incident occurring impacts the incident more than the 
alerts do since such alerts are not always indicative of 
actual malicious activities. Hence impacts of such CEvents 
are less than the impacts of the associated risks. It should 
be noted that such risk computation can also incorporate 
other characteristic features of the resource itself such as 
the presence of known vulnerabilities in the host that can 
be exploited to cause security incidents. For example, if a 
resource is known to have the sadmind service running, 
thus making it vulnerable to a buffer overflow type of 
attack, this would increase the risk of the incident 
System_Environment_Corruption for that resource.  

All alerts contributing to CEvents of the abstract incident 
model can be correlated as part of a general multi-staged 
attack scenario denoted by the FCM model. Figure 3. 
shows the steps for such abstract alert correlation: 

for each host x in X (X: host list for the protected environment) 
{ 
 get all alerts into A that involve any communication with x 

for each alert a in A 
{ 
   generate CEvent for the alert type  
} 
get list of each host y in Y that are in communication with x 
for all alerts that involve communication between x and y 
{ 

generate EEvents (incidents and risks) and correlate alerts 
check for isolated alerts 
check for isolated non-critical incidents 

identify x as compromised 
} 

} 
for each host h in H (H: hosts reported with correlated alerts) 
{ 

for each incident 
  compute Incident Strength 

compute total Incident Association Strength 
} 

 

It should be noted that a correlated scenario is unique 
between the pair of hosts involved in the communication. 
Multiple scenarios can be activated for one victim host 
because it is feasible for a host to become the target of a 
coordinated attack launched from multiple attack sources. 
In that case, the coordinated scenarios are reported 
differently depending on the source of the attacks and the 
nature of the attacks. When correlating multiple alerts for 
multi-staged attacks scenarios, isolated incidents (i.e., if 

Fig. 3. Abstract Alert Correlation Steps 
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alert correlation results in only one type of incident) are 
disregarded intuitively. An exception is the 
System_Distress incident, which may be generated due to 
isolated attacks such as smurf or syn_flood, and therefore 
even if isolated, it is reported because of its critical nature. 

With FCM modeling of system events, presence of all 
predecessor events in the abstract incident model is not 
necessary to infer all subsequent events. For example, if a 
sensor does not report an Access_Control_Violation 
CEvent (which is possible because “false negatives” are a 
common problem for sensors), a 
System_Environment_Corruption EEvent is still activated 
to some extent. This is because once 
Disclosure_of_Service EEvent gets activated in the system 
as a result of the Probe_of_Service CEvent, it activates 
Risk_of_System_Environment_Corruption immediately. 
The Risk_of_System_Environment_Corruption EEvent 
consequently activates the System_Environment_ 
Corruption EEvent to some extent (not in full because 
some of the evidence of the incident is missing). This 
eventually causes other subsequent EEvents to activate 
partially as further inference takes place. As the situation 
builds and more associated alerts are reported, resulting 
EEvents become stronger. Therefore, alert correlation is 
able to progress to a partial extent with missing alerts in 
the sensor reports. Thus, use of abstract incident modeling 
allows to replace multiple explicit attack models and helps 
with scalability and uncertainty issues in alert correlation.  

Along with correlating alerts, we also report security 
incidents that occur for the resources6 [16]. The extent to 
which a particular security incident occurs designates its 
incident strength. In accordance with FCM inference [7], 
the strength of a successor incident Is activated for a host 
or resource Ri at tn+1 time for each predecessor incidents Ip 
with impact epi, can be represented by the following: 
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It should be noted that when a particular host becomes the 
target of different coordinated attacks launched from 
different sources, for the computation of the incident 
strengths, the individual incidents that occur for the 
resource are taken into consideration to compute overall 
impact of the incidents on the resource, irrespective of 
their context. The incident model combines the strengths 
of the different incidents activated for a particular resource 
in order to measure the extent of its incident association.  

                                                           
6 We use the term resource to denote protected hosts or systems 
in the network. 
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Figure 4. shows how the evidence of different incidents 
activated for a resource contribute to the overall incident 
association of the resource with different impacts. The 
degree of impact depends on the nature of the incident and 
the designated security policy [16]. At any time, the 
Incident Association Strength (IAS) of a particular 
resource collectively represents the effects of all the 
security incidents activated for the resource at that time. 
Therefore, the IAS of a resource Ri at time tn+1 for each 
contributing incidents Ik with impact eki, can be 
represented as the following: 
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With abstract incident modeling, alerts are correlated to 
find incidents in a coordinated attack scenario. Along with 
incidents found for each resource, their Incident 
Association Strengths (IAS)s are also reported. It should 
be pointed out that IAS can be considered a confidence 
score given by the incident model to represent the degree 
of concern for a particular resource’s involvement in 
correlated security incidents resulting from multi-staged 
attacks.  

4. Experiments and Results 

For experimentation, MIT Lincoln’s Lab’s DARPA 
(Defense Advanced Research Projects Agency) 2000 
Intrusion Detection Evaluation (IDEVAL) Scenario 
Specific dataset [8] was used as the test data because it is a 
well known benchmark dataset that contains simulated 
multi-staged attack scenarios in a protected environment. 
The fact that the ground truth required for validation 
purposes cannot be known for real world traffic, has 
inspired us to use this simulated attack traffic for which 
ground truth is known.  

In the Lincoln Lab DARPA (LLD) experiment, the attack 
traffic includes a series of attacks carried out over multiple 

Fig. 4. Combining Evidence of Security Incidents 
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networks and audit sessions by an attacker who probes 
hosts in the network, successfully breaks into some of 
them to prepare for and finally launch Distributed Denial 
of Service (DDoS) attacks against an off-site government 
website. The attack experiments were conducted over 
three segments of a simulation network: a network inside 
an Air Force base, an internet outside an Air Force base 
and the demilitarized zone (DMZ) that connects the 
outside network to the inside network [8]. There are two 
attack scenarios in the LLD attack traffic:  

− one scenario includes DDoS attacks carried out by a 
novice attacker (LLDOS 1.0) who compromises three 
hosts individually to launch the attack against an 
outside host; 

− another scenario includes DDoS attacks carried out by 
a more sophisticated attacker (LLDOS 2.0.2) who 
compromises one host and then fans out from it.  

In general, attacks in LLDOS 2.0.2 are stealthier that those 
in LLDOS 1.0. Overall, there are four tcpdump files 
containing the attack traffic: LLDOS 1.0 Inside Zone; 
LLDOS 1.0 DMZ; LLDOS 2.0.2 Inside Zone; and 
LLDOS 2.0.2 DMZ. 

For evaluating our technique, the LLD attack traffic itself 
was not sufficient because we required sensor alert reports 
that would result from monitoring this attack traffic. 
Therefore, for the purpose of our research, we needed to 
generate these sensor alert reports as part of the research. 
In this regard, two intrusion detection systems (IDS)s or 
sensors, RealSecure (Version 7.0) [3] (a commercial 
signature based network sensor) and Snort (Version 2.3.3) 
[14] (an open source lightweight signature based network 
sensor) were used. Apart from the fact that these sensors 
are among the most widely used sensors today, RealSecure 
was selected because other researchers have also used this 
IDS for similar purposes [10] and Snort was selected 
because it is a freely available IDS. 

To generate the sensor alert reports, Snort was configured 
to execute in full coverage (with all available attack 
signatures active) and installed in the security lab of the 
Center of Computer Security Research (CCSR), 
Mississippi State University (MSU), to monitor the 
simulated network traffic containing the LLD attacks. 
Since RealSecure is not designed to monitor offline 
tcpdump data, the tcpdump files had to be replayed in a 
live network using tcpreplay, a tcpdump file utility 
program offered by Open Source Technology Group [11]. 
We elected to execute RealSecure with the “Attack 
Detector” policy, instead of the “Attacks and Audits” 
policy (which is equivalent to executing Snort with all the 
default rules), for the following reasons: 

− Executing RealSecure and Snort with an equivalent 
policy generated almost the same sets of alerts from 
both sensors since they both sniffed the same attack 
traffic. Consequently, we found the same results by 
analyzing the sensor reports individually. Apart from 
showing that our technique performs consistently, it is 
not interesting to compare and contrast the results. 
Differences in sensor scope coverage resulted in 
different sensor reports and we wanted to evaluate our 
approach in detecting these differences.  

− In real situations, it is likely that one will need to 
make use of sensors with different coverage. From a 
security administrator’s point of view, provided with 
two identical sensors, it makes more sense to use one 
of them with full coverage and one with focused 
coverage. This is because full coverage generates a 
very large amount of alerts in sensor report (for 
example, RealSecure generated more than 39K alerts 
for the LLDOS 1.0 inside zone attack traffic alone), 
which not only included clear attacks but also include 
all audits for any kind of notable activities. On the 
other hand, for a better understanding of the big 
picture, sometimes it is beneficial to analyze all 
activities to trace the malicious ones to their roots or 
to link them together.  

Evaluating the incident model’s performance in building 
an overall security view by analyzing integrated alerts 
reported by multiple sensors (in our case, RealSecure and 
Snort), involved multi-sensor data generation consisting 
of: 

−   simulation of attacks in a live network with tcpreplay 
and LLD attack traffic; 

−   installation of both sensors such that they would 
monitor the same traffic simultaneously and generate 
alerts independently; and finally 

−   integration of the individual sensor alert reports. 

Both RealSecure and Snort were installed in the same host 
to monitor the LLD attack traffic. To integrate the sensor 
alerts, the following alert features were extracted from the 
independent sensor reports: Source, Target, Time, and 
Attack name. An additional feature identified the sensor 
and the individual alerts uniquely. 

For experimentation, the generalization hierarchy shown 
in Figure 4. was used to generalize the attack names in the 
sensor alert reports into abstract alert types. Since the 
sensors (Real Secure and Snort) used in the experiments 
were both signature-based or misuse sensors, alert 
abstraction was limited up to level 2 of the generalization 
hierarchy. The low-level alerts reported by RealSecure 
were generalized with the help of attack signature 
descriptions provided by ISS, Inc.’s X-Force database, a 
very comprehensive threats and vulnerabilities database 
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Tab. 1 Correlation Performance for the MultiSensor-MSU Report 

(http://xforce.iss.net/), and generalization of the Snort 
alerts were conducted using attack signature descriptions 
provided by Sourcefire, Inc. (http://www.snort.org/). In 
addition, security experts were consulted for their 
comments/suggestions on the generalization. If interested, 
please contact the authors for complete categorization of 
the attack names reported by RealSecure and Snort.  

The alert correlation experiment was conducted on the 
individual RealSecure and Snort alert reports (RealSecure-
MSU and Snort-MSU sensor report) and the integrated 
multi sensor (MultiSensor-MSU report) separately. While 
the individual sensor reports were used to evaluate and 
compare the alert incident model’s alert correlation 
performance for intra-sensor fusion (i.e., between alerts 
generated by a single sensor), the multi-sensor report was 
used to evaluate its performance for inter-sensor fusion 
(i.e., between alerts generated by different sensors). In this 
paper, we focus on the results with the multi-sensor report 
due to space constraints. 

Evaluating a high-level reasoning process, like alert 
correlation with abstract incident modeling (abstract alert 
correlation), is not trivial as it involves many subjective 
and qualitative factors. To show the alert correlation 
capability of the incident model, the following correlation 
performance metrics are used in this dissertation, as 
suggested by Qin and Lee [13]:  

− True Causality Rate (TCR): is measured by the ratio 
of the number of correctly correlated alerts 7  for a 
scenario to the total number of actual causal 
relationships8 that are involved in the scenario. 

− False Causality Rate (FCR): is measured by the ratio 
of the number of incorrectly correlated alerts for a 
scenario to the total number of correlated alerts 
reported for the scenario. 

It should be pointed out that TCR essentially measures the 
detection rate for alert correlation and can be used as an 
indicator of how completely the incident model is able to 
correlate alerts. FCR measures the false positive rate for 
alert correlation and provides insight into how correctly 
the incident model is able to correlate alerts. Table 1. 
denotes the alert correlation results for the multi-sensor 
report in terms of the metrics described earlier. It should 
be noted that this only concerns the correlated alerts 
reported by the incident model.  The abbreviations used 
are the following:  

SA: Sensor reported Alerts, CR: Causal Relationships, CA: 
Correlated Alerts, CCA: Correctly Correlated Alerts, ICA: 

                                                           
7 Correlated alerts: Alerts that are reported l to be part of coordinated attacks. 

8 Causal relationships: Alert data that are part of coordinated attacks against target hosts. 
 

Incorrectly Correlated Alerts, MA: Missed Alerts, TCR: True 
Causality Rate, FCR: False Causality Rate. 

 
 

Dataset SA CR= 
CCA+
MA 

CA= 
CCA+
ICA 

CCA ICA MA 
 

TCR= 
CCA/CR 

FCR= 
ICA/CA 

LLDOS 
1.0 
Inside 
Zone 

1353 91 86 75 11 16 82.42%  12.79% 

LLDOS 
1.0 DMZ 

3932 161 136 122 14 39 75.78% 10.29% 

LLDOS 
2.0.2 
Inside 
Zone 

920 26 22 22 0 4 84.61% 0% 

LLDOS 
2.0.2 
DMZ 

1508 9 10 9 1 0 100% 10% 

  

With alert correlation on the multi-sensor data, the 
following results were expected: 

− Alerts incorrectly correlated in intra-sensor fusion 
(analyzing the individual sensor reports) would also 
be incorrectly correlated in inter-sensor fusion 
(analyzing the multi-sensor report). This is because 
evidence present in individual sensor reports that 
leads to incorrect correlation, remain present when 
integrated. However, there should not be additional 
false positives. The only exception would be if 
incident situations are discovered when unrelated 
evidence found in individual sensor reports are linked 
together in the multi-sensor report to collectively 
discover a seemingly coordinated attack scenario.  

− Alerts missed in intra-sensor fusion would also be 
missed with inter-sensor fusion. However, there 
should not be any additional false negatives unless 
there is related evidence found in individual sensor 
reports that cannot seemingly be linked together in the 
multi-sensor report to support a coordinated attack 
scenario.  

As experiment was conducted on the multi-sensor report, 
the following was found: 

− As expected, the incident model incorrectly correlated 
the same set of alerts for inter-sensor fusion that were 
incorrectly correlated for intra-sensor fusion (in case 
of RealSecure-MSU and Snort-MSU sensor reports). 
That is, the number of incorrectly correlated alerts 
(ICA) in the integrated multi-sensor reports (column 6 
of Table 1.) are the sum of the number of incorrectly 
correlated alerts (ICA) in the RealSecure-MSU sensor 
report and the number of incorrectly correlated alerts 
(ICA) in the Snort-MSU sensor report. 

− Unexpectedly, there were additional missed alerts 
(shown in the last column of Table 2.) beyond those 
missed for RealSecure-MSU and Snort-MSU sensor 
reports. That is, the number of missed alerts (MA) in 
the integrated multi-sensor reports (column 7 of Table 
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Tab. 2. Comparison of Correlated Alerts found for RealSecure-MSU 
Report, Snort-MSU Report and MultiSensor-MSU Report 

Tab. 3. Comparison of Incident Situation Discovered after 
Analyzing RealSecure-MSU Report, Snort-MSU Report, and 
MultiSensor-MSU Report 

1.) is greater than the sum of the number of missed 
alerts (MA) in the RealSecure-MSU sensor report and 
the number of missed alerts (MA) in the Snort-MSU 
sensor report. Table 2. shows the additional missed 
alerts. 

 
 

Dataset Causal 
Alerts 
(CA) 
for 
Real 
Secure-
MSU 

CA for 
Snort- 
MSU 

Expected CA for MultiSensor 
MSU= CA for RealSecure-
MSU + CA  for Snort- MSU 

Actual 
CA for 
Multi 
Sensor 
MSU 

Additional 
Missed Alerts= 
Expected CA - 
Actual CA 

LLDOS 1.0 
Inside Zone 

16 71 87 86 1 

LLDOS 1.0 
DMZ 

23 116 139 136 3 

LLDOS 2.0.2 
Inside Zone 

8 15 23 22 1 

LLDOS 2.0.2 
DMZ 

4 6 10 10 0 

  

It should be noted that the discrepancy in the number of 
causal or correlated alerts for the RealSecure-MSU sensor 
report (column 2) and the Snort-MSU sensor report 
(column 3) is due to the fact that the sensors were 
executed with different security policies. In the case of 
LLDOS 1.0 Inside Zone dataset, the one additional missed 
alert was a Sadmind_Buffer_Overflow alert, reported by 
RealSecure and generated for the host locke: 
172.016.112.010. This alert activated a 
System_Environment_Corruption incident for this host. 
However, since this incident occurred after its successor 
System_Seizure incident (activated due to alerts reported 
by Snort) and not before it, our model found the incidents 
unrelated. In the cases of LLDOS 1.0 DMZ and LLDOS 
2.0.2 Inside Zone datasets, the following alerts were 
missed by the incident model for the same reason: 

− For LLDOS 1.0 DMZ dataset, three 
Sadmind_Buffer_Overflow alerts reported by RealSecure 
for the hosts plato: 172.016.114.010, smith: 
172.016.114.020 and solomon: 172.016.114.030;  

− For LLDOS 2.0.2 Inside Zone dataset, one 
Sadmind_Buffer_Overflow alert reported by RealSecure 
for the host pascal: 172.016.112.050. 

For comparison purposes, Table 3. shows a list of all hosts 
reported by the fusion model after analyzing the 
RealSecure-MSU Report, Snort-MSU Report, and 
MultiSensor Report. The listings in <BOLD> indicate the 
actual attacked hosts in the LLD experiments. As can be 
seen the incident model successfully report the attacked 
hosts with comparatively high incident association 
strengths (IAS), indicating their involvement in multi-
staged attacks. The IAS reported for multi-sensor report is 
higher or equal to the individual sensor reports. This is 
because is some cases incidents were found to be linked 
together with inter-sensor fusion that were missing with 

intra-sensor fusion. Due to space constraints, here we only 
mention a very few from analysis of the multi sensor 
report. 

 

 

 

 
 D a t a s e t  H o s t  I A S  f o u n d  

f o r  
R e a l S e c u r e -

M S U  
R e p o r t  

I A S  
f o u n d  

f o r  
S n o r t -
M S U  

R e p o r t  

I A S  
f o u n d  

f o r  
M u l t i  

S e n s o r
- M S U  

R e p o r t  
1 7 2 . 0 1 6 . 1 1 2 . 0 1 0  7 0 . 8  1 0 0 . 0  1 0 0 . 0  
1 7 2 . 0 1 6 . 1 1 2 . 0 5 0  7 0 . 8  1 0 0 . 0  1 0 0 . 0  
1 7 2 . 0 1 6 . 1 1 5 . 0 2 0  7 0 . 8  1 0 0 . 0  1 0 0 . 0  
1 7 2 . 0 1 6 . 1 1 2 . 1 9 4   1 5 . 4 4  1 5 . 4 4  

L L D O S  
1 . 0  
I n s i d e  
Z o n e   
  
  1 7 2 . 0 1 6 . 1 1 4 . 0 5 0   3 4 . 3 7  3 4 . 3 7  

1 7 2 . 0 1 6 . 1 1 2 . 0 1 0  1 4 . 0  6 0 . 0  6 0 . 0  
1 7 2 . 0 1 6 . 1 1 2 . 0 5 0  3 4 . 0  6 0 . 0  6 0 . 0  
1 7 2 . 0 1 6 . 1 1 5 . 0 2 0  3 4 . 0  6 0 . 0  6 0 . 0  
1 7 2 . 0 1 6 . 1 1 4 . 0 1 0  3 4 . 0  6 0 . 0  6 0 . 0  
1 7 2 . 0 1 6 . 1 1 4 . 0 2 0  3 4 . 0  6 0 . 0  6 0 . 0  
1 7 2 . 0 1 6 . 1 1 4 . 0 3 0  3 4 . 0  6 0 . 0  6 0 . 0  
1 7 2 . 0 1 6 . 1 1 2 . 1 9 4   1 5 . 4 4  1 5 . 4 4  
1 7 2 . 0 1 6 . 1 1 4 . 0 0 1  3 2 . 0 3   3 2 . 0 3  

L L D O S  
1 . 0  
D M Z  
 
 
 
 
 1 7 2 . 0 1 6 . 1 1 4 . 0 5 0  3 2 . 0 3  3 4 . 3 7  7 2 . 8  

1 7 2 . 0 1 6 . 1 1 2 . 0 5 0  4 8 . 7  7 2 . 8  7 2 . 8  
L L D O S  
2 . 0 . 2  
I n s i d e  
Z o n e  1 7 2 . 0 1 6 . 1 1 5 . 0 2 0  5 4 . 1 9  7 2 . 8  7 9 . 2 3  

1 7 2 . 0 1 6 . 1 1 4 . 0 0 1  3 2 . 0 3   3 2 . 0 3  
1 7 2 . 0 1 6 . 1 1 4 . 0 5 0  3 2 . 0 3   3 2 . 0 3  

L L D O S  
2 . 0 . 2  
D M Z  1 7 2 . 0 1 6 . 1 1 5 . 0 2 0  1 8 . 6 7  3 4 . 3 7  4 0 . 5 1  

In the case of LLDOS 1.0 DMZ dataset, for one of the 
host marx: 172.016.114.050, the incident model correlated 
SEC and SSZ incidents from evidence reported only by 
Snort with a SDT incident from evidence reported only by 
RealSecure. Figure 5. shows the incident situation for this 
host. Although these alerts came from different sensors 
(i.e., RealSecure and Snort), the incident model linked 
them together because the alerts corresponded to 
sequential incidents in a multi-staged attack such as shown 
in Figure 1. This correlation is justifiable because we are 
interested in the ultimate impact of security incidents on a 
target and it is feasible for a target to be attacked from 
multiple sources. Therefore, such correlation is needed for 
comprehensive security analysis. In this case (Figure 6.), 
as a result of this correlation, the IAS reported was higher 
(72.8%) as compared to what were found analyzing the 
RealSecure report (32.03%) and the Snort report (34.37%). 

 

0 0.2 0.4 0.6 0.8 1

Disclosure of Host (DHS)

Disclosure of Service
(DSV)

System Environment
Corruption (SEC)

System Seizure (SSZ)

System Distress (SDT)

From 
RealSecure-
MSU 
Report

From Snort-
MSU 
Report

From 
None

 

Fig. 5. Incident Situation for Host marx: 172.015.114.050 analyzing 
the MultiSensor-MSU Report 
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Tab. 4. Comparison of Incident Situation for Host mill analyzing 
LLDOS 2.0.2 Inside Zone Dataset of RealSecure-MSU 
Report, Snort-MSU Report, and MultiSensor-MSU Report 
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In the case of LLDOS 1.0 DMZ dataset, for the hosts 
under attack, the incident model was able to correlate DHS, 
DSV and SEC incidents inferred from evidence reported 
by RealSecure and Snort with the SSZ incident inferred 
from evidence reported only by Snort. Since the Snort-
MSU report also had evidence of all related incidents, the 
IAS reported for the MultiSensor-MSU report is the same 
as that for the Snort-MSU sensor report. 

In the case of LLDOS 1.0 Inside Zone and DMZ datasets, 
the incident situation for the host mill: 172.016.115.020, is 
found to be the same as that in the Snort-MSU sensor 
report. This is because the multi-sensor report for LLDOS 
1.0 Inside Zone and DMZ datasets did not provide any 
additional evidence other than what already existed in the 
Snort-MSU sensor report. However interestingly, the IAS 
is reported higher in the case of LLDOS 2.0.2 Inside Zone 
and DMZ datasets of the multi-sensor report than for the 
respective datasets of the individual sensor reports. The 
following explains why. 

 

 

Dataset Analysis based on Sensor Report DHS DSV SEC SSZ SDT IAS 

RealSecure 1.0 0.2 0.733 0.44 0.888 54.19% 

Snort 0.1 0.02 0.673 0.8 0.961 72.80% 

LLDOS 
2.0.2 
Inside 
Zone Multi-Sensor 1.0 0.2 0.733 0.84 0.968 79.23% 

  

Table 4. shows the incident situation for host mill in the 
case of LLDOS 2.0.2 Inside Zone dataset of RealSecure-
MSU, Snort-MSU and MultiSensor-MSU reports. The 
yellow cells denote incidents activated based only on pre-
existing risks and without any evidence from sensor 
reports. For example, none of the sensors reported any 
evidence of a DSV incident for this host. The blue cells in 
the last row indicate that in these cases, the abstract 

incident model complemented failure of one sensor in 
reporting an alert for a certain type of incident with 
another sensor reporting an alert for similar type of 
incident. The green cells in last row indicate both sensors 
reporting evidence of the same incident. For the multi-
sensor report (last row in Table 4.), the reported strengths 
of incidents DHS, DSV and SEC, are the same as the 
maximum of the corresponding incidents’ strengths 
reported for the individual sensor reports. This is because 
of the same evidence support and existing risk conditions. 
However, for the multi-sensor report, the reported 
strengths of incidents SSZ and SDT are higher than the 
corresponding incidents’ strengths reported for the 
individual sensor reports. In these cases, although the 
supporting evidence was the same, the existing risks were 
higher in the case of the multi-sensor report (since the 
predecessor cases of the incidents activated to a higher 
degree). Therefore, the successor incidents (SSZ and SDT) 
were also activated to a higher degree and as a result, the 
overall IAS was reported higher (79.23%) than those 
found from analyzing the individual sensor reports. 

In the experiments conducted for abstract alert correlation, 
we found that the incident model was able to correlate 
alerts that were generated as part of a coordinated attack 
scenario. While correlating alerts or finding causal 
relationship between alerts, it also reported on security 
incidents that had occurred for the hosts involved in the 
attacks. The extent of incident activation depended on 
evidence supporting the incident and the risk or the 
possibility of the incident occurring. That is, a high 
incident value indicated the presence of both evidence and 
risk for the incident and a low incident value indicated the 
absence of either the evidence or the risk. For each host 
reported under attack, an overall degree of concern for 
incident association was also reported. For example, a 
high incident association strength reported for a host 
indicated that one or more highly critical security incidents 
had occurred for the host and a low incident association 
strength reported for a host indicated that one or more less 
critical security incidents had occurred for the host. Thus 
incident association strengths and incident strengths 
provided the security administrator with an insight into the 
extent of concern for hosts involved in multi-staged 
attacks carried out by attacker. 

5. Conclusion and Future Work 

The main advantage of our alert correlation technique with 
abstract incident modeling has been shown to link together 
alerts that are involved in multi-staged coordinated attacks 
by considering both evidence of attacks present in the 
sensor reports and the possible occurrence of such attacks. 

Fig. 6. Comparison of IAS reported for Host marx: 172.015.114.050 for 
RealSecure-MSU, Snort-MSU and MultiSensor-MSU reports 
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The abstract incident model allowed inference to progress 
even though evidence of attacks was missing in the sensor 
reports. Our correlation technique has been shown to 
properly derive quantitative assessments of the protected 
resources’ involvement in multi-staged attacks. The level 
of such involvement provided insight into the criticality of 
coordinated attacks targeted towards a resource. In 
addition, the correlation technique has been shown to 
further reduce alert volume by reporting only correlated 
alerts. 

In this research, we have used cognitive models with 
FCMs whose structures have been defined by human 
experts. However, the models are intuitive and generic and 
require little or no specialized knowledge. In the future, 
we will explore the use of adaptive FCMs, where the 
FCMs can self-learn and self-train like neural networks 
with minimal involvement of the human expert.  

A critical assumption in this research is that meaningful 
generalization hierarchies have been defined for the alert 
features and that the sensor reported attacks are 
appropriately categorized into the developed attack 
generalization hierarchy or taxonomy. Defining such 
generalization hierarchies is a knowledge engineering task 
that has no single best way to be done. The generalization 
hierarchies used in this research are simply shown as 
examples to demonstrate the usefulness of our model. 

In this research, we have focused on what has happened to 
a protected resource from evidence provided by sensor 
reports. In the future, we want to extend this work to 
predict an attacker’s future plans such that we are able to 
report what might or is about to happen to a protected 
resource. This has the potential to warn the security 
administrator in advance and aid in preventing such 
attacks. 

Another issue that is worth future investigation is the 
collaboration between multiple information sources to 
provide a more holistic view of security situations. Data 
from vulnerability scanners, honey pots, and performance 
monitoring systems can be utilized in this respect. Also, 
we would like to investigate incorporation of dynamic 
generalization hierarchy for alert feature abstraction.  

It should be noted that the DARPA data is not intended to 
be conclusive examination of the effectiveness of our 
approach, but rather to provide a sense of how well and 
how accurate our approach works. Since our model has 
not been tested on a live system, a potential future 
research effort will be to experiment with real-time traffic 
in both distributed and cluster environment and with larger 
datasets.  
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