
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 
 

 

20 

Manuscript received  August 5, 2007 

Manuscript revised  August 20, 2007 

Word Similarity for Document Grouping using Soft Computing 

Masrah Azrifah Azmi Murad 
  

Department of Information Systems 
Universiti Putra Malaysia 

43400 UPM Serdang, MALAYSIA 
 

Trevor Martin 
  

Department of Engineering Mathematics 
University of Bristol 

BS8 1TR, UK 

 
Summary 
The technology world has provided a more efficient and quicker 
way of accessing information through the web and databases in 
organizations that implement information systems in order to 
achieve a competitive edge. The simplest way of filtering 
information is to extract keywords in measuring the documents 
relevance. Nonetheless, getting to the right document is often a 
problem. Synonymy i.e., two words with the same meaning, for 
example, taxi and cab is a major problem in information 
searching. This work uses the soft computing techniques in the 
area of information retrieval and they encompass both fuzzy set 
theory and probability theory. We propose an algorithm for 
computing asymmetric word similarities (AWS) to overcome the 
synonymy problem. The algorithm is computed using mass 
assignment based on fuzzy sets of words. A key feature of our 
algorithm is that it is incremental, i.e. words (and documents) 
can be added or subtracted without extensive re-computation. 
AWS produced similarity measures of consistently 10% higher 
than tf.idf algorithm and performed successful document 
groupings.  
 
Key words: 
fuzzy set, soft computing, asymmetric word similarity, 
information retrieval 

1. Introduction 

Information retrieval studies the representation, 
organization, storage, retrieval and distribution of 
information [15]. In this context, information may consist 
of data items such as numbers and names, or any written 
texts such as e-mails, memos and reports. The goal of an 
information retrieval system is to satisfy user information 
needs by retrieving all possible relevant documents, at the 
same time retrieving as few as possible of the irrelevant 
documents. A successful information retrieval system 
enables the user to determine quickly and accurately 
whether the contents of the documents are satisfactory. 
Information retrieval plays a significant role in web 
searching, which allows people access to various sources 
of information from anywhere and at anytime. Only 
relevant documents should be returned based on a user’s 
query. In order to better represent the documents, those 

with similar topics or contents are grouped together. 
Nonetheless, finding the right document is often a  
 
problem. For instance, if we search for a word orange the 
system will return a list of documents concerned with 
color, fruit, Orange County, or the mobile phone operator. 
In addition, many documents contain ambiguous words, 
for example, bank could be a river bank or a financial 
institution, jaguar could be a car or an animal and domino 
could be a pizza company or a game. User may face with 
synonymy problems in which two words that could 
express the same meaning, for example, taxi is similar to 
cab and notebook is similar to laptop. 
 
Soft computing combines various new techniques in 
artificial intelligence that resembles the human ability in 
approximate reasoning. The idea of soft computing [20] 
was introduced by Zadeh in 1994 and has been influenced 
by his previous work on fuzzy sets [17], analysis of 
complex systems and decision processes [18], and theory 
of possibility [19]. The aim is to cope with problems that 
deals with imprecision and uncertainty. The principle 
components of soft computing are fuzzy logic, neural 
network and probabilistic reasoning, with the latter 
subsuming Bayesian network, genetic algorithm and chaos 
theory. In this work, the soft computing techniques used 
are fuzzy set and probability theories in developing the 
knowledge based systems methods and modeling. 
 
We aim to use the fuzzy sets incorporating mass 
assignment in finding the similarity between two words. 
We compute frequencies of triples of words exist in the 
document collection and convert these frequencies to 
fuzzy sets. Probability of two words is then computed 
using the semantic unification of two fuzzy sets. Our 
results show that using asymmetric word similarity 
increased document similarity measures and performed 
successful document groupings. The remainder of the 
paper is organized as follows: In section 2 we discuss 
briefly on vector space model using tf.idf weighting 
scheme, and use it to benchmark against our algorithm, 
section 3 explains the methodology used, section 4 
discusses in detail on the novel algorithm, section 5 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

21

discusses the results, and finally section 6 concludes the 
paper. 

2. Vector Space Model 

There have been several different kinds of document 
grouping in the literature, among them a vector space 
model [3] using tf.idf [16] technique. The tf.idf allows 
searching using natural language. This method proved to 
be better than Boolean model in grouping similar 
documents together by using a keyword matching. 
Documents and queries are represented as vectors in term 
space. The algorithm for calculating weight is given by 
 

wik = tfik * log (N/dfk)    (1) 
 
where tfik is the frequency of kth term in document i, dfk is 
the number of documents in which a word occurs and N is 
the total number of documents in the collection. Cosine 
measure [3] is used to measure the angle between two 
vectors, i.e., a document dj and a user query, q. Two 
vectors are considered identical if the angle is φ  = 0 . The 
degree of similarity of the document dj with regard to the 
query q is given by the cosine of the angle between these 
two vectors, i.e. 
 

      sim(dj, q) = 

∑∑
∑

==

=

×

×
=

×

•
t

j qi
t

i ji

t

i qiji

j

j

ww

ww

qd

qd

1 ,
2

1 ,
2

1 ,,  (2) 

 
Many document retrieval systems use the vector model 
with tf.idf technique because it is simple and fast. 
However, there are a few problems of using the tf.idf. For 
example, tf.idf cannot reflect similarity of words and only 
counts the number of overlapping words and it ignores 
synonymy and syntactic information. tf.idf uses keywords 
to find documents that contain words that match the query, 
which could lead to many irrelevant documents returned, 
as the search will find words in any location and in any 
document. There could also be some relevant documents 
missing, as they use different words to express the same 
interests. Every insertion and deletion on the document 
collection will force the idf [3] value to change and will 
need to be updated.  
 
In this paper, we demonstrate how finding an asymmetric 
similarity relation of words performs better document 
similarity measure, an approach that differs from 
conventional implementation of similarity measures. Our 
experiments show that the use of fuzzy sets in computing 
word similarity can produce higher similarity values 
between documents in the corpus. 

 

3. Fuzzy Sets and Mass Assignment Theory 

Similarity between words is not a crisp relation as there 
are degrees of similarity, and any representation of word 
similarity must recognize this. We choose mass 
assignment theory to represent the uncertainty inherent in 
this application, as it enables us to use statistical 
information where available, whilst retaining the intuitive 
understandability of fuzzy sets. 
 
A fuzzy set is an extension to a classical set theory, which 
has a problem of defining the border of the set and non-set 
[11]. Unlike a classical set, a fuzzy set does not have a 
clearly defined boundary by having elements with only a 
partial degree of membership [5]. For example, consider a 
height of a person with labels such as short, average, and 
tall. These labels are considered fuzzy because not 
everyone will agree with the same subset of the value 
domain as satisfying a given label. Nevertheless, if 
everyone agrees, we could write precise definitions of 
short, average, and tall in this context.  
 
A mass assignment theory was proposed by Baldwin in 
1991 as a general theory for evidential reasoning under 
uncertainty [4; 5]. This theory is used to provide a formal 
framework for manipulating both probabilistic and fuzzy 
uncertainties [5]. Consider the following example taken 
from [4], suppose we have a set of people labeled 1 to 10 
who are asked to accept or reject a dice value of x as small. 
Suppose everyone accepts 1 as small, 80% accept 2 as 
small and 20% accept 3 as small. Therefore, the fuzzy set 
for small is defined as 
 

small = 1 / 1 + 2 / 0.8 + 3 / 0.2    (3) 
 

where the membership value for a given element is the 
proportion of people who accept this element as satisfying 
the fuzzy set. The probability mass on the sets is 
calculated by subtracting one membership from the next, 
giving MAsmall as 
 
      MAsmall = {1} : 0.2, {1, 2} : 0.6, {1, 2, 3} : 0.2   (4) 
 
The mass assignments above correspond to families of 
distribution. In order to get a single distribution, the 
masses are distributed evenly between elements in a set. 
This distribution is known as least prejudiced distribution 
(LPD) [8] since it is unbiased towards any of the elements. 
Thus, in the example above, the mass of 0.6 is distributed 
equally among 1 and 2 and the mass 0.2 is distributed 
equally among 1, 2 and 3. Therefore, the least prejudiced 
distribution for small is 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

22 

 
 

LPDsmall = 1 : 0.2+0.3+0.0667=0.5667, 
   2 : 0.3+0.0667=0.3667, 
   3 : 0.0667     (5) 
 

3.1 Semantic Unification 

Semantic Unification is a concept in Fril [6] proposed by 
Baldwin in 1992 that is used to unify vague terms by 
finding a support for the conditional probability of the 
match. Unification is possible if two terms have the same 
meaning, however, if they only have similar meaning, then 
the match will not be perfect and can be supported with a 
support pair. A mass assignment with the least prejudiced 
distribution is used to determine the unification of two 
fuzzy sets. For example, suppose the fuzzy set for medium 
in the voting model is 
 

medium = 2 / 0.2 + 3 / 1 + 4 / 1 + 5 / 0.2  (6) 
 

and the mass assignment would be 
 

MAmedium= {3, 4} : 0.8, {2, 3, 4, 5} : 0.2 (7) 
 
Thus, the least prejudiced distribution is 
 
      LPDmedium = 2 : 0.05, 3 : 0.45, 4 : 0.45, 5 : 0.05  (8) 
 
Suppose we want to determine the Pr(about_3 | medium), 
and the fuzzy set is 
 

about_3 = 2 / 0.4 + 3 / 1 + 4 / 0.4   (9) 
 

with mass assignment as 
 

MAabout_3 = {3} : 0.6, {2, 3, 4} : 0.4  (10) 
 

We use the point semantic unification algorithm [7] to 
determine the conditional probability. Thus, 
 
Pr (dice is about_3 | ice is medium)  
 

= 0.6Pr(dice is 3 | dice is medium) +  
0.4Pr(dice is {2, 3, 4} | dice is medium) 
 

 = 0.6 (0.45) + 0.4(0.05 + 0.45 + 0.45) 
 
 = 0.65 
 
The point semantic unification can be calculated using the 
following tableau.  
 

 

Table 1: Tabular Form of the Pr(about_3|medium). 
 0.8 : {3,4}  0.2 : {2,3,4,5} 

0.6 : {3} 1/2 x 0.8 x 0.6 1/4 x 0.2 x 0.6 

0.4 : {2,3,4} 0.8 x 0.4 3/4 x 0.2 x 0.4 
 

Pr(dice is about_3|dice is medium) = 0.65 
 

The entries in the cells are the supports from the individual 
terms of the mass assignments. Each entry has an 
associated probability. Thus, the Pr(about_3 | medium) is 
0.65. The computation of the probability above can be 
shown using the following formula. Consider two fuzzy 
sets f1 and f2 defined on a discrete universe X. Let 
 
   (x) f1 be the membership of element x in the fuzzy set f1. 
   MAf1(S) be the mass associated with set S. 
   LPDf1(x) be the probability associated with element x in 

     the LPD. 
 
(and similarly for f2). Therefore 
 

Pr(f1 | f2) =  ∑
≠

⊆
⊆

×

φ21
,2
,1

21

2
)2()1(

SS
XS
XS

ff

S
SMASMA

I

 

 
           = ∑

∈

×
Xx

ff xLPDx )()( 21μ    (11) 

4. Similarity Measurement 

In this section, we propose a novel algorithm in computing 
word similarities asymmetrically using mass assignment 
based on fuzzy sets of words. We concentrate on how 
sentences use a word, and not on their meaning. Words in 
documents are considered to be similar if they appear in 
similar contexts. Therefore, these similar words do not 
have to be synonyms or belong to the same lexical 
category. Further, this algorithm is incremental such that 
any addition or subtraction of words (and documents) will 
only require minor re-computation. 
 

4.1 Document Preprocessing 

Information is stored in documents. Documents may be 
kept in the World Wide Web or any storage device, for 
example, disk. These documents contain information 
which must be retrieved by users in order to develop a 
useful and meaningful knowledge. Nevertheless, not all 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

23

content in the documents is useful in search processing. 
For example, image or symbols in documents may have 
less meaning compared to text. Therefore, they need to be 
removed so that only meaningful data are processed. In 
this section we outline procedures involved in document 
preprocessing. Throughout this section, a keyword may 
also be referred as an index term or simply a term. 
 
The first process is by removing stopwords. Stopwords are 
common words in English that are meaningless when used 
as a search terms. These words occur too frequently in a 
database and are usually ignored by the system when 
searching is done. Stopwords may be eliminated using a 
list of stopwords. If a word in the database matches a word 
in the stoplist, then the word will not be included as part of 
the query processing. Common stopwords include the, and, 
or, and from. One advantage of using stopwords is that it 
could reduce the size of the inverted index.  
 
The second process is to stem a word. Morphological 
variants of words usually have similar meanings. If these 
words are conflated into a single term, the performance of 
information retrieval can be improved. This may be done 
using the process of stemming in such a way that words 
are stemmed into root form by removing their affixes, i.e. 
prefixes and suffixes. Variant words such as RELATE, 
RELATED, RELATING, RELATION and RELATIONS 
are stemmed by removing various suffixes like -ED, -ING,     
-ION and -IONS. This leaves the single term as RELATE. 
In our work, we applied the process of Porter stemming 
[14] in the programs. 
 

4.2 Similarity Algorithm 

The underlying objective of our method is the automatic 
computation of similar words. The method is based on the 
observation that it is frequently possible to guess the 
meaning of an unknown word from its context. The 
method assumes that similar words appear in similar 
contexts and therefore, these words do not have to be 
synonyms or belong to the same lexical category. A key 
feature of the algorithm is that it is incremental, i.e. words 
and documents can be added or subtracted without 
extensive re-computation. Our method is based on finding 
the frequencies of n-tuples of context words in a set of 
documents where frequencies are converted to fuzzy sets, 
which represent a family of distributions, and find their 
conditional probabilities. Consider the following example, 
taken from [12; 13] 
 

A bottle of tezgüno is on the table. 
Everyone likes tezgüno. 
Tezgüno makes you drunk. 

We make tezgüno out of corn. 
 

From the sentences above, we could infer that tezgüno 
may be a kind of an alcoholic beverage. This is because 
other alcoholic beverages, for example, beer tends to 
occur in the same contexts as tezgüno. The idea that words 
occurring in documents in similar contexts tend to have 
similar meanings is based on a principle known as the 
Distributional Hypothesis [9]. We use this idea to produce 
a set of related words, which can be used as the basis for 
taxonomy, or to cluster documents. In this experiment, we 
use Fril to compute asymmetric similarities such that the 
similarity between <w1> and <w2> is not necessarily the 
same as between <w2> and <w1> expressed as  
 

ws(<w1>,<w2>) ≠  ws(<w2>,<w1>) 
 
This is because to compute similarity between two fuzzy 
sets, i.e. ws(<w1>,<w2>),  we multiply the memberships 
of fuzzy sets of <w1> with the corresponding frequencies 
in frequency distributions of <w2>. In order to calculate 
ws(<w2>,<w1>), we multiply the memberships of fuzzy 
sets of <w2> with the corresponding frequencies in 
frequency distributions of <w1>. In most cases, the values 
for two fuzzy sets are different; therefore, the similarity 
measures will be different. In the next phases, we present 
the algorithms used in finding the similarity between 
words. AWS consists of two phases. In Phase I [1], we 
compute the frequency distributions of words to fuzzy sets. 
In Phase II [1], we find the conditional probabilities of the 
fuzzy sets using the semantic unification algorithm and 
show the creation of AWS matrix. 
 
Phase I – Computation of frequency distributions to 
fuzzy sets 
 
Each document is described by a set of all words called 
vocabulary. We run a pre-processing procedure by 
removing inappropriate words and stemming words. 
Removing inappropriate words allow us to save space for 
storing document contents and at the same time reduce the 
time taken during the search process. We define a 
document Dj that is represented by a set of an ordered 
sequence of  nj words as the following 
 

Dj = {w0, w1, w2, ..., wnj} 
 
with w being the sub-sequence of document Dj. The 
ordering of words in the document is preserved. We 
calculate the frequency distributions of every word 
available in the document. For any sub-sequence Wn(x) = 
{wx, wx+1, ..., wx+n}, let p(x) be a word that precedes word x 
such that 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

24 

p(x) = {wx-k, wx-k+1, ..., wx-1} 
 
and s(x) be a word that succeeds word x such that 
 

s(x) = {wx+l+1, wx+l+2 ..., wx+l+k} 
 
where k and l are a given block of k words preceded and 
succeeded by blocks of l words, and  n is the total number 
of words in the document. We give a value of 1 to k and l 
as we need to consider the start and end of the document. 
Consider a document Dj containing sentences as the 
following. 

Table 2: Example of Sentences in Document Dj 
 

The quick brown fox jumps over the lazy dog. 
The quick brown cat jumps onto the active dog. 
The slow brown fox jumps onto the quick brown cat. 
The quick brown cat leaps over the quick brown fox. 

 
 
From the sentences, we obtain 
 

W(1)=quick, p(1)=the, s(1)=brown 
W(2)=brown, p(2)=quick, s(2)=fox 
 

using 
 

p(x) = W(x-1) 
s(x) = W(x+1) 

 
The computation of frequency distributions of words in 
the document will be built up incrementally. Hence, for 
each word x, we incrementally build up a set <context-of-
x> containing pairs of words that surround x, with a 
corresponding frequency. Let 
 

pre(x) be the set of words that precedes word x 
 
and  
 

suc(x) be the set of words that succeeds word x 
 
while 
 

 N  =  {pre(x), x, suc(x)} being the total number  
  of times the sequence of {pre(x), x, suc(x)}  
  occurs in document Dj 

 
Thus, the frequency of each <context-of-x> is given by the 
following 
 
   fcw = {pre(x), x, suc(x)} / N 
 

 
Once we computed the frequency distributions of each 
word, we convert the frequencies to memberships as 
shown in the following algorithm. 
 
 
   Input: 
 

fcw : array of frequency counts. 
T : total frequency count for this word = 

∑
SP

cw SPf
,

),(  where P and S are 

precedence and successor respectively. 
 
   Output:   
 

mcw: array of memberships 
1. Sort frequency counts into decreasing order,  

fcw[0] ... fcw[n-1] such that   fcwi  ≥  fcwj  iff i > j 

2. Set the membership corresponding to 
maximum count, mcw[0] = 1 

3. for i=1 ... n-1, i.e., for each remaining 
frequency count 
       mcw[i] = mcw[i-1] - (fcw[i-1] - fcw[i]) * i / T 

Fig. 1 Algorithm for Converting Frequencies to Memberships 

The complexity of the above algorithm is the sorting step; 
nevertheless, the remaining steps are linear in the size of 
the array. Using the example in Table 2, we obtain the 
frequencies for word brown with N=6 
 

quick - brown - cat occurs three times 
quick- brown- fox occurs two times 
slow- brown - fox occurs once  

 
We use mass assignment theory to convert these 
frequencies to fuzzy sets (as described in Figure 1), and 
obtain the fuzzy set for word brown as  
 

(quick, cat):1, (quick, fox):0.833, (slow, fox):0.5  
 
In the next phase, we use the fuzzy sets to compute the 
probability of any two words. 
 
Phase II – Computation of Word Probabilities 
 
To compute a point semantic unification for two frequency 
distributions fcw1 and fcw2, we calculate membership for fcw1 
and multiply by the frequency for the corresponding 
element in fcw2. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

25

 
 
   Input: 
 

mcw1: array of memberships. 
fcw2 : array of frequency counts. 
Tcw2 : total frequency counts for w2 = 

∑
SP

cw SPf
,

2 ),( where P and S are 

precedence and successor respectively. 
 
    
   Output: 
   Semantic Unification Value - Pr(w1|w2) , Pr(w2|w1) 
 

1. Convert fcw1 to mcw1 using steps in 
Algorithm I. 
 

2. Calculate the sum of mcw1 multiply by fcw2 for 
the common elements giving the point 
semantic unification for two frequency 
distributions. 
 

3. To compute the asymmetric probability, 
simply reverse the calculation in steps 1 
and 2. 

Fig. 2 Point Semantic Unification Algorithm 

Hence, for any two words <w1> and <w2>, the value  
 

Pr(<context-of-w1>|<context-of-w2>) 
  
measures the degree to which <w1> could replace <w2>, 
and is calculated by semantic unification of the two fuzzy 
sets characterizing their contexts. For example, suppose 
there is sentences in the document that give the fuzzy 
context set of grey as 
 

(quick, cat):1, (slow, fox):0.75 
  
We calculate the asymmetric word similarity of the two 
fuzzy sets of brown and grey using point semantic 
unification algorithm, giving the conditional probabilities 
as 
 

Pr(brown | grey) = 0.8125, Pr(grey | brown) = 0.625 
 
By semantic unification of the fuzzy context sets of each 
pair, we obtain an asymmetric word similarity matrix. For 
any word, we can extract a fuzzy set of 'similar' words 
from a row of the matrix. We also note that there are 
important efficiency considerations in making this a totally 
incremental process, i.e. words (and documents) can be 
added or subtracted without having to recalculate the 

whole matrix of values as opposed to a straightforward 
implementation that requires O(ni x nj) operations per 
semantic unification, where nj is the cardinality of the 
fuzzy context set that requires O(v2) semantic unification 
and v is the size of the vocabulary. Therefore, any addition 
of a new word or a new document using a straightforward 
implementation would require the whole recomputation of 
the matrix. Figure 3 shows the creation of AWS with 
elements described in the algorithm as having non-zero 
values. 

Fig. 3 Algorithm for Creating AWS 

This process creates an asymmetric word similarity matrix 
Sim, whose rows and columns are labeled by all the words 
encountered in the document collection. Each cell Sim(wi, 
wj) holds a value between 0 and 1, indicating to which 
extent a word i is contextually similar to word j. For any 
word we can extract a fuzzy set of similar words from a 
row of the matrix. Many of the elements are zero. As 
would be expected, this process gives both sense and 
nonsense. Related words appear in the same context (as 
with brown and grey in the illustration above), however, 
unrelated words may also appear, for example, the phrase 
{slow fat fox} would lead to a non-zero similarity between 
fat and brown. 

5. Results and Discussions 

To evaluate our method, we compare our system with tf.idf. 
We use Reuters text collection (formerly available from 
www.research.att.com/~lewis/reuters21578.html) in 
testing our system, in which 4535 documents are used as a 
training set and about 4521 documents are used as a test 
set. Several short queries were used to ensure that our 
system produces expected results all through out the 
testing, and these are reported elsewhere. However, in this 

1.
  

Store each word with a list of its context pairs 
with number of times each context pair has 
been observed. 

2. Calculation of the corresponding 
memberships and elements are not done until 
needed. Otherwise, 
       if a word W is read, then mark elements 

Pr(W|wi) and Pr(wi|W) as needing 
recalculation. 

3. If a new context, P-W-S is read, 
       search for other words wj which have 
       the same context P-wj-S. Mark  
       the elements Pr(W|wj) and Pr(wj|W)  
       as needing calculation. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

26 

paper we will only present the preliminary results [2], 
using Query 1: “bomb attack in Madrid” and Query 2: 
“digital library”. Based on Query 1, the training set has 
thirty-eight relevant documents retrieved while test set has 
fifty-four. Based on Query 2, training set has twenty-two 
documents and test set has thirty documents. Table 3 and 4 
show some selection of asymmetric similarity between 
words taken from an example Query 1.   

Table 3: Training – The Fuzzy Approach as a Measure of Contextual 
Word Similarity 

Training 
Words Similarity Measures 

word i word j Sim(wi, wj) Sim(wj, wi) 
injured would 0.148 0.857 
said quote 0.488 0.024 
grain currency 0.2 0.5 
surplus unwanted 1 1 
attack raid 0.223 0.018 
output produce 0.059 0.111 
target estimate 0.333 0.333 
price policies 0.111 0.042 
quantity bag 0.057 0.2 
aid money 0.5 0.2 
arrest custody 1 0.333 

 

Table 4: Test – The Fuzzy Approach as a Measure of Contextual Word 
Similarity 

Test 
Words Similarity Measures 

word i word j Sim(wi, wj) Sim(wj, wi) 
police shepherd 0.303 0.091 
said confirm 0.109 0.013 
attack threaten 0.667 0.030 
military pentagon 0.385 0.045 

iranian palestinia
n 0.173 0.023 

spain country 0.027 0.115 
reach get 0.417 0.167 
produce output 0.182 0.059 
increase prolong 1 0.125 
output amount 0.333 0.091 
slump fell 0.333 0.5 

 
Most word pairs are plausible although some, for example, 
grain and currency may be dissimilar. We obtain the value 
of 1 when two fuzzy sets for both word i and word j unify, 
meaning both words occur in similar contexts in the 
sentences. We emphasized that words are considered to be 
similar because they frequently share contexts, although 
some words are quite distant in meaning. Both tf.idf and 
AWS produce the same sets of documents in this case. 
Figures 4 and 5 [2] show the document-document 
similarity measures using AWS that is consistently about 
10% higher than using tf.idf, taken over both document 
sets, with much less computation required for the AWS 

calculation. Although the figure doesn't show much 
significance, it does make a difference when grouping of 
documents are being done. 
 

 

Fig. 4 Average document-document similarity measures using training set 

 

Fig. 5 Average document-document similarity measures using test set 

We use the document-document similarity measures to 
form document groupings based on their similarity values. 
The grouping is necessary so that similar documents are 
placed in the same group or cluster. This would help the 
user to navigate easily through similar documents. The 
similarity measure is defined as 
 

∑ ∑
∈ ∈1 2

),(
doci docj

jjii fwwSimf  

 
where f is the relative frequency of a word in a document 
and Sim(wi, wj) is the similarity of words outlined in the 
previous section. 
 
In this section, we present the document groupings using 
two short queries, i.e. 'apple' and 'cocoa plantation'. We 
group documents using K-means clustering algorithm [10] 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

27

with the number of clusters, K=3. From the results shown 
in Table 5 and 6, AWS managed to produce groups or 
clusters that contain only similar subjects in them. For 
example, documents with subject on 'computer' are 
grouped together while documents with subject on 'apple' 
are placed in a different group. Unlike AWS, one of the 
group or cluster produced by tf.idf contains documents 
with different subjects.  

Table 5: Document Groupings on ‘apple’; double lines indicates clusters 
 
Doc  

AWS 
General Subject 

 
Doc  

tf.idf 
General Subject 

D1 Apple computer   D6 Apple fruit 
D3 Apple computer D7 Apple fruit 
D4 Apple computer D1 Apple computer 
D5 Apple computer D5 Apple computer 
D2 Fresh apple D2 Fresh apple 
D6 Apple fruit D4 Apple computer 
D7 Apple fruit D3 Apple computer 

 

Table 6: Document Groupings on ‘cocoa plantation’; double lines 
indicates clusters 

 
Doc 

AWS 
General Subject 

 
Doc 

tf.idf 
General Subject 

D3 Cocoa  D5 Cocoa 
D4 Cocoa D6 Cocoa 
D2 Rubber plantation D1 Coffee plantation 
D7 Rubber plantation D7 Rubber plantation
D1 Coffee plantation D3 Cocoa 
D5 Cocoa D4 Cocoa 
D6 Cocoa D2 Rubber plantation

 

6. Conclusions and Future Work 

This paper presented a detailed algorithm in computing the 
asymmetric similarity between words using fuzzy context 
sets for use in document groupings. The first phase 
computed the frequencies of n-tuples of context words in a 
set of documents. The frequencies are converted to fuzzy 
sets, which represented the family of distributions. The 
second phase used the frequencies and fuzzy sets to 
compute the conditional probabilities of two fuzzy sets. 
The key feature of this algorithm is that it is incremental, 
such that words and documents can be added or subtracted 
without extensive recomputation. The effectiveness of 
AWS has been tested using the Reuters collections. The 
method is compared against tf.idf, and showed that AWS 
increased the document similarity measures and performed 
successful document groupings with only relevant subjects 
appearing in the same group. 
 

The future work on AWS should involve in using the 
combination of word similarity and semantics of words. 
The lexical semantics determine if two words have similar 
meaning or belong to the same lexical category. We hope 
to investigate the comparative timings and more details of 
the AWS complexity compared to its competitors. 
  
 
References 
[1] M.A. Azmi-Murad. Fuzzy Text Mining for Intelligent 

Information Retrieval. PhD Thesis. 2005. 
[2] M.A. Azmi-Murad and T.P. Martin. Using Fuzzy Sets in 

Contextual Word Similarity. In Intelligent Data 
Engineering and Automated Learning (IDEAL), LNCS 3177, 
Springer, pps. 517-522. 2004. 

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information 
Retrieval. ACM Press. 1999. 

[4] J.F. Baldwin. Combining Evidences for Evidential 
Reasoning. International Journal of Intelligent Systems, 
6(6), pp. 569-616, 1991. 

[5] J.F. Baldwin. Fuzzy and Probabilistic Uncertainties. In 
Encyclopedia of AI, 2nd ed., S.C. Shapiro, Editor 1992, 
Wiley, New York, pp. 528-537, 1992. 

[6] J.F. Baldwin, T.P. Martin and B.W. Pilsworth. Fril - Fuzzy 
and Evidential Reasoning in Artificial Intelligence. 
Research Studies Press Ltd, England, 1995. 

[7] J.F. Baldwin, J. Lawry, and T.P. Martin. Efficient 
Algorithms for Semantic Unification. In Proceeding IPMU, 
Granada, Spain, pp. 527-532, 1996. 

[8] J.F. Baldwin, J. Lawry, and T.P. Martin. A Mass 
Assignment Theory of the Probability of Fuzzy Events. 
Fuzzy Sets and Systems. (83), pp. 353-367, 1996. 

[9] Z. Harris. Distributional Structure. In: Katz, J. J. (ed.) The 
Philosophy of Linguistics. New York: Oxford University 
Press. pp. 26-47. 1985. 

[10] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. 
Englewood Cliffs,  NJ: Prentice Hall, 1988. 

[11] G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic - Theory 
and Applications. Prentice-Hall, Inc., Englewood Cliffs, 
New Jersey, 1995. 

[12] D. Lin. Extracting Collocations from Text Corpora. 
Workshop on Computational Terminology, Montreal, 
Canada, 1998. 

[13] D. Lin. Automatic Retrieval and Clustering of Similar 
Words. In Proceedings COLING/ACL-98, Montreal, Canada, 
pp. 768-774, 1998. 

[14] M.F. Porter. An Algorithm for Suffix Stripping.  Program, 
14(3):130-137,  1980. 

[15] G. Salton. Automatic Information Organization and 
Retrieval. McGraw-Hill, New York, 1968. 

[16] G. Salton and C. Buckley. Term Weighting Approaches in 
Automatic Retrieval. Information Processing and 
Management, 24(5): pp. 513-523, 1988. 

[17] L. Zadeh. Fuzzy Sets. Information and Control, 8:338-353, 
1965. 

[18] L. Zadeh. Outline of a New Approach to the Analysis of 
Complex Systems and Decision Processes. IEEE 
Transactions on Systems, Man and Cybernetics, 3(1):28-44, 
1973. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

28 

[19] L. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility. 
Fuzzy Sets and Systems, 1:3-28, 1978. 

[20] L. Zadeh. Fuzzy Logic, Neural Networks and Soft 
Computing. Communications of the ACM, 37(3):77-84, 
1994. 

 
Masrah received her PhD in 
Artificial Intelligence from the 
University of Bristol, United 
Kingdom in 2005.  Since that she 
has been actively involved in the 
research area of text mining and 
information retrieval. She 
currently heads two research 
projects  funded   by   the   
Ministry  of Technology and 

Innvotion (MOSTI) and Research University Grant 
Scheme, MALAYSIA. She is also a Senior Associate with 
the Malaysian Industrial-Government Group for High 
Technology, MALAYSIA. 
 


