
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

29

Cost-Effective Implementations of GF (p) Elliptic Curve
Cryptography Computations

Hakim Khali, MIEEE and Ahcene Farah, SIEEE

Faculty of Computer Science & Computer Engineering
Ajman University of Science & Technology, PO.BOX 346, Ajman, UAE

Summary
This research paper aims at analyzing the impact of
exploiting the parallelism available in two common
Elliptic Curve Cryptography (ECC) projective forms on
speed and cost factors, assuming point-multiplication is
implemented using the m-ary algorithm instead of the
popular binary algorithm. Point-multiplication is implemented
using scalable multipliers in order to replicate the design for
varying-size security keys. Simulation results are shown for
each projective form and a cross comparison is also performed as
well.

Key words: ECC, projective forms, modulo multipliers.

1. Introduction

ECC was first proposed in 1985 by N. Koblitz [1] and V.
Miller [2]. Since then, a considerable amount of research
has been performed on secure and efficient ECC
implementations. One of the most important advantages of
ECC over conventional public-key schemes is that much
smaller key sizes are required to achieve the same security
level [3]. As an example, it is reported in [3] that 160 bits
ECC is equivalent to 1024 bits RSA [4]. Smaller key sizes
make ECC suitable for embedded systems and wireless
applications, which require combining performance with
low-power hardware and smaller security certificates.
Several ECC implementations have been reported in the
literature at the software level and hardware level as well
[5-13]. The performance of an ECC cryptosystem is
mostly determined by an efficient implementation of its
arithmetic over a Galois Field)p(GF or)2(GF m . ECC
arithmetic is applied on points located on selected elliptic
curves and includes point-addition, point-doubling and
point-multiplication. When elliptic curve (EC) points are
expressed in affine coordinates, ECC arithmetic includes
multiplications and divisions (inversions), which are
highly time-consuming. In order to eliminate these
divisions (inversions), EC points are expressed in
projective coordinates, where scalar multiplication
becomes the operation to optimize in order to reach the
targeted cost/performance constraints. In our research

paper, we propose to analyze the impact of exploiting the
parallelism available in two common projective forms on
speed and cost factors, assuming point-multiplication is
implemented using the m-ary algorithm instead of the
popular binary algorithm. We target scalable multipliers
in order to replicate the design for varying-size security
keys. The remainder of this paper is organized as follows:
Section 2 presents a basic background about ECC. Section
3 presents ECC point-multiplication algorithms and related
sequential and parallel implementation of projective forms.
Section 4 presents the architecture model and related
cost/speed estimators using an existing scalable multiplier.
Section 5 presents simulation results and section 6
concludes the paper.

2. ELLIPTIC CURVES OVER GF (P)

2.1 General Background on ECC Arithmetic

In this section, we will refer to [3] for a description of
ECC arithmetic. The elliptic curve arithmetic is defined
over Galois field)(pGF where p is a prime number
greater than 3 (3>p). All arithmetic operations are
modulo p . The elliptic curve equation E over GF(p) is
given by:
y2 = x3 + ax + b ; where p > 3, 4a3 + 27b2≠ 0, and x, y, a,
b∈ GF(p). There is also a single element named the point
at infinity or the zero point denoted O, which serves as the
additive identity. For any point EyxP ∈),(, we have:

POP =+ .

Point addition and Point Doubling

Additions in GF(p) are controlled by the following rules:

O = -O
P(x, y) + O = P(x, y)
P(x, y) + P(x, -y) = O

The addition of two different points on the elliptic curve is
computed as shown below:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

30

P(x1 , y1) + P(x2 , y2) = P(x3 , y3) ; where x1 ≠ x2

λ = (y2 – y1)/(x2 – x1)
x3 = λ2 – x1 – x2

y3 = λ(x1 – x3) – y1

The addition of a point to itself (point doubling) on the
elliptic curve is computed as shown below:

P(x1 , y1) + P(x1 , y1) = P(x3 , y3) ;

λ = (3(x1)2 + a) /(2y1)
x3 = λ2 – 2x1

y3 = λ(x1 – x3) – y1

Point Multiplication

Multiplication of a point EyxP ∈),(by a scalar k over
GF(p) is defined as a series of point-additions given by:

4434421 K
timesk

PPPP]k[Q +++== . As stated in [3], point

multiplication in ECC is a special case of the general
problem of exponentiations in Abelians groups and
benefits from all the techniques available for the shortest
addition chain problem for integers. These techniques will
be discussed in details in subsequent sections. Table 1
shows the cost of point addition and point doubling
operations in affine coordinates.

Table 1. Cost of ECC operations in affine coordinates
Operations Point addition Point doubling
Additions (A) 6 4
Multiplications (M) 3 4
Inversions (I) 1 1
Total 6A + 3M+1I 4A + 4M+1I

If we neglect the costs of multiplications by small
constants, table 1 shows that the inversion is the most
expensive operation, followed by multiplications. To
reduce the cost of ECC operations, projective coordinates
are used to eliminate the need of field inversions. This
aspect will be analyzed in next sections.

2.2 ECC Encryption and Decryption Processes

As stated in [14], several approaches to
encryption/decryption using elliptic curves are analyzed in
the literature. A basic encryption process requires that a
plaintext message m is encoded as a point mP on the
elliptic curve. The corresponding ciphertext mC consists
of a pair of points given by: }kPP,kG{C Bmm += , where
k is a random positive integer generated by the source A,
G the base point and GnP BB = the point representing
the public key of the destination B and Bn is the private

key of the destination B. The decryption process is given
by:

mBBmBBmm PkGnGknPkGnkPPC =−+=−+)(}{ .
Most of the processing time consumed by the
encryption/decryption processes is consumed by the
computations related to kG and BkP . Therefore,
increasing the encryption/decryption rates requires to
speed-up the computations related to point-multiplication.

2.3 ECC Arithmetic Using Projective Coordinates

Group operations in affine coordinates involve finite field
inversion, which is a very costly operation, particularly
over prime fields [15]. These inversions can be avoided by
using various coordinate systems. The most common
ones are projective, Jacobian, modified Jacobian, and
Chudnovsky-Jacobian [15]. In this paper, we will use and
compare two projective forms as presented in table 2.

Table 2. Examples of Projective Forms
Projective
form

Projective
coordinates

Equivalent
affine coordinates

Form 1),,(ZYXP)/,/(32 ZYZXP
Form 2),,(ZYXP)/,/(ZYZXP

The cost of converting from affine to projective
coordinates is trivial. However, conversion in other
direction costs 1I + 4M (projective form 1) and 1I + 2M
(projective form 2). Tables 3 and 4 show point-adding and
point-doubling operations, using projective coordinates.
We will assume that the cost of a squaring operation is
equivalent to a multiplication.

Table 3A: Point-adding Using Projective Form 1

Operations Cost
λ1 = x1z2

2, λ2 = x2z1
2 4M

λ3 = λ1 - λ2, λ4 = y1z2
3 2M + 1A

λ5 = y2z1
3, λ6 = λ4 - λ5 2M + 1A

λ7 = λ1 + λ2, λ8 = λ4 + λ5 2A
z3 = z1z2λ3, x3 = λ6

2 - λ7λ3
2 5M + 1A

λ9 = λ7λ3
2 – 2x3, y3 = (λ9λ6 - λ8λ3

3)/2 3M + 2A
Total 16M + 7A

Table 3B: Point-adding Using Projective Form 2

Operations Cost
λ1 = x1z2, λ2 = x2z1 2M
λ3 = λ2 - λ1, λ4 = y1z2 1M + 1A
λ5 = y2z1, λ6 = λ5 - λ4 1M + 1A
λ7 = λ1 + λ2, λ8 =λ6

2 z1z2-λ3
2λ7 5M + 2A

z3 = z1z2λ3
3, x3 = λ8λ3 3M

λ9 = λ3
2 x1z2 - λ8, y3 = λ9λ6 - λ3

3 y1z2 3M 2A
Total 15 M + 6A

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

31

Table 4A: Point-doubling Using Projective Form 1
Operations Cost
λ1 = 3X1

2 + aZ1
4, Z3 = 2Y1Z1 5M + 1A

λ2 = 4X1 Y1
2, X3 = λ1

2
 - 2λ2 3M + 1A

λ3 = 8Y1
4, λ4 = λ2 - 2X3 1M + 1A

Y3 = λ1λ4 -λ3 1M + 1A
Total 10 M + 4A

Table 4B: Point-doubling Using Projective Form 2

Operations Cost
λ1 = 3X1

2 + aZ1
2, λ2 = Y1Z1 3M + 1A

λ3 = X1Y1λ2, λ4 = λ1
2 - 8λ3 3M + 1A

X3 = 2λ4λ2, Y3=λ1(4λ3-λ4)–8(Y1λ2)2 4M + 2A
Z3 = 8 λ2

3 2M
Total 12 M + 4A

Assuming the cost of an addition is neglected compared to
the cost of a multiplication, tables 3 and 4 show that the
cost and performance of point-adding and point-doubling
operations are primarily affected by the cost and
performance of multiplications. In the next section, we
will present the main algorithms used to implement ECC
multiplications.

3. ECC point-multiplication Implementations

As stated in [3], the binary method is the simplest and
oldest efficient method for point multiplication. It is based
on the binary expansion of k . The corresponding
algorithm is presented below.

ALGORITHM: Point-Multiplication: Binary Method
INPUT: A point P and an integer k , such that

{ }∑
−

=
∈=

1

0j
j

j
j 1,0k,2kk

l

.

OUTPUT: P]k[Q =
1. OQ ← .
2. For 1j −= l TO 0 STEP (-1) DO
3. Q]2[Q ←
4. IF 1k j = THEN PQQ +←
5. RETURN Q
If we assume that on averageW , the number of ones in k ,
is equal to 2/W l= , the binary method requires

)1(−l point doublings and W point-additions.
According to tables 3 & 4, the cost of one point-addition is
higher than the cost of a point-doubling operation, in terms
of number of multiplications and additions as well. This
number can be reduced by using the m-ary method, as an
alternative to the binary method. The m-ary method is
based on the m-ary expansion of k . This method is given
below.

ALGORITHM: Point-Multiplication: m-ary Method
INPUT: A point P and an integer k , such that

{ }∑
−

=
−∈=

1d

0j
j

j
j 1m,,1,0k,mkk L and 1r,2m r ≥= .

OUTPUT: P]k[Q =

Pre-computation
1. PP1 ← .
2. For i = 2 to m-1 do PPP 1ii +← −
3. OQ ←

Main loop
4. For 1dj −= TO 0 STEP (-1) DO
3. Q]m[Q ← -- r point-doubling operations
4.

jkPQQ +←

5. RETURN Q
As shown above, the binary method is a special case of the
m-ary method corresponding to 1r = . The number of
doublings in the main loop is equal to r)1d(− while the
number of point additions is equal to d . Since ⎡ ⎤r/d l= ,
the number of doublings in the m-ary method may be up to

)1r(− less than the)1(−l required by the binary method.
The number of point additions is equal to d , which is on
average)2/r(less than the binary method. However, the
effective performance depends on the choice of the
projective form. This aspect will be analyzed in the next
section. In this research paper, point-multiplication will be
implemented using the m-ary algorithm. Other algorithms
are described in details in [3].

3.1 Sequential Implementation

The time needed to implement point-multiplication using
the m-ary method is mainly affected by the type of
projective form and the parameters)r,(l . The sequential
time needed to perform a point multiplication (main loop)
using the m-ary method can be estimated as follows:

Projective form 1:)M16M10r(
r

)r,(T1 +×=
l

l . The

speed-up)r,(S1 l over the binary method)1r(= is
given by:

M16M10r
M26r

)r,(T
)1,(T)r,(S

1

1
1 +×

×
==

l

l
l . The maximum

value for)r,(S1 l is given by: 6.2)r,(S1 =∞→l .

Projective form 2:)M15M12r(
r

)r,(T2 +×=
l

l . The

speed-up)r,(S2 l over the binary method is given by:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

32

M15M12r
M27r

)r,(T
)1,(T)r,(S

2

2
2 +×

×
==

l

l
l . The maximum

value for)r,(S2 l is given by: 25.2)r,(S2 =∞→l .
These time estimates assume no pipelining is used and
show an advantage of using the projective form 1 over the
projective form 2 for a sequential implementation. They
also show a performance gain over the binary method. A
better performance can be achieved by exploiting the
parallelism available in the computations related to
projective forms.

3.2 Concurrent Implementation

A lot of amount of research is being conducted to find
various approaches to accelerate ECC operations. Just to
name a few, in [17], authors explore the use of Residue
Number System (RNS) to speed-up multiplications. In
[18], the author proposes to replace the intrinsic operation
double-and-add by a new operation called quad-and-add
expressed in radix-4 instead of the popular radix-2. In
[19], authors propose to use Instruction-level parallelism
(ILP) and multiple modular arithmetic logic to speed-up
ECC operations, assuming the popular binary algorithm.
In our research work, we want to exploit the parallelism
available in projective forms at the operation level (fine
grain parallelism) to accelerate ECC point multiplication,
assuming the m-ary algorithm instead of the binary
algorithm. Therefore, two levels of optimization are
achieved: at the algorithmic level by using the m-ary
algorithm and at the operation level by exploiting fine-
grain parallelism. Fine-grain parallelism can be identified
by exploring the dependency graph of the targeted
operations. Figures 1 & 2 show the dependency graphs at
the process level related to projective form 1 (PF1).

Fig. 1. Point-adding dependency graph (PF1)

Fig. 2. Point-doubling dependency graph (PF 1)

The dependency graphs presented in figures 1 & 2 show
that up to four processes can be run in parallel. To achieve
the best performance, this amount of parallelism must be
supported by adequate hardware resources. Figures 3 & 4
show partial dataflow graphs related to the processes that
can be run in parallel. Graphs related to projective form 2
have not been included to avoid too many details.
However they can be found in [16].

Fig. 3. Point-adding partial dataflow graph (PF 1)

Figures 3 and 4 show that point-adding and point-doubling
operations related to projective form 1 can make use of up
to 4 multipliers. The remaining processes are mainly based
on additions or a less number of multiplications and
therefore the same conclusion holds. It is then useless to
allocate more than 4 multipliers to implement the
projective form 1. The work presented in [16] also shows
that the projective form 2 can make use of up to 4
multipliers. Allocating 4 multipliers to implement ECC
operations expressed in projective forms will speed-up the

1λ 2λ 4λ 5λ

3λ 7λ 6λ 8λ

3Z 3X

9λ

3Y

3Y

1λ 3Z 2λ 3λ

3X 4λ

 1Y 1Z 2X 2Z 1X

* * *

* * * *

* * 2Y 2Z

4λ 5λ 2λ 1λ

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

33

corresponding computations but will increase the cost as
well. In a system design environment, cost and speed work
together and cannot be dissociated. One of the main
objectives of our research work is to analyze the impact of
allocating several multipliers on speed and cost to reach
cost-effective implementations.

Fig. 4. Point-doubling partial dataflow graph (PF 1)

3.3 Allocation/Scheduling Tasks of ECC Operations

As stated in the previous section, cost and speed work
together and cannot be dissociated during the design phase.
A valid design is a design that meets cost and time
constraints. To measure the quality of a design, several
metrics can be used. In our research work, we will use an
AT2 metric where (A) is the area and (T) the time. Please
note that time has been given more weight, while it is also
common to give the same weight to area and time as well.
We will assume the following:
- Area (A): it will be defined as the total area occupied by
the number of multipliers allocated to compute ECC
operations. The minimum number of multiplier is 1 and
the maximum number of multipliers is 4 (see previous
section). The cost of an adder will be neglected compared
to the cost of one multiplier.
- Time (T): it will be defined as the number of
multiplication cycles needed to compute ECC operations.
Addition cycles will be neglected since addition requires
less time compared to multiplication.
The area of a generic multiplier will be identified as

MultA and the multiplication cycle will be identified as

MultT . Scheduling the ECC operations on allocated
resources can be achieved by using well-known scheduling
algorithms such as ASAP or ALAP. Table 5 shows the
results representing the number of multiplications control

steps related to ECC operations depending on the number
of allocated multipliers. Operations are scheduled as soon
as operands and multipliers are available.

Table 5A. Number of multiplication control steps MultT required
 to schedule ECC operations (PF1)
#Multipliers MultN Point-adding Point-doubling

1 16 10
2 8 5
3 6 5
4 5 4

Table 5B. Number of multiplication control steps MultT required
 to schedule ECC operations (PF2)
#Multipliers MultN Point-adding Point-doubling

1 15 12
2 8 6
3 7 5
4 4 3

Using the results presented in table 5, the time needed to
execute the m-ary multiplication algorithm can be
estimated as follows:

cycleMultaddingMultdoublingMult T))N(T)N(Tr(d)N(T ×+×=

, where cycleT is the cycle time. The AT2 metric can now
be defined as follows:

)N(T)AN(

)N(T)N(A)N(AT

Mult
2

MultMult

Mult
2

MultMult
2

××=

×=

4. Architecture Model

Implementing the computations involved in projective
forms using the m-ary multiplication algorithm requires
the following basic units:
- A register file to store results and needed parameters.
- A set of multipliers (between 1 and 4) to implement
multiplication operations.
- Adder/subs tractor.
- Controller.

The most critical issue is the choice of the multiplier type
and its precision. Designing an optimized multiplier for a
given precision may will lead to a good performance.
However, this multiplier cannot be re-used for a higher
precision with the same performance. Moreover,
pipelining will result in very poor performance because of
data dependencies related to the computations of point-
adding and point-doubling operations. Therefore,
designing ECC systems will favor flexibility to exploit the
parallelism available in projective forms. One way to
achieve this target is the use of scalable multipliers [20].
This flexibility allows the designer to reach a trade-off

 1X 1Z 1Y

* * * *

* * *

+

2

a

3

8

1X4

 1λ 3Z 3λ 2λ

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

34

between area and speed by reducing the bits per word size
and the number of stages [20]. In our work, we will use
scalable multipliers described in [20] to model the various
hardware configurations and estimate area and speed as
well. The same approach has been also used in [16].
However, it is worth to mention that this choice has been
made to support our theoretical analysis with practical
results but it is not the point of contribution of this work.
As stated in [20], the area of a radix-8 scalable multiplier
can be approximated as:

5.35BPW*42.9NS*269NS*BPW*92AMult −−+≈ ,
where BPW and NS represent the number of bits per
word and the number of stages respectively. The number
of clock cycles per multiplication NCC is estimated as:

⎡ ⎤

⎡ ⎤
NS*2NWIF

NS*2)1NW(*)NS*3/(nNCC
NS*2NWIF

,1NW)1NS*2(*)NS*3/(nNCC

max

max

>
++=

≤
+++=

, where ⎥⎥
⎤

⎢⎢
⎡ +

=
BPW

1NW l and NS represent the number of

words and the number of stages respectively. The number
of multiplication control steps)N(MCS Mult is given by
table 5 depending on the number of multipliers allocated to
the design. Therefore the total execution time needed to
perform point-multiplication using the m-ary method is
given:

pMultadding

MultdoublingMult

tNCC))N(MCS

)N(MCSr(d)N(T

××

+×=
,

Where pt is the clock cycle time. It is worth to mention
that pt is also a function of BPW and NS .

5. Simulation Results

As stated in [20], the experimental values of the various
design parameters have been obtained after the synthesis
process using the Asic Design Kit (ADK) from Mentor
Graphics and the AMI05_slow design technology. Three
types of multipliers will be used in our experiments as
shown in table 6.

Table 6. Multiplier types used in experiments

Type Area
(gates)

Multiplication
cycle time (ms)

NS

1 895 0.5 1
2 9940 0.05 10
3 14965 0.03 15

Experiment 1
In this experiment, we want to evaluate the impact of the
number of stages NS and the value of r on the total
execution time, assuming one multiplier only. Figure 5 and
figure 6 show the variation of the total execution time
T as a function of r for various values of NS , assuming

1024=l bits and 8BPW = .

Point-Multiplication Execution Time
(Seconds) Projective Form 1

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10

r

T

NS=1
NS=10
NS=15

 Fig. 5. Variation of execution time T as a function of r (PF 1)

Point-Multiplication Execution Time
(Seconds) Projective Form 2

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10

r

T

NS=1
NS=10
NS=15

 Fig. 6. Variation of execution time T as a function of r (PF 2)

Figures 5 and 6 show that for small values of r (5r ≤),
increasing the value of NS considerably decreases the
execution time T and achieves a substantial advantage
over the binary method)1r(= . However, when 5r > ,
the time gain is less affected. This is also true for 1NS = .
These figures also show a slight advantage of projective
form 1 over projective form 2 from a time point of view.
Increasing the value of NS also allows going beyond the
theoretical limits identified in section 4 when no pipelining
is used. All these results suggest that a careful choice of

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

35

(NS,r) pair should be made at the system level to avoid
unnecessary additional costs as a result of a high value
of NS .

Experiment 2
In this experiment, we want to evaluate the impact of the
number of multipliers and r on 2AT metric. Figure 7 and
figure 8 show the variation of 2AT as a function of r ,
assuming 1024=l bits, 8BPW = and one to four type 2
multipliers.

Projective Form 1 (AT2 Metric)

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10

r

A
T2

1 Mult
2 Mult
3 Mult
4 Mult

 Fig. 7. Variation of 2AT as a function of r (PF 1)

Projective Form 2 (AT2 Metric)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 3 4 5 6 7 8 9 10

r

A
T2

1 Mult
2 Mult
3 Mult
4 Mult

 Fig. 8. Variation of 2AT as a function of r (PF 2)

Figure 7 and 8 show that increasing the number of
multipliers almost leads to the same 2AT score for high
values of r . This is due to the data dependencies available
in the computations which prevent from using the
hardware resources efficiently. Figure 9 compares the

2AT metrics of projective form 1 and projective form 2
respectively.

Projective Form 1 vs. Projective 2

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 3 4 5 6 7 8 9 10

r

A
T2

Form 1 (1 Mult)
Form 2 (1 Mult)
Form 1 (2 Mult)
Form 2 (2 Mult)
Form 1 (3 Mult)
Form 2 (3 Mult)
Form 1 (4 Mult)
Form 2 (4 Mult)

Fig. 9. Comparison of 2AT metrics related to projective forms 1 an 2

Figure 9 shows that the 2AT scores of projective form 1
is better than the scores of projective form 2 for the same
number of multipliers, except for the case
where 4NMult = . In this case, the utilization factor of the
four multipliers related to projective form 2 is higher than
the utilization factor of the four multipliers related to
projective form 1, which leads to a faster implementation.

Experiment 3

In this experiment, we want to evaluate the efficiency of
hardware configurations using more than one multiplier.
This efficiency is computed as follows:

Mult

Mult
Mult N

)N(S)N(E = , where MultN is the number of

multipliers allocated by the hardware configuration, and
)N(S Mult is the speed-up over a one-multiplier hardware

configuration. Figures 10 and 11 show the resulting
efficiencies.

Projective Form 1 (Efficiency)

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6 7 8 9 10

r

E(
N

m
ul

t) 2 Mult
3 Mult
4 Mult

Fig. 10. Variation of)N(E Mult metric related to projective form 1

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

36

Projective Form 2 (Efficiency)

0
0.2
0.4

0.6
0.8

1
1.2

1 2 3 4 5 6 7 8 9 10

r

E(
N

m
ul

t) 2 Mult
3 Mult
4 Mult

Fig. 11. Variation of)N(E Mult metric related to projective form 2

Figure 10 shows that projective form 1 achieves its highest
efficiency when 2N Mult = , which indicates the best
hardware utilization as a direct consequence of the data
dependencies available in the computations, which prevent
an efficient use of hardware resources. Figure 11 shows
that projective form 2 achieves its highest efficiency when

2N Mult = or 4N Mult = due to its better hardware
utilization.

6. Conclusion

In this research paper, we analyzed the impact of using the
m-ary algorithm as an alternative to the binary algorithm to
implement ECC multiplication operations in two common
projective forms. This analysis took into account several
aspects: time, 2AT score, and efficiency. It clearly
showed the superiority of the m-ary algorithm over the
binary algorithm and speed-up factors can be doubled for
high values of r . This performance can be enhanced by
using the parallelism available in the computations related
to projective forms. However, experiments showed that in
some cases increasing the number of multipliers did not
result in a substantial performance gain, as a direct
consequence of the data dependencies available in various
computations. This result is very important for low-power
applications, where design constraints are usually severe.
Results also showed that depending on the design
parameter being analyzed one projective form may have
the advantage over the other one. This suggests a careful
choice of the projective form depending on design
constraints.

References

[1] N. Koblitz, "Elliptic Curve Cryptosystems", Math. Comp.,

48, 1987, pp. 40-56.

[2] V. Miller, "Use of Elliptic Curves In Cryptography", In

Advances in Cryptology, CRYPTO-'85, Springer LNCS 218,
1986, pp. 417-426.

[3] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in
 Cryptography, Cambridge University Press: New York,
 1999.

[4] R. L. Rivest, A. Shamir, and L. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems", Communications of the ACM, 21(2),
 1978, pp. 129-126.

[5] S. Okada, N. Torii, K. Itoh, and M. Takenaka,
 "Implementation of Elliptic Curve Cryptographic
 Coprocessor over GF(2m) on an FPGA", Workshop on
 Cryptographic Hardware and Embedded Systems, CHES
 2000, pp. 25-40.

[6] G. Orlando, C. Paar, "A High-Performance Reconfigurable
 Elliptic Curve Processor for GF(2m)", Workshop on
 Cryptographic Hardware and Embedded Systems, CHES
 2000, LCS, Springer-Verlag, 1965, pp. 58-56.

[7] G. A. Orton, M. P. Roy, P. A. Scott, L. E. Peppard, S. E.
 Tavares, "VLSI implementation of public-key encryption
 Algorithms", Advances in Cryptology -- CRYPTO '86,
 Vol. 263 of Lecture Notes in Computer Science,
 Springer-Verlag, pp. 277-301,

[8] A. F. Tenca, and C. K. Koc, "A Scalable Architecture for
 Modular Multiplication Based on Montgomery's
 Algorithm", IEEE Transactions on Computers, 52(9),
 2003, pp. 1215-1221.

[9] A. Gutub, A. F. Tenca, and C. K. Koc, "Scalable
 VLSI architecture for GF(p) Montgomery Modular Inverse
 Computation", IEEE Computer Society Annual Symposium
 On VLSI, 2002, pp. 53-58.

[10] A. Gutub, A. F. Tenca, and C. K. Koc, "Scalable
 and Unified Hardware to Compute Montgomery Inverse in
 GF(p) and GF(2n)", Cryptographic Hardware and
 Embedded Systems - CHES 2002, 2002, pp. 485-500.

[11] Royo, Moran, Lopez, "Design and implementation of a
 Coprocessor for cryptography applications", European
 Design and Test Conference Proceedings, 1997, pp.
 213–217.

[12] S. B. Ors, L. Batina, B. Preneel, and J. Vandewalle,
 "Hardware Implementation of an Elliptic Curve
 Processor over GF(p)", Proceedings of the IEEE
 International Conference on Application-Specific Systems,
 Architectures, and Processors (ASAP), 2003, pp. 433-443.

[13] D. Hankerson, J. L. Hernandez, and A. Menezes, "Software
 Implementation of Elliptic Curve Cryptography over
 Binary Fields", Workshop on Cryptographic Hardware and
 Embedded Systems, CHES 2000, LCS, Springer-Verlag,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

37

 2000.

[14] W. Stallings, Cryptography and Network Security:
 Principles and Practice, 3rd Ed., Prentice Hall, NJ, 2003.

[15] P. K. Mishra, “Pipelined Computations of Scalar
 Multiplication in Elliptic Curve Cryptosystems”, IEEE Trans.
 Comp. September 2006, pp. 1000-1010.

[16] A. A. Gutub, “Fast 160-Bits GF(P) Elliptic Curve Crypto
 Hardware of High-Radix Scalable Multipliers”, International
 Arab Journal, Vol. 3, No. 4, 2006, pp. 342-249.

[17] D. M. Schinianakis, A.P. Kakarountas, and T. Stouraitis, "A
 New Approach to Elliptic Curve Cryptography: an RNS
 Architecture", Proceedings of IEEE MELECON, 2006,
 pp. 1241-1245.

[18] S. Moon, " Elliptic Curve Scalar Point Multiplication
 Algorithm Using Radix-4 Booth's Algorithm", ECTI
 Transactions on Computers and Information Theory, 1(1),
 2005, pp. 3-8.

[19] K. Sakiyama, E. De Mulder, B. Preneel, and I.
 Verbauwhede, "A Parallel Processing Hardware Architecture
 For Elliptic Curve Cryptosystems", Proceedings of ICASSP,
 Vol. 3, 2006, pp. 904-907.

[20] A. F. Tenca, G. Todorov, and C. K. Koc, "High-Radix Design
 of a Scalable Modular Multiplier", Proceedings of Workshop
 on Cryptographic Hardware and Embedded Systems, 2001,
 pp. 185-201.

 Dr. Hakim khali is an Assistant
Professor of the Faculty of Computer
Science & Computer Engineering at
Ajman University of Science &
Technology. He got his B.Sc in
Computer Engineering from I.N.I
(Algeria) in1989 and his M.Sc.A and
PhD in 1993 and 2000 respectively
from Ecole Poytechnique of Montreal
(Canada). His research interests are
Hardware-Software Codesign, VLSI

architectures, and FPGA-based designs for Neural Networks and
Cryptography. Before Joining Ajman University, he worked as a
System Designer for Mirotech Microsystems on reconfigurable
computing systems. Dr. Khali is an IEEE Member.

Prof. Ahcene Farah received the
Electronics Engineer degree
(1977) and Information
Processing Master (1983) degree
from the “Ecole Nationale
Polytechnique” (ENP), Algiers,
and Es-Science French State
Doctorate degree (equivalent to
PhD in computer engineering,
1989) from the National

Polytechnic Institute of Lorraine, France (Institut National
Polytechnique de Lorraine, INPL). He worked as teacher
assistant from 1979 to 1984 at ENP. Between 1984 and
1989, he was Es-science Doctorate candidate at the INPL,
and researcher at the Research Center in Automatics of
Nancy. He was Associate-Professor (1990 –1998), then
Professor (1998-1999) at the ENP, Algiers. September
1999– present, he is Professor at the faculty of Computer
science and Computer Engineering, Ajman University,
UAE. His research interests include: Computer and
Network Information Security, Soft Computing (Neural
Networks & Fuzzy Logic), Network Reliability, and
Computer Forensic. He published more than 37 papers in
Scientific Journals and Proceedings of International
Conferences. He supervised 4 PhDs and 4 Masters of
Science that have been completed and defended by the
candidates. Prof. A. Farah is an IEEE senior Member.

