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Summary 
This research paper aims at analyzing the impact of 
exploiting the parallelism available in two common 
Elliptic Curve Cryptography (ECC) projective forms on 
speed and cost factors, assuming point-multiplication is 
implemented using the m-ary algorithm instead of the 
popular binary algorithm. Point-multiplication is implemented 
using scalable multipliers in order to replicate the design for 
varying-size security keys. Simulation results are shown for 
each projective form and a cross comparison is also performed as 
well.  
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1. Introduction 

ECC was first proposed in 1985 by N. Koblitz [1] and V. 
Miller [2]. Since then, a considerable amount of research 
has been performed on secure and efficient ECC 
implementations. One of the most important advantages of 
ECC over conventional public-key schemes is that much 
smaller key sizes are required to achieve the same security 
level [3]. As an example, it is reported in [3] that 160 bits 
ECC is equivalent to 1024 bits RSA [4]. Smaller key sizes 
make ECC suitable for embedded systems and wireless 
applications, which require combining performance with 
low-power hardware and smaller security certificates. 
Several ECC implementations have been reported in the 
literature at the software level and hardware level as well 
[5-13]. The performance of an ECC cryptosystem is 
mostly determined by an efficient implementation of its 
arithmetic over a Galois Field )p(GF or )2(GF m . ECC 
arithmetic is applied on points located on selected elliptic 
curves and includes point-addition, point-doubling and 
point-multiplication. When elliptic curve (EC) points are 
expressed in affine coordinates, ECC arithmetic includes 
multiplications and divisions (inversions), which are 
highly time-consuming. In order to eliminate these 
divisions (inversions), EC points are expressed in 
projective coordinates, where scalar multiplication 
becomes the operation to optimize in order to reach the 
targeted cost/performance constraints. In our research 

paper, we propose to analyze the impact of exploiting the 
parallelism available in two common projective forms on 
speed and cost factors, assuming point-multiplication is 
implemented using the m-ary algorithm instead of the 
popular binary algorithm. We   target scalable multipliers 
in order to replicate the design for varying-size security 
keys. The remainder of this paper is organized as follows: 
Section 2 presents a basic background about ECC. Section 
3 presents ECC point-multiplication algorithms and related 
sequential and parallel implementation of projective forms. 
Section 4 presents the architecture model and related 
cost/speed estimators using an existing scalable multiplier. 
Section 5 presents simulation results and section 6 
concludes the paper. 
 
2. ELLIPTIC CURVES OVER GF (P) 
 
2.1 General Background on ECC Arithmetic 
 
In this section, we will refer to [3] for a description of 
ECC arithmetic. The elliptic curve arithmetic is defined 
over Galois field )( pGF  where p is a prime number 
greater than 3 ( 3>p ). All arithmetic operations are 
modulo p . The elliptic curve equation E over GF(p) is 
given by:  
y2 = x3 + ax + b ; where p > 3, 4a3 + 27b2≠ 0, and x, y, a, 
b∈ GF(p). There is also a single element named the point 
at infinity or the zero point denoted O, which serves as the 
additive identity. For any point EyxP ∈),( , we have: 

POP =+ .  
 
Point addition and Point Doubling  
 
Additions in GF(p) are controlled by the following rules: 
 

O =  -O 
P( x, y ) + O = P( x, y ) 
P( x, y ) + P( x, -y) = O 

 
The addition of two different points on the elliptic curve is 
computed as shown below: 
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P(x1 , y1) + P(x2 , y2) = P(x3 , y3) ; where x1 ≠ x2 

λ = (y2 – y1)/(x2 – x1) 
x3 = λ2 – x1 – x2 

y3 = λ(x1 – x3) – y1 
 
The addition of a point to itself (point doubling) on the 
elliptic curve is computed as shown below: 

P(x1 , y1) + P(x1 , y1) = P(x3 , y3) ;  

λ = (3(x1)2 + a) /(2y1) 
x3 = λ2 – 2x1 

y3 = λ(x1 – x3) – y1 
 

Point Multiplication 
 
Multiplication of a point EyxP ∈),( by a scalar k over 
GF(p) is defined as a series of point-additions given by: 

4434421 K
timesk

PPPP]k[Q +++== . As stated in [3], point 

multiplication in ECC is a special case of the general 
problem of exponentiations in Abelians groups and 
benefits from all the techniques available for the shortest 
addition chain problem for integers. These techniques will 
be discussed in details in subsequent sections. Table 1 
shows the cost of point addition and point doubling 
operations in affine coordinates. 
 

Table 1. Cost of ECC operations in affine coordinates 
Operations Point addition Point doubling
Additions (A) 6 4 
Multiplications (M) 3 4 
Inversions (I) 1 1 
Total 6A + 3M+1I 4A + 4M+1I 

 
If we neglect the costs of multiplications by small 
constants, table 1 shows that the inversion is the most 
expensive operation, followed by multiplications. To 
reduce the cost of ECC operations, projective coordinates 
are used to eliminate the need of field inversions. This 
aspect will be analyzed in next sections. 

2.2 ECC Encryption and Decryption Processes 

As stated in [14], several approaches to 
encryption/decryption using elliptic curves are analyzed in 
the literature. A basic encryption process requires that a 
plaintext message m is encoded as a point mP on the 
elliptic curve. The corresponding ciphertext mC  consists 
of a pair of points given by: }kPP,kG{C Bmm += , where 
k  is a random positive integer generated by the source A, 
G the base point and GnP BB =  the point representing 
the public key of the destination B and Bn is the private 

key of the destination B. The decryption process is given 
by: 

mBBmBBmm PkGnGknPkGnkPPC =−+=−+ )(}{ . 
Most of the processing time consumed by the 
encryption/decryption processes is consumed by the 
computations related to kG and BkP . Therefore, 
increasing the encryption/decryption rates requires to 
speed-up the computations related to point-multiplication. 

2.3 ECC Arithmetic Using Projective Coordinates 

Group operations in affine coordinates involve finite field 
inversion, which is a very costly operation, particularly 
over prime fields [15]. These inversions can be avoided by 
using various coordinate systems.  The most common 
ones are projective, Jacobian, modified Jacobian, and 
Chudnovsky-Jacobian [15]. In this paper, we will use and 
compare two projective forms as presented in table 2. 
 

Table 2. Examples of Projective Forms 
Projective 
form 

Projective 
coordinates 

Equivalent  
affine coordinates 

Form 1 ),,( ZYXP  )/,/( 32 ZYZXP  
Form 2 ),,( ZYXP  )/,/( ZYZXP  

 
The cost of converting from affine to projective 
coordinates is trivial. However, conversion in other 
direction costs 1I + 4M (projective form 1) and 1I + 2M 
(projective form 2). Tables 3 and 4 show point-adding and 
point-doubling operations, using projective coordinates. 
We will assume that the cost of a squaring operation is 
equivalent to a multiplication. 
 
Table 3A: Point-adding Using Projective Form 1 

Operations Cost 
λ1 = x1z2

2,      λ2 = x2z1
2 4M 

λ3 = λ1 - λ2,    λ4 = y1z2
3 2M + 1A 

λ5 = y2z1
3,     λ6 = λ4 - λ5 2M + 1A 

λ7 = λ1 + λ2,  λ8 = λ4 + λ5 2A 
z3 = z1z2λ3,   x3 = λ6

2 - λ7λ3
2 5M + 1A 

λ9 = λ7λ3
2 – 2x3, y3 = (λ9λ6 - λ8λ3

3)/2 3M + 2A 
Total 16M + 7A 

 
Table 3B: Point-adding Using Projective Form 2 

Operations Cost 
λ1 = x1z2,             λ2 = x2z1 2M 
λ3 = λ2 - λ1,          λ4 = y1z2 1M + 1A 
λ5 = y2z1,          λ6 = λ5 - λ4 1M + 1A 
λ7 = λ1 + λ2,      λ8 =λ6

2 z1z2-λ3
2λ7 5M + 2A 

z3 = z1z2λ3
3,       x3 = λ8λ3 3M 

λ9 = λ3
2 x1z2 - λ8,   y3 = λ9λ6 - λ3

3 y1z2 3M  2A 
Total 15 M + 6A 
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Table 4A: Point-doubling Using Projective Form 1 
Operations Cost 
λ1 = 3X1

2 + aZ1
4,         Z3 = 2Y1Z1 5M + 1A 

λ2 = 4X1 Y1
2,             X3 = λ1

2
 - 2λ2 3M + 1A 

λ3 = 8Y1
4,                λ4 = λ2 - 2X3 1M + 1A 

Y3 = λ1λ4 -λ3 1M + 1A 
Total 10 M + 4A 

 
Table 4B: Point-doubling Using Projective Form 2 

Operations Cost 
λ1 = 3X1

2 + aZ1
2,     λ2 = Y1Z1 3M + 1A 

λ3 = X1Y1λ2,         λ4 = λ1
2 - 8λ3 3M + 1A 

X3 = 2λ4λ2,       Y3=λ1(4λ3-λ4)–8(Y1λ2)2 4M + 2A 
Z3 = 8 λ2

3 2M 
Total 12 M + 4A 

Assuming the cost of an addition is neglected compared to 
the cost of a multiplication, tables 3 and 4 show that the 
cost and performance of point-adding and point-doubling 
operations are primarily affected by the cost and 
performance of multiplications. In the next section, we 
will present the main algorithms used to implement ECC 
multiplications. 
 
3. ECC point-multiplication Implementations 
 
As stated in [3], the binary method is the simplest and 
oldest efficient method for point multiplication. It is based 
on the binary expansion of k . The corresponding 
algorithm is presented below. 
 
ALGORITHM: Point-Multiplication: Binary Method 
INPUT: A point P and an integer k , such that 

{ }∑
−

=
∈=

1

0j
j

j
j 1,0k,2kk

l

. 

OUTPUT: P]k[Q =  
1. OQ ← . 
2. For 1j −= l  TO 0 STEP (-1) DO 
3. Q]2[Q ←  
4.  IF 1k j =  THEN PQQ +←  
5. RETURN Q  
If we assume that on averageW , the number of ones in k , 
is equal to 2/W l=  , the binary method requires 

)1( −l  point doublings and W point-additions. 
According to tables 3 & 4, the cost of one point-addition is 
higher than the cost of a point-doubling operation, in terms 
of number of multiplications and additions as well. This 
number can be reduced by using the m-ary method, as an 
alternative to the binary method. The m-ary method is 
based on the m-ary expansion of k . This method is given 
below. 
 

ALGORITHM: Point-Multiplication: m-ary Method 
INPUT: A point P and an integer k , such that 

{ }∑
−

=
−∈=

1d

0j
j

j
j 1m,,1,0k,mkk L  and 1r,2m r ≥= . 

OUTPUT: P]k[Q =  
 
Pre-computation 
1. PP1 ← . 
2. For i = 2 to m-1 do PPP 1ii +← −  
3. OQ ←  
 
Main loop 
4. For 1dj −=  TO 0 STEP (-1) DO 
3. Q]m[Q ←    -- r point-doubling operations 
4. 

jkPQQ +←  

5. RETURN Q  
As shown above, the binary method is a special case of the 
m-ary method corresponding to 1r = . The number of 
doublings in the main loop is equal to r)1d( −  while the 
number of point additions is equal to d . Since ⎡ ⎤r/d l= , 
the number of doublings in the m-ary method may be up to 

)1r( − less than the )1( −l required by the binary method. 
The number of point additions is equal to d , which is on 
average )2/r( less than the binary method. However, the 
effective performance depends on the choice of the 
projective form. This aspect will be analyzed in the next 
section. In this research paper, point-multiplication will be 
implemented using the m-ary algorithm. Other algorithms 
are described in details in [3]. 
 
3.1 Sequential Implementation 
 
The time needed to implement point-multiplication using 
the m-ary method is mainly affected by the type of 
projective form and the parameters )r,( l . The sequential 
time needed to perform a point multiplication (main loop) 
using the m-ary method can be estimated as follows: 

Projective form 1: )M16M10r(
r

)r,(T1 +×=
l

l . The 

speed-up )r,(S1 l over the binary method )1r( = is 
given by: 

M16M10r
M26r

)r,(T
)1,(T)r,(S

1

1
1 +×

×
==

l

l
l . The maximum 

value for )r,(S1 l  is given by: 6.2)r,(S1 =∞→l .  

Projective form 2: )M15M12r(
r

)r,(T2 +×=
l

l . The 

speed-up )r,(S2 l over the binary method is given by: 
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M15M12r
M27r

)r,(T
)1,(T)r,(S

2

2
2 +×

×
==

l

l
l . The maximum 

value for )r,(S2 l  is given by: 25.2)r,(S2 =∞→l .  
These time estimates assume no pipelining is used and 
show an advantage of using the projective form 1 over the 
projective form 2 for a sequential implementation. They 
also show a performance gain over the binary method. A 
better performance can be achieved by exploiting the 
parallelism available in the computations related to 
projective forms. 

3.2 Concurrent Implementation 

A lot of amount of research is being conducted to find 
various approaches to accelerate ECC operations. Just to 
name a few, in [17], authors explore the use of Residue 
Number System (RNS) to speed-up multiplications. In 
[18], the author proposes to replace the intrinsic operation 
double-and-add by a new operation called quad-and-add 
expressed in radix-4 instead of the popular radix-2.  In 
[19], authors propose to use Instruction-level parallelism 
(ILP) and multiple modular arithmetic logic to speed-up 
ECC operations, assuming the popular binary algorithm. 
In our research work, we want to exploit the parallelism 
available in projective forms at the operation level (fine 
grain parallelism) to accelerate ECC point multiplication, 
assuming the m-ary algorithm instead of the binary 
algorithm. Therefore, two levels of optimization are 
achieved: at the algorithmic level by using the m-ary 
algorithm and at the operation level by exploiting fine-
grain parallelism. Fine-grain parallelism can be identified 
by exploring the dependency graph of the targeted 
operations. Figures 1 & 2 show the dependency graphs at 
the process level related to projective form 1 (PF1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Point-adding dependency graph (PF1)  

 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Point-doubling dependency graph (PF 1) 
 
The dependency graphs presented in figures 1 & 2 show 
that up to four processes can be run in parallel. To achieve 
the best performance, this amount of parallelism must be 
supported by adequate hardware resources. Figures 3 & 4 
show partial dataflow graphs related to the processes that 
can be run in parallel. Graphs related to projective form 2 
have not been included to avoid too many details. 
However they can be found in [16]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Point-adding partial dataflow graph (PF 1) 

Figures 3 and 4 show that point-adding and point-doubling 
operations related to projective form 1 can make use of up 
to 4 multipliers. The remaining processes are mainly based 
on additions or a less number of multiplications and 
therefore the same conclusion holds. It is then useless to 
allocate more than 4 multipliers to implement the 
projective form 1. The work presented in [16] also shows 
that the projective form 2 can make use of up to 4 
multipliers. Allocating 4 multipliers to implement ECC 
operations expressed in projective forms will speed-up the 
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corresponding computations but will increase the cost as 
well. In a system design environment, cost and speed work 
together and cannot be dissociated. One of the main 
objectives of our research work is to analyze the impact of 
allocating several multipliers on speed and cost to reach 
cost-effective implementations. 

 

 

 

 

 

 

 

 

Fig. 4. Point-doubling partial dataflow graph (PF 1) 

 

3.3 Allocation/Scheduling Tasks of ECC Operations 

As stated in the previous section, cost and speed work 
together and cannot be dissociated during the design phase. 
A valid design is a design that meets cost and time 
constraints. To measure the quality of a design, several 
metrics can be used. In our research work, we will use an 
AT2 metric where (A) is the area and (T) the time. Please 
note that time has been given more weight, while it is also 
common to give the same weight to area and time as well. 
We will assume the following: 
- Area (A): it will be defined as the total area occupied by 
the number of multipliers allocated to compute ECC 
operations. The minimum number of multiplier is 1 and 
the maximum number of multipliers is 4 (see previous 
section). The cost of an adder will be neglected compared 
to the cost of one multiplier. 
- Time (T): it will be defined as the number of 
multiplication cycles needed to compute ECC operations. 
Addition cycles will be neglected since addition requires 
less time compared to multiplication. 
The area of a generic multiplier will be identified as 

MultA and the multiplication cycle will be identified as 

MultT . Scheduling the ECC operations on allocated 
resources can be achieved by using well-known scheduling 
algorithms such as ASAP or ALAP. Table 5 shows the 
results representing the number of multiplications control 

steps related to ECC operations depending on the number 
of allocated multipliers. Operations are scheduled as soon 
as operands and multipliers are available. 
 
Table 5A. Number of multiplication control steps MultT  required 
        to schedule ECC operations (PF1) 
#Multipliers MultN  Point-adding Point-doubling 

1 16 10 
2 8 5 
3 6 5 
4 5 4 

 
Table 5B. Number of multiplication control steps MultT  required 
        to schedule ECC operations (PF2) 
#Multipliers MultN  Point-adding Point-doubling 

1 15 12 
2 8 6 
3 7 5 
4 4 3 

 
Using the results presented in table 5, the time needed to 
execute the m-ary multiplication algorithm can be 
estimated as follows: 

cycleMultaddingMultdoublingMult T))N(T)N(Tr(d)N(T ×+×=

, where cycleT is the cycle time. The AT2 metric can now 
be defined as follows: 

)N(T)AN(

)N(T)N(A)N(AT

Mult
2

MultMult

Mult
2

MultMult
2

××=

×=
 

 
4. Architecture Model 
 
Implementing the computations involved in projective 
forms using the m-ary multiplication algorithm requires 
the following basic units: 
- A register file to store results and needed parameters. 
- A set of multipliers (between 1 and 4) to implement 
multiplication operations. 
- Adder/subs tractor. 
- Controller. 
 
The most critical issue is the choice of the multiplier type 
and its precision. Designing an optimized multiplier for a 
given precision may will lead to a good performance. 
However, this multiplier cannot be re-used for a higher 
precision with the same performance. Moreover, 
pipelining will result in very poor performance because of 
data dependencies related to the computations of point-
adding and point-doubling operations. Therefore, 
designing ECC systems will favor flexibility to exploit the 
parallelism available in projective forms. One way to 
achieve this target is the use of scalable multipliers [20]. 
This flexibility allows the designer to reach a trade-off 

 1X      1Z         1Y  

* * * * 

* * * 

+ 

2 

a 

3 

8 

1X4

  1λ             3Z    3λ     2λ     
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between area and speed by reducing the bits per word size 
and the number of stages [20]. In our work, we will use 
scalable multipliers described in [20] to model the various 
hardware configurations and estimate area and speed as 
well. The same approach has been also used in [16]. 
However, it is worth to mention that this choice has been 
made to support our theoretical analysis with practical 
results but it is not the point of contribution of this work.  
As stated in [20], the area of a radix-8 scalable multiplier 
can be approximated as: 
 

5.35BPW*42.9NS*269NS*BPW*92AMult −−+≈ , 
where BPW and NS represent the number of bits per 
word and the number of stages respectively. The number 
of clock cycles per multiplication NCC  is estimated as: 
 

⎡ ⎤

⎡ ⎤
NS*2NWIF

NS*2)1NW(*)NS*3/(nNCC
NS*2NWIF

,1NW)1NS*2(*)NS*3/(nNCC

max

max

>
++=

≤
+++=

 

 

, where ⎥⎥
⎤

⎢⎢
⎡ +

=
BPW

1NW l and NS  represent the number of 

words and the number of stages respectively. The number 
of multiplication control steps )N(MCS Mult is given by 
table 5 depending on the number of multipliers allocated to 
the design. Therefore the total execution time needed to 
perform point-multiplication using the m-ary method is 
given: 
 

pMultadding

MultdoublingMult

tNCC))N(MCS

)N(MCSr(d)N(T

××

+×=
,  

Where pt is the clock cycle time. It is worth to mention 
that pt is also a function of BPW and NS . 
  
5. Simulation Results 
 
As stated in [20], the experimental values of the various 
design parameters have been obtained after the synthesis 
process using the Asic Design Kit (ADK) from Mentor 
Graphics and the AMI05_slow design technology. Three 
types of multipliers will be used in our experiments as 
shown in table 6. 
 
Table 6. Multiplier types used in experiments 

Type Area 
(gates) 

Multiplication 
cycle time (ms) 

NS 

1 895 0.5 1 
2 9940 0.05 10 
3 14965 0.03 15 

Experiment 1 
In this experiment, we want to evaluate the impact of the 
number of stages NS and the value of r on the total 
execution time, assuming one multiplier only. Figure 5 and 
figure 6 show the variation of the total execution time 
T as a function of r for various values of NS , assuming 

1024=l bits and 8BPW = . 
 

Point-Multiplication Execution Time 
(Seconds) Projective Form 1

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10

r

T

NS=1
NS=10
NS=15

 
    Fig. 5. Variation of execution time T as a function of r (PF 1) 
 
 

Point-Multiplication Execution Time 
(Seconds) Projective Form 2

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10

r

T

NS=1
NS=10
NS=15

 
   Fig. 6. Variation of execution time T as a function of r (PF 2) 
 
Figures 5 and 6 show that for small values of r  ( 5r ≤ ), 
increasing the value of NS considerably decreases the 
execution time T and achieves a substantial advantage 
over the binary method )1r( = . However, when 5r > , 
the time gain is less affected.  This is also true for 1NS = . 
These figures also show a slight advantage of projective 
form 1 over projective form 2 from a time point of view. 
Increasing the value of NS also allows going beyond the 
theoretical limits identified in section 4 when no pipelining 
is used. All these results suggest that a careful choice of 
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( NS,r ) pair should be made at the system level to avoid 
unnecessary additional costs as a result of a high value 
of NS .  
 
Experiment 2 
In this experiment, we want to evaluate the impact of the 
number of multipliers and r on 2AT metric. Figure 7 and 
figure 8 show the variation of 2AT  as a function of r , 
assuming 1024=l bits, 8BPW =  and one to four type 2 
multipliers. 
 

Projective Form 1 (AT2 Metric)
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      Fig. 7. Variation of 2AT  as a function of r (PF 1)  
 

Projective Form 2 (AT2 Metric)
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     Fig. 8.  Variation of 2AT  as a function of r (PF 2) 
 
Figure 7 and 8 show that increasing the number of 
multipliers almost leads to the same 2AT score for high 
values of r . This is due to the data dependencies available 
in the computations which prevent from using the 
hardware resources efficiently.    Figure 9 compares the 

2AT metrics of projective form 1 and projective form 2 
respectively. 
 

Projective Form 1 vs. Projective 2
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Fig. 9. Comparison of 2AT metrics related to projective forms 1 an 2 
 
Figure 9 shows that the 2AT scores of projective form 1 
is better than the scores of projective form 2 for the same 
number of multipliers, except for the case 
where 4NMult =  . In this case, the utilization factor of the 
four multipliers related to projective form 2 is higher than 
the utilization factor of the four multipliers related to 
projective form 1, which leads to a faster implementation. 
 
Experiment 3 
 
In this experiment, we want to evaluate the efficiency of 
hardware configurations using more than one multiplier. 
This efficiency is computed as follows: 

Mult

Mult
Mult N

)N(S)N(E = , where MultN is the number of 

multipliers allocated by the hardware configuration, and 
)N(S Mult  is the speed-up over a one-multiplier hardware 

configuration. Figures 10 and 11 show the resulting 
efficiencies. 
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Fig. 10. Variation of )N(E Mult metric related to projective form 1 
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Projective Form 2 (Efficiency)
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Fig. 11. Variation of )N(E Mult metric related to projective form 2 

 
 
Figure 10 shows that projective form 1 achieves its highest 
efficiency when 2N Mult = , which indicates the best 
hardware utilization as a direct consequence of the data 
dependencies available in the computations, which prevent 
an efficient use of hardware resources. Figure 11 shows 
that projective form 2 achieves its highest efficiency when 

2N Mult = or 4N Mult =  due to its better hardware 
utilization.  
 

6. Conclusion 

In this research paper, we analyzed the impact of using the 
m-ary algorithm as an alternative to the binary algorithm to 
implement ECC multiplication operations in two common 
projective forms. This analysis took into account several 
aspects: time, 2AT score, and efficiency. It clearly 
showed the superiority of the m-ary algorithm over the 
binary algorithm and speed-up factors can be doubled for 
high values of r . This performance can be enhanced by 
using the parallelism available in the computations related 
to projective forms. However, experiments showed that in 
some cases increasing the number of multipliers did not 
result in a substantial performance gain, as a direct 
consequence of the data dependencies available in various 
computations.  This result is very important for low-power 
applications, where design constraints are usually severe. 
Results also showed that depending on the design 
parameter being analyzed one projective form may have 
the advantage over the other one. This suggests a careful 
choice of the projective form depending on design 
constraints. 
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