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Summary 
We consider a simple and secure way to realize a synchronous 
stream cipher from iterated hash functions. 
It is similar to the OFB mode where the underlying block cipher 
algorithm is replaced with the keyed hash function, adopting the 
secret suffix method[20]. 
We analyzed the key, the keystream and the necessary properties 
to assume from the underlying hash function for the stream 
cipher to be considered secure. Motivated by our analysis we 
conjecture that the most efficient way to break the proposed 
stream cipher is to break the hash function or through exhaustive 
search for the keyspace K of k bits, that requires O(2^k) 
operations.  
Key words: 
stream cipher, key, keystream, one-time pad cryptosystem, hash 
function, keyed hash function. 

1. Security Requirements of the Stream 
Cipher 

The algorithm should have a flat keyspace allowing any 
random bit string to be a possible key. The algorithm 
should make easier the key-management for software 
implementations. The typed password should not become 
directly the key, else the actual keyspace is limited to keys 
constructed with the 95 characters of printable ASCII. 
The algorithm should be easily modifiable satisfying 
minimum or maximum requirements. Moreover, according 
to basic engineering software theories, the algorithm does 
not have to bind developers with static use of pre-defined 
logical block functions, but it is important to let wide 
alternatives during the implementation of the software[13]. 
The algorithm should be simple to code, otherwise 
programmers could make implementation mistakes if the 
structure is too complicated. 
Nowadays, encrypting information has become a “must”, 
which means that a good crypto algorithm must give to the 
community the possibility to manage safe data. 
Practical applications pertain to: 

 Bulk Encryption: data files or a continuous data 
stream (e.g. important information saved on 
hardisks such as databases or any kind of secret 
document); 

 Data Transmission: a lot of communication 
mediums need a secure way to crypt exchanged 
information (e.g. Internet packets, wireless 
connections, radio signals, etc.); 

 Small Encryption: banks and commercial 
companies need secure encryption methodologies 
to interact with customers by small encryption 
technologies. 

Definitely, a good algorithm should be suitable for lots of 
disparate situations. 
The paradigm is to approach, as much as possible, to the 
ideal features constituting the one-time pad cryptosystem. 
The one-time pad cipher is unconditionally secure as 
Shannon proved in his seminal paper[9]. According to the 
one-time pad cipher design, the length of the key must be 
at least as long as the plaintext and it must be completely 
random. The one-time pad can offer the maximum security 
degree but it is hard and really expensive to be realized, in 
fact the secure distribution of the required keying material 
would pose an enormous logistical problem if the one-time 
pad were used on a large scale. 
Similarly to all the existing stream ciphers, our algorithm 
presents two main periods: 

1. During the first period the key and the keystream 
are generated using a hash function with 
scientific criteria. 

2. The second period will apply to final 
computational step, producing the ciphertext. 

 
Definitions: 
Plaintext message m is a sequence of bits 110 −nmmm K ; 

Ciphertext message c is a sequence of 110 −nccc K ; 
Keystream is a pseudo-random sequence of bits 

110 −nkkk K ; 

iii kmc ⊕=  

for 10 −≤≤ ni where ⊕  denotes bitwise exclusive-or. 

2. Design of the Stream Cipher 

In this chapter the design of the algorithm will be 
described in its theoretical essence, hinting sometimes at 
his probable practical implementation. 
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2.1 Generation of the Key 

During this phase the key is generated applying 
HMAC[11] to the input password. 

2.1.1 The Function HMAC 

HMAC is an adaptation of NMAC[11] that uses directly 
the iterated hash function (with its defined and fixed IV) 
as the basic black-box to build the MAC. Denoted with F 
the (iterated and keyless) hash function initialized with its 
own IV value, with x any input of arbitrary length and 
with k the key: 

)(

))||2||(||1||()(

kkHMAC

kpadkFpadkFxkHMAC

=

=
 

where 1pad  and 2pad  are distinct strings of sufficient 
length to pad k out to a full block for the compression 
function of the hash function. 

2.1.2 Key of the Stream Cipher 

The key is the result of the function HMAC to the input 
password k: 

)()||2||(||1||( kkHMACkpadkFpadkFkey == wher
e F is the hash function with properties required in §4.2.  

2.1 Generation of the Keystream 

During this phase the whole keystream is generated 
constantly depending on the key and its past. The process 
is realized applying two similar functions named p and q 
and defined as follows: 

Let { } { }+→
+ 1,01,0:p  be a functions such that, 

||2/||),()( xnxxnLSBxp ≤≤=  

Let { } { }*1,01,0: →
+q  be a functions such that, 

||0),()( xmxmLSBxq ≤≤=  

Once that n is fixed it must be the same for all the 
generation of the keystream while m can assume different 
values for a mono-dimensional matrix 

),,2,1( immmM K= so that 1),()( ≥∀= iix
imLSBixq . 

The keystream is generated as follows: 
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Denoted with l the length of the output of the hash 
function, the function p guarantees a good level of security 
for the stream cipher and at least 2/2 l  different possible 
outputs of the hash function. However, it is not the 
optimal security choice considering only the function p to 
realize the cipher without a significant contribution from 
the function q. It is strongly suggested to set 2/2 ln =  
and 2/21 lmmm i =+++ K  (more bits could 
compromise the performance without any security 
advantage) possibly not restricting only to 1m , to achieve 
a better security and to let the range of the hash function, 
theoretically (excluding collisions), equal the co-domain 
(i.e. l2 ). 

The exact value of each im  should be set in relation to the 
context. For example, in order to minimize the collision 
effects of the hash function (if it is weakly collision 
resistant, even if it should not be), one should take some 
bits from different positions of the past keystream, in fact, 
under certain conditions, a collision could compromise the 
security of the stream cipher. 

3. Properties of the Underlying Hash 
Function 

The hash function f used to design the stream cipher is the 
cryptographic core of the stream cipher itself. It must 
belong to the MD4-family (i.e. iterated hash functions) 
and satisfy some important requirements. 
Preimage resistance. Given a hashed value h, it should be 
computationally infeasible to find an input x such that 
h=f(x). 
Partial-preimage resistance. It should be as difficult to 
recover any substring as to recover the entire input. 
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Moreover, even if part of the input is known, it should be 
difficult to find the remainder (e.g., if t input bits remain 
unknown, it should take on average 12 −t  hash operations 
to find these bits). 
Collision resistance. It should be computationally 
infeasible to find two inputs x,y with yx ≠ such that 

).()( yfxf =  
Mixing-Transformation. On any input x, the output 
hashed value )(xfh = should be computationally 
indistinguishable from a uniform binary string. Here, the 
computational indistinguishability follows Definition 4.15 
(in §4.7) in [8]. 
 
Theorem 1: Let f be the underlying iterated hash function 
of the proposed stream cipher. The following properties of 
f are necessary condition for the security of the stream 
cipher: preimage resistance, partial-preimage resistance, 
collision resistance and mixing-transformation. 
 
The theorem states that all above properties of the hash 
function are necessary for the security of the stream cipher, 
thus, if one of them should not be respected the security 
would be compromised (at least theoretically). 
 
Proof of Theorem 1: 

1. Preimage resistance. Let f be the underlying 
hash function of the secure stream cipher and h 
the hashed value. Suppose, for absurd, that f is 
not preimage resistant, therefore, it is feasible to 
find the input x such that h = f(x). In a known-
plaintext attack the adversary can recover the key, 
that is in the keystream preimage with probability 
1 and minimum computational power, 
contradicting the above mentioned security of the 
stream cipher. 

2. Partial-preimage resistance. Let f be the 
underlying hash function of the secure stream 
cipher and h the hashed value. Suppose, for 
absurd, that f is not partial-preimage resistant, 
therefore, it is feasible to find the whole input x, 
such that h = f(x), if x is partially known. In a 
known-plaintext attack the adversary, that knows 
part of the input x (except the key) used to 
generate the keystream, can smoothly recover the 
remaining input containing the key, contradicting 
the above mentioned security of the stream cipher. 

3. Collision resistance. Let f be the underlying hash 
function of the secure stream cipher.  Suppose, 
for absurd, that f is not collision resistant, 
therefore, it is recurrent to find two inputs x,y 
with yx ≠ such that ).()( yfxf = During the 
generation of the keystream of the stream cipher's, 
if n has the same value of the length of the output 

of the hash function and M is the banal matrix, it 
can happen that a  very short cycle of bits build 
the keystream, as shown below: 

)||))1((()2(
)()1(

keyypfy
keyfy

=
=

 

Suppose p(x)=x and a collision happened: 
)1()2( yy =  

Suppose that: 
ε=∀⇒= )()0,,0,0( xxqM K  

Where ε denotes the empty string, then: 
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In a known-plaintext attack, the adversary can 
reproduce the whole keystream, that is the same 
cyclical set of few bits, recovering the plaintext, 
contradicting the stream cipher's above 
mentioned security. 

4. Mixing-Transformation. Let f be the underlying 
hash function of the secure stream cipher. 
Suppose, for absurd, that f does not realize a 
mixing-transformation, therefore, the output 
hashed value h = f(x) is polinomially 
distinguishable from a truly random binary string. 
The attacker may be able to predict the 
input/output with non-negligible advantage 

0>ε , recovering the keystream, contradicting 
the above mentioned security of the stream cipher. 

 
At last, hash functions with less than 160 bits of output 
should not be considered. 

4. Analysis of the Key 

The key of the stream cipher is obtained using the function 
HMAC. The security of HMAC is based on the security of 
the NMAC construction, which is stated from Theorem 
4.1 and its proof in [11]. HMAC is a particular case of 
NMAC where 1k and 2k derive using the compression 
function f of the hash function h and they cannot be 
distinguished by the attacker from truly random keys. De 
facto, a weak pseudo-randomness of f is required since the 
attacker that is trying to find out the dependencies of 

1k and 2k cannot see directly the output of the pseudo-
random function on any input. 
In summary, as claimed by Bellare, Canetti and Krawczyk 
in [11]: 
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“Attacks that works on HMAC and not on NMAC are 
possible, in principle. However, such an attack would 
reveal significant weaknesses of the pseudorandom 
properties of the underlying hash function, contradicting 
in a strong sense the usual assumptions on these 
functions”. 

5. Analysis of the Keystream: Keyed Hash 
Function 

Last years several ways were proposed to key with k bits 
an unkeyed iterated hash function h of n output bits, 
mainly to realize a secure MAC. The most important are 
described below, evidencing their known weaknesses. 

 The Secret Prefix Method. This method consists 
of prepending a secret key K to the message x 
before the hashing operation: 

).||()( xkhxMAC = This MAC is insecure, in 
fact, a single text-MAC pair contains information 
essentially equivalent to the secret key, 
independent of its size[10].  

 The Secret Suffix Method. This method consists 
of appending a secret key K to the message x 
before the hashing operation: 

).||()( kxhxMAC = Adopting this way, an 
off-line collision attack on the hash function may 
be used to obtain an internal collision; therefore 
by a birthday attack finding a collision requires 

)2( 2/nO off-line operations. Besides, given one 
known text-MAC pair, it is possible to performe 
an existential MAC forgery if a second preimage 
attack on the hash function is feasible. If t text-
MAC pairs are known, finding a MAC second 
preimage requires tn /2  trials; if the length of the 
message is not appended t denotes the number of 
blocks rather than the number of messages[10]. 
In order to recover the key are needed 

)2( kO operations and known MAC-text pairs 
for the verification. 

 The Envelope Method. This method combines 
the prefix and the suffix methods. It consist of 
prepending a secret key 1k and appending a 

secret key 2k to the message x before the hashing 

operation: )||||()( 21 kxkhxMAC = . As 
shown in [10], this method is also subject to the 
forgery and it is possible to apply a divide and 
conquer key recovery attack on 1k and 2k so that 

with 2/2n known text-MAC pairs, one can 

recover the key with 21 22 kk + instead of 
212 kk + trials.  

 MDx-MAC/NMAC/HMAC. These methods are 
dedicated constructions to build a secure MAC 
from an unkeyed hash function and to avoid all 
the known attacks. 

In the proposed stream cipher, the generation of the 
keystream is done by keying the iterated hash function 
with the secret suffix method, because it is evidently more 
efficient than the dedicated MAC constructions(i.e. MDx-
MAC, NMAC, HMAC) but, in this context secure, too. 
The secret suffix method is shown to be weak to the 
forgery if a second preimage attack on the hash function is 
feasible[10], but the hash function for the proposed cipher 
has to be collision resistant which implies the second 
preimage resistance property.  
In a known-plaintext attack scenario, where ⎡ ⎤nk /  text-
MAC pairs are known, the adversary should compute 

)2( kO off-line operations to recover the key[10].  
Finally, in a known-key attack scenario, where t bits of the 
key remain unknown and ⎡ ⎤nk /  text-MAC pairs are 

known, it should take on average 12 −t hash operations to 
find these bits because of the partial-preimage resistance 
of the hash function. 

6. Conclusions 

An important aspect of this work is to consider the hash 
function as a black-box. In fact, the hash function can be 
seen as a module that can be replaced in case serious 
weaknesses are found in the hash function or when new 
more secure or efficient hash function are designed. 
We conjecture that the most efficient way to break the 
proposed stream cipher is to break the underlying hash 
function or through exhaustive search for the keyspace K 
of k bits, that requires )2( kO operations. 
In fact, it is true that the pseudo-randomness of the 
keystream is unconditionally secure only under the 
random oracle model but a ROM-based security proof 
suggests that for a real world encryption scheme which 
uses real world hash functions rather than ROs, the most 
vulnerable point to mount an attack is the hash function 
used in the scheme[8]. Since breaking suitable real world 
iterated hash functions such as RIPEMD-160[2] or SHA-
1[1] is considered a hard problem, breaking the stream 
cipher shold be, too. 
The complexity of the algorithm is embedded in the one-
way hash function. 
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