
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

69

Manuscript received August 5, 2007

Manuscript revised August 20, 2007

Design of a Synchronous Stream Cipher from Hash Functions

Angelo P. E. Rosiello

Summary
We consider a simple and secure way to realize a synchronous
stream cipher from iterated hash functions.
It is similar to the OFB mode where the underlying block cipher
algorithm is replaced with the keyed hash function, adopting the
secret suffix method[20].
We analyzed the key, the keystream and the necessary properties
to assume from the underlying hash function for the stream
cipher to be considered secure. Motivated by our analysis we
conjecture that the most efficient way to break the proposed
stream cipher is to break the hash function or through exhaustive
search for the keyspace K of k bits, that requires O(2^k)
operations.
Key words:
stream cipher, key, keystream, one-time pad cryptosystem, hash
function, keyed hash function.

1. Security Requirements of the Stream
Cipher

The algorithm should have a flat keyspace allowing any
random bit string to be a possible key. The algorithm
should make easier the key-management for software
implementations. The typed password should not become
directly the key, else the actual keyspace is limited to keys
constructed with the 95 characters of printable ASCII.
The algorithm should be easily modifiable satisfying
minimum or maximum requirements. Moreover, according
to basic engineering software theories, the algorithm does
not have to bind developers with static use of pre-defined
logical block functions, but it is important to let wide
alternatives during the implementation of the software[13].
The algorithm should be simple to code, otherwise
programmers could make implementation mistakes if the
structure is too complicated.
Nowadays, encrypting information has become a “must”,
which means that a good crypto algorithm must give to the
community the possibility to manage safe data.
Practical applications pertain to:

 Bulk Encryption: data files or a continuous data
stream (e.g. important information saved on
hardisks such as databases or any kind of secret
document);

 Data Transmission: a lot of communication
mediums need a secure way to crypt exchanged
information (e.g. Internet packets, wireless
connections, radio signals, etc.);

 Small Encryption: banks and commercial
companies need secure encryption methodologies
to interact with customers by small encryption
technologies.

Definitely, a good algorithm should be suitable for lots of
disparate situations.
The paradigm is to approach, as much as possible, to the
ideal features constituting the one-time pad cryptosystem.
The one-time pad cipher is unconditionally secure as
Shannon proved in his seminal paper[9]. According to the
one-time pad cipher design, the length of the key must be
at least as long as the plaintext and it must be completely
random. The one-time pad can offer the maximum security
degree but it is hard and really expensive to be realized, in
fact the secure distribution of the required keying material
would pose an enormous logistical problem if the one-time
pad were used on a large scale.
Similarly to all the existing stream ciphers, our algorithm
presents two main periods:

1. During the first period the key and the keystream
are generated using a hash function with
scientific criteria.

2. The second period will apply to final
computational step, producing the ciphertext.

Definitions:
Plaintext message m is a sequence of bits 110 −nmmm K ;

Ciphertext message c is a sequence of 110 −nccc K ;
Keystream is a pseudo-random sequence of bits

110 −nkkk K ;

iii kmc ⊕=

for 10 −≤≤ ni where ⊕ denotes bitwise exclusive-or.

2. Design of the Stream Cipher

In this chapter the design of the algorithm will be
described in its theoretical essence, hinting sometimes at
his probable practical implementation.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

70

2.1 Generation of the Key

During this phase the key is generated applying
HMAC[11] to the input password.

2.1.1 The Function HMAC

HMAC is an adaptation of NMAC[11] that uses directly
the iterated hash function (with its defined and fixed IV)
as the basic black-box to build the MAC. Denoted with F
the (iterated and keyless) hash function initialized with its
own IV value, with x any input of arbitrary length and
with k the key:

)(

))||2||(||1||()(

kkHMAC

kpadkFpadkFxkHMAC

=

=

where 1pad and 2pad are distinct strings of sufficient
length to pad k out to a full block for the compression
function of the hash function.

2.1.2 Key of the Stream Cipher

The key is the result of the function HMAC to the input
password k:

)()||2||(||1||(kkHMACkpadkFpadkFkey == wher
e F is the hash function with properties required in §4.2.

2.1 Generation of the Keystream

During this phase the whole keystream is generated
constantly depending on the key and its past. The process
is realized applying two similar functions named p and q
and defined as follows:

Let { } { }+→
+ 1,01,0:p be a functions such that,

||2/||),()(xnxxnLSBxp ≤≤=

Let { } { }*1,01,0: →
+q be a functions such that,

||0),()(xmxmLSBxq ≤≤=

Once that n is fixed it must be the same for all the
generation of the keystream while m can assume different
values for a mono-dimensional matrix

),,2,1(immmM K= so that 1),()(≥∀= iix
imLSBixq .

The keystream is generated as follows:

)(||||)2(||)1(

)||)))1(((||

||||))2((||))1(((_)(

)||))1((||))2(((_)3(

)||)1((_)2(

)(_)1(

nyyykeystream

keynnyq

nyqnyphashfny

keyyqyphashfy

keyyphashfy

keyhashfy

K

K

M

=

−−

−−=

=

=

=

Denoted with l the length of the output of the hash
function, the function p guarantees a good level of security
for the stream cipher and at least 2/2 l different possible
outputs of the hash function. However, it is not the
optimal security choice considering only the function p to
realize the cipher without a significant contribution from
the function q. It is strongly suggested to set 2/2 ln =
and 2/21 lmmm i =+++ K (more bits could
compromise the performance without any security
advantage) possibly not restricting only to 1m , to achieve
a better security and to let the range of the hash function,
theoretically (excluding collisions), equal the co-domain
(i.e. l2).

The exact value of each im should be set in relation to the
context. For example, in order to minimize the collision
effects of the hash function (if it is weakly collision
resistant, even if it should not be), one should take some
bits from different positions of the past keystream, in fact,
under certain conditions, a collision could compromise the
security of the stream cipher.

3. Properties of the Underlying Hash
Function

The hash function f used to design the stream cipher is the
cryptographic core of the stream cipher itself. It must
belong to the MD4-family (i.e. iterated hash functions)
and satisfy some important requirements.
Preimage resistance. Given a hashed value h, it should be
computationally infeasible to find an input x such that
h=f(x).
Partial-preimage resistance. It should be as difficult to
recover any substring as to recover the entire input.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

71

Moreover, even if part of the input is known, it should be
difficult to find the remainder (e.g., if t input bits remain
unknown, it should take on average 12 −t hash operations
to find these bits).
Collision resistance. It should be computationally
infeasible to find two inputs x,y with yx ≠ such that

).()(yfxf =
Mixing-Transformation. On any input x, the output
hashed value)(xfh = should be computationally
indistinguishable from a uniform binary string. Here, the
computational indistinguishability follows Definition 4.15
(in §4.7) in [8].

Theorem 1: Let f be the underlying iterated hash function
of the proposed stream cipher. The following properties of
f are necessary condition for the security of the stream
cipher: preimage resistance, partial-preimage resistance,
collision resistance and mixing-transformation.

The theorem states that all above properties of the hash
function are necessary for the security of the stream cipher,
thus, if one of them should not be respected the security
would be compromised (at least theoretically).

Proof of Theorem 1:

1. Preimage resistance. Let f be the underlying
hash function of the secure stream cipher and h
the hashed value. Suppose, for absurd, that f is
not preimage resistant, therefore, it is feasible to
find the input x such that h = f(x). In a known-
plaintext attack the adversary can recover the key,
that is in the keystream preimage with probability
1 and minimum computational power,
contradicting the above mentioned security of the
stream cipher.

2. Partial-preimage resistance. Let f be the
underlying hash function of the secure stream
cipher and h the hashed value. Suppose, for
absurd, that f is not partial-preimage resistant,
therefore, it is feasible to find the whole input x,
such that h = f(x), if x is partially known. In a
known-plaintext attack the adversary, that knows
part of the input x (except the key) used to
generate the keystream, can smoothly recover the
remaining input containing the key, contradicting
the above mentioned security of the stream cipher.

3. Collision resistance. Let f be the underlying hash
function of the secure stream cipher. Suppose,
for absurd, that f is not collision resistant,
therefore, it is recurrent to find two inputs x,y
with yx ≠ such that).()(yfxf = During the
generation of the keystream of the stream cipher's,
if n has the same value of the length of the output

of the hash function and M is the banal matrix, it
can happen that a very short cycle of bits build
the keystream, as shown below:

)||))1((()2(
)()1(

keyypfy
keyfy

=
=

Suppose p(x)=x and a collision happened:
)1()2(yy =

Suppose that:
ε=∀⇒=)()0,,0,0(xxqM K

Where ε denotes the empty string, then:

)()3()2()1(

)1()2()||))1(((
)||))1((||))2((()3(

nyyyy

yykeyypf
keyyqypfy

====

===
=

K

M

In a known-plaintext attack, the adversary can
reproduce the whole keystream, that is the same
cyclical set of few bits, recovering the plaintext,
contradicting the stream cipher's above
mentioned security.

4. Mixing-Transformation. Let f be the underlying
hash function of the secure stream cipher.
Suppose, for absurd, that f does not realize a
mixing-transformation, therefore, the output
hashed value h = f(x) is polinomially
distinguishable from a truly random binary string.
The attacker may be able to predict the
input/output with non-negligible advantage

0>ε , recovering the keystream, contradicting
the above mentioned security of the stream cipher.

At last, hash functions with less than 160 bits of output
should not be considered.

4. Analysis of the Key

The key of the stream cipher is obtained using the function
HMAC. The security of HMAC is based on the security of
the NMAC construction, which is stated from Theorem
4.1 and its proof in [11]. HMAC is a particular case of
NMAC where 1k and 2k derive using the compression
function f of the hash function h and they cannot be
distinguished by the attacker from truly random keys. De
facto, a weak pseudo-randomness of f is required since the
attacker that is trying to find out the dependencies of

1k and 2k cannot see directly the output of the pseudo-
random function on any input.
In summary, as claimed by Bellare, Canetti and Krawczyk
in [11]:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

72

“Attacks that works on HMAC and not on NMAC are
possible, in principle. However, such an attack would
reveal significant weaknesses of the pseudorandom
properties of the underlying hash function, contradicting
in a strong sense the usual assumptions on these
functions”.

5. Analysis of the Keystream: Keyed Hash
Function

Last years several ways were proposed to key with k bits
an unkeyed iterated hash function h of n output bits,
mainly to realize a secure MAC. The most important are
described below, evidencing their known weaknesses.

 The Secret Prefix Method. This method consists
of prepending a secret key K to the message x
before the hashing operation:

).||()(xkhxMAC = This MAC is insecure, in
fact, a single text-MAC pair contains information
essentially equivalent to the secret key,
independent of its size[10].

 The Secret Suffix Method. This method consists
of appending a secret key K to the message x
before the hashing operation:

).||()(kxhxMAC = Adopting this way, an
off-line collision attack on the hash function may
be used to obtain an internal collision; therefore
by a birthday attack finding a collision requires

)2(2/nO off-line operations. Besides, given one
known text-MAC pair, it is possible to performe
an existential MAC forgery if a second preimage
attack on the hash function is feasible. If t text-
MAC pairs are known, finding a MAC second
preimage requires tn /2 trials; if the length of the
message is not appended t denotes the number of
blocks rather than the number of messages[10].
In order to recover the key are needed

)2(kO operations and known MAC-text pairs
for the verification.

 The Envelope Method. This method combines
the prefix and the suffix methods. It consist of
prepending a secret key 1k and appending a

secret key 2k to the message x before the hashing

operation:)||||()(21 kxkhxMAC = . As
shown in [10], this method is also subject to the
forgery and it is possible to apply a divide and
conquer key recovery attack on 1k and 2k so that

with 2/2n known text-MAC pairs, one can

recover the key with 21 22 kk + instead of
212 kk + trials.

 MDx-MAC/NMAC/HMAC. These methods are
dedicated constructions to build a secure MAC
from an unkeyed hash function and to avoid all
the known attacks.

In the proposed stream cipher, the generation of the
keystream is done by keying the iterated hash function
with the secret suffix method, because it is evidently more
efficient than the dedicated MAC constructions(i.e. MDx-
MAC, NMAC, HMAC) but, in this context secure, too.
The secret suffix method is shown to be weak to the
forgery if a second preimage attack on the hash function is
feasible[10], but the hash function for the proposed cipher
has to be collision resistant which implies the second
preimage resistance property.
In a known-plaintext attack scenario, where ⎡ ⎤nk / text-
MAC pairs are known, the adversary should compute

)2(kO off-line operations to recover the key[10].
Finally, in a known-key attack scenario, where t bits of the
key remain unknown and ⎡ ⎤nk / text-MAC pairs are

known, it should take on average 12 −t hash operations to
find these bits because of the partial-preimage resistance
of the hash function.

6. Conclusions

An important aspect of this work is to consider the hash
function as a black-box. In fact, the hash function can be
seen as a module that can be replaced in case serious
weaknesses are found in the hash function or when new
more secure or efficient hash function are designed.
We conjecture that the most efficient way to break the
proposed stream cipher is to break the underlying hash
function or through exhaustive search for the keyspace K
of k bits, that requires)2(kO operations.
In fact, it is true that the pseudo-randomness of the
keystream is unconditionally secure only under the
random oracle model but a ROM-based security proof
suggests that for a real world encryption scheme which
uses real world hash functions rather than ROs, the most
vulnerable point to mount an attack is the hash function
used in the scheme[8]. Since breaking suitable real world
iterated hash functions such as RIPEMD-160[2] or SHA-
1[1] is considered a hard problem, breaking the stream
cipher shold be, too.
The complexity of the algorithm is embedded in the one-
way hash function.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

73

References
[1] Secure Hash Standard.

http://www.itl.nist.gov/fipspubs/fip180-1.htm, 1995 April
17

[2] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel.
RIPEMD-160.
http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html

[3] M.J.B. Robshaw. Stream Ciphers. RSA Laboratories
Technical Report TR-701 Version 2.0 July 25, 1995

[4] RSA Laboratories. Answers to Frequently Asked Questions
About Today's Cryptography Revision 2.0, RSA Data
Security Inc., 5 Oct 1993.

[5] E. MendelsonThe language of first order logic. Cambridge
University Press, 1993.

[6] Codes and Cryptography. Dominic Welsh. Codes and
Cryptography. Oxford University Press, 1988.

[7] Thomas H. Cormen, Charles E: Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. The MIT Press,
Cambridge, MA, 1990.

[8] Wenbo Mao. Modern Cryptography Theory and Practice.
Prentice Hall PTR, 2004.

[9] C.E. Shannon. Communication theory of secrecy systems.
Bell System Technical Journal, 28:657-715, 1949.

[10] Bart Preneel, Paul C. van Oorscot. MDx-MAC and Building
Fast MACs from Hash Functions. Springer-Verlag LNCS,
August 1995.

[11] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash
Functions for Message Authentication. Advances in
Cryptology - Crypto 96 Proceedings, Lecture Notes in
Computer Science Vol. 1109, N. Koblitz ed, Springer-
Verlag, 1996.

[12] Stephen Bernstein, Ruth Bernstein, Schaums. Schaum's
Outline of Elements of Statistics I: Descriptive Statistics
and Probability. McGraw-Hill, 1998.

[13] Barbara Liskov, John V. Guttag. Abstraction and
Specification in Program Development. McGraw Hill Text,
December 1986.

[14] Paolo Baldi. Introduzione alla Probabilità con elementi di
Statistica. McGraw-Hill, 2003.

[15] Clifford A. Shaffer. A Practical Introduction to Data
Structures and Algorithm Analysis. Prentice Hall, 1998.

[16] B. Schneier. Applied Cryptography. John Wiley \& Sons,
New York, 1994

[17] Frederick P.Brooks. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, Reading, MA,
1975.

[18] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996.

[19] R.J. Enbody and H.C. Du. Dynamic Hashing schemes.
Computing surveys, 1988.

[20] G.Tsudik. Message authentication with one-way hash
functions. ACM Computer Communications Review, Vol.
22, No. 5, 1992, pp. 29-38.

[21] P. Gutmann, personal communication, 1993.

Angelo P. E. Rosiello received the
B.S. and M.S. degrees in Computer
Science Engineering cum laude
from “Politecnico di Milano” in
2004 and 2006, respectively. At the
moment, Angelo works for
Accenture in the Security Service
Line. He also collaborates with Prof.
Christopher Kruegel and Prof.
Engin Kirda (Technical University

of Vienna) in the ICT security field.

