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Summary 
 

In many business sectors secure and efficient data 
transfer is essential. To ensure the security to the applications of 
business, the business sectors use Public Key Cryptographic 
Systems (PKCS). An RSA and NTRU system generally belongs 
to the category of PKCS. The   efficiency   of a public     key      
cryptographic    system   is   mainly   measured   in    
computational overheads, key size and bandwidth.  In particular, 
the RSA algorithm is used in many applications.  Although the 
security of RSA is beyond doubt, the evolution in computing 
power has caused a growth in the necessary key length. The fact 
that most chips on smart cards cannot process keys extending 
1024 bit shows that there is a need for alternative. NTRU   is 
such an alternative and it is    a collection   of   mathematical   
algorithms    based    on   manipulating lists of very small 
integers and polynomials.  This allows NTRU to achieve high 
speeds with the use of minimal computing   power.  NTRU   is   
the   first secure   public   key   cryptosystem not   based    on 
factorization or discrete logarithm problems. This means that 
given sufficient computational resources and time, an adversary, 
should not be able to break the key. The performance 
characteristics of NTRU and   RSA are observed by    
implementing   the algorithms for computation and comparing 
their experimental running times. Encryption and   decryption   
speeds   take O (n log (n)) operations.  The   RSA’s complexity 
is   O (n 3) operations and it compares with NTRU’s O (n log(n) 
operations. In this paper, we proposed and presented these two 
well known Public Key Cryptographic Systems, and were 
implemented to verify their performance for different text files 
of variable sizes.  
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1.0 Introduction 
 

RSA [4] is one of the oldest and most widely 
used public key cryptographic systems.  It was the first 
algorithm known to be suitable for signing as well as 
encryption [4], and one of the first great advances in 
public key cryptography. RSA is still widely used in 
electronic commerce protocols, and is believed to be 

secure given sufficiently long keys. NTRU [5] is latest 
in the line of PKCS. It is relatively new and was 
conceived by Jeffrey Hoff stein, Jill Pipher and Joseph. 
H. Silverman. NTRU uses polynomial algebra 
combined with clustering principle based on elementary 
mathematical theory. The security of NTRU comes 
from the interaction of polynomial mixing system with 
the independence of reduction modulo two relatively 
prime numbers. The basic collection of objects used by 
the NTRU Public Key Cryptosystem in the ring R that 
consists of all truncated polynomials of degree N-1 
having integer coefficients    a =a 0+ a 1X + a 2X 2 + a 
3X 3 +… + a N-2X N-2 + a N-1X N-1. Polynomials are added 
in the usual way. They are also multiplied more or less 
as usual, except that X N is replaced by 1, X N+1 is 
replaced by X,      X N+2 is replaced by X2 and so on. A 
full implementation of the NTRU Public Key 
Cryptosystem is specified by a number of parameters. N 
the polynomials in the truncated polynomial ring have 
degree N-1. Q   large modulus, usually the coefficients 
of the truncated polynomials will be reduced to mod q.  
p   small modulus. As the final step in decryption, the 
coefficients of the message are reduced to mod p. 

The objective of this paper is to compare the 
performance of RSA and NTRU, which are readily 
available for commercial use. We proposed this work to 
test and verify the performance of these methods. There 
is no doubt that RSA provides security for large values 
of prime numbers, where as the NTRU provides the 
same with smaller values and their polynomials. 

In the next section we describe the method in 
brief to convert the plain message file into binary file. In 
section three we describe RSA method to convert the 
plain text of different size text. In section four the 
NTRU method is described in the similar manner. In 
section five we compare the result of RSA and NTRU. 
Our conclusions have been presented in the section six.   

 
2.0 Huffman encoding 
 
 David Huffman designed an optimal weighted 
binary in 1952 in his classic paper [1]. Subsequently 
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that method was used for variable length encoding of the 
plain text. Huffman method can be implemented using a 
forest (i.e., collection of trees) each tree of which has its 
leaves labeled by characters , whose codes we describe to 
select and whose roots are labeled by the sum of the 
weights(frequency of characters) of all the leaf labels. 
Initially, each character is a one-node tree by itself and 
when the algorithm ends, there will be only one tree with 
all the characters at its leaves. In this tree, the path from 
the root to any leaf represents the code for the label of that 
leaf, according to left=0, right=1. 
 After the construction of the tree we can 
determine the code for each letter by starting at the leaf 
and moving to the parent repeatedly until we reach the 
root. Obviously we output “0” if the present position is 
left child of the parent and “1” if the present position is 
right child. The sequence of bits so outputted and reversed 
is the code for that character. Here it may be noted that 
the code is variable length code and optimal number of 
bits for a fixed text. 
 In brief frequently occurring symbols of the text 
message are assigned short code words where as rarely 
occurring symbols are assigned long code words. So for a 
given text file message as input we outputted as follows: 
 
 
 

 
 Fig1  Block diagram for overall procedure  
       
3.0 RSA mathematical analysis 
 
 The RSA method is mainly based on integer and 
factoring as a one-way function. If the two large prime 
numbers p and q are given i.e. F (p, q), computing N is 
easy; the problem has a finite number of solutions (As 
shown in Fig 2). This can be treated as polynomial time 
solutions problem that is P problem [3]. 
 

 
Fig 2 RSA mathematical complexity 
 
The other side If N is given, computing p and q 

large polynomial is not so easy i.e. F-1 (N), the problem 
can be computed in non-polynomial time solutions, and 
can be considered as NP problem. The NP problem can 
be solved in polynomial time by providing trapdoor 
information (i.e, secret key).  The security lies with the 
multiplicative exponent. 
 
RSA Key generation 
 
RSA public and private key pair can be generated by the 
following procedure. Choose two random prime 
numbers p and q such that the bit length of p is 
approximately equal to the bit length of q. 
Compute n such that n = p * q. 
Compute φ(n) such that φ(n) = (p-1)* (q-1). 
Choose a random integer e, e < φ(n) and gcd (e, φ(n)) = 
1 then compute the integer d, such that e*d = 1 mod 
φ(n). 
(n, e) is the public key,  and d is the private key. 
 
RSA Key generation implementation 
 
main() 
{ 
int p,q,f,g,t; 
clrscr(); 
printf("enter two large primes"); 
scanf("%d\n%d",&p,&q); 
fp=fopen("key.txt","w"); 
n=p*q; w=(p-1)*(q-1); 
d=q+1; b:d++; 
e=mul(d,w); 
if(e<=0||e<log(n)/log(2)||e>q) 
goto b; 
printf("%d %d",e,d); 
fprintf(fp,"%d",d); 
fclose(fp); 
fp=fopen("fs.txt","w"); 
fprintf(fp,"%d",n); 
fclose(fp); } 
mul(d,w) 
{int x1,x2,x3,y1,y2,y3,q,t1,t2,t3; 
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x1=1; x2=0; x3=w; y1=0; y2=1;  
y3=d; 
a: if( y3==0) 
{return 0;} 
if(y3==1) 
return y2; 
q=x3/y3; t1=x1-q*y1; t2=x2-q*y2; 
t3=x3-q*y3; x1=y1;x2=y2;x3=y3; 
y1=t1;y2=t2;y3=t3;goto a;} 
 
 
 
 
RSA Encryption 
 
Person A transmits public key n & e to person B and 
keeps the private key secret [4]. 
B then wishes to send message m to A. 
B first turns m into a number, such that the number <n.  
B then computes the   cipher text   c = number e mod n. 
B then transmits c to A. 
 
RSA Encryption implementation 
 
main() 
{ 
FILE *fp,*fhead,*fout; 
long int i,j,a,temp=0,f,k,m; 
int c; char  st[20]; 
char st1[20],st3[20],ch; 
clock_t start,end,clk_tck; 
fp=fopen("abc.txt","r"); 
fout=fopen("ciph.txt","w"); 
k=7; i=0; key1(); 
start=clock(); 
while(e>0) 
{ g[i]=e%2; e=e/2; i++; } 
e=i-1; k=7;j=0; 
do 
{while(j<8) 
{ch=fgetc(fp); 
if(ch==EOF) 
break; 
st1[j]=ch; 
a=ch-48; 
temp=temp+a*pow(2,k); 
j++;k--;} 
st1[j]='\0'; 
if(j<8) 
{temp=0;i=0; 
p=strlen(st1);p--; 
while(p>0) 
{a=st1[i]-48; 
temp=temp+a*pow(2,p); 
p--;i++;} 

c=temp;} 
c=temp;f=c; 
c=pow1(e,n,f); 
f=c;if(f==0) 
strcpy(st,"0000000000000000"); 
else 
{j=0; 
while(f>0) 
{p=f%2; 
st[j]=p+48; 
f=f/2;j++;} 
st[j]='\0';} 
f=strlen(st); 
j=0; 
while(f>0) 
{f--;st3[j]=st[f]; 
j++;} 
st3[j]='\0';p=strlen(st3); 
strcpy(st1,""); 
while(p<16) 
{strcat(st1,"0"); 
p++;} 
strcat(st1,st3); 
strcpy(st3,st1); 
fprintf(fout,"%s",st3); 
k=7;temp=0;j=0; 
} while(ch!=EOF); 
p=strlen(st1) ;end=clock(); 
printf("%lftime for encryption\n",(double)(end-
start)/18.2);} 
pow1(e,n,f) 
{long int d=1; 
int a,i;a=f; 
for(i=e;i>=0;i--) 
{d=(d*d)%n; 
if(g[i]==1) 
d=(d * a)%n;} 
if(a>n) 
d=d+n; 
return d; } 
 
 
RSA Decryption 
 
Person A can recover message m from c by using the 
private key d [4]. 
Decrypted value = c d   mod n. 
Given decrypted value,   A can recover the message m.  
 
RSA Decryption implementation 
 
main(){ 
FILE *fp,*fout; 
char st[20],st1[20],ch; 
long int i,j,temp,a,k,p,m,h,w; 
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int c;int f;clock_t start,end; 
w=1;clrscr();key1(); 
start=clock();i=0; 
while(d>0) 
{g[i]=d%2;d=d/2;i++;} 
o=i-1;fp=fopen("ciph.txt","r"); 
fout=fopen("deciph.txt","w");i=0 ; 
while((ch=fgetc(fp))!=EOF) 
{i++;} 
i=i/16;w=i;rewind(fp);m=0;do 
{j=0;temp=0; k=15; 
while(j<16) 
{ch=feetc(fp);if(ch==EOF) 
{break;} 
a=ch-48; 
temp=temp+a*pow(2,k); 
k-- ; j++;} 
if(ch==EOF) 
break;c=temp;f=c; 
c=pow1(o,n,f);f=c; 
if(f==0) 
strcpy(st1,"00000000"); 
else 
{j=0;while(f>0) 
{p=f%2+48;st1[j]=p;f=f/2;j++;} 
st1[j]='\0';p=strlen(st1);j=0;f=p; 
while(j<f) 
{p--;st[j]=st1[p];j++;} 
st[j]='\0'; 
strcpy(st1,st);} 
if(m<(w-1)) 
{f=strlen(st1); 
strcpy(st,""); 
if(f!=8) 
{while(f<8) 
{strcat(st,"0");f++;}} 
strcat(st,st1); 
strcpy(st1,st);} 
fprintf(fout,"%s",st1); 
m++;}while(ch!=EOF); 
end =clock(); 
printf("%lfdecryptionime\n",(double)(end-start)/18.2); 
fclose(fp);fclose(fout);} 
pow1(o,n,f) 
{long int b=1,a,i;a=f; 
for(i=o;i>=0;i--) 
{b=(b * b) %n;if(g[i]==1)b=(b*a)%n;} 
if(a>n) 
{ 
b=b+n; return b; } 
 
3.1 RSA Performance 

Experiments were conducted on different text 
files. The encryption method is implemented with the key 
size of 22 bits and the decryption method is implemented 

with the key size of 10 bits. The computing times are 
presented in the tabular form [11]. 

 
Text Size Encryption Decryption 
128 bits  0.0549 0.0549 
256 bits 0.1098 0.1098 
512 bits 0.2197 0.1648 
1K 0.3846 0.3296 
2K 0.7142 0.6593 
5K 1.7032 1.7032 
10K 3.4020 3.4020 

Table 1: RSA encryption and decryption execution timings 
 

 
Fig 3 RSA performance 
 
The detailed code of RSA method in order to 

output the above table taking for different text files is 
shown in above. 

 
4.0 NTRU (Nth Degree Truncated 
Polynomial Ring Units) 
 
NTRU mathematical analysis  
 
NTRU theory [5] is mainly based on polynomials and 
not based on factoring as a one-way function. The one-
way function [3] is described in Fig4.      

 
             Fig4  NTRU mathematical complexity                       
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Let f and g are two potential polynomials in the ring RN, 
computing fp & fq the inverses with respect to modulo p 
and q respectively is easy. In other words, If x given, 
computing f(x) is easy i.e., P problem (As shown in Fig 4). 
But the reverse is hard i.e., NP problem. It is based on the 
shortest non-zero lattice vector problem. The NP problem 
can make easy with trap door function. The algorithms 
key generation, evaluation and inversion can be shown as   
Key generation    (f, t)        G (random) 
Evaluation                   c = f(x)               E (f, x) 
Inversion     x= f-1 (c)             I (f, c, t) 
Lattices  v1, v2,……..,vn linearly independent in Rn 
B = (V1, V2,………..,Vn) invertible matrix 
L (B) = { Bx    : x is an integer vector} 
 
 
Closest Vector Problem 
Given B and C belongs to RN, find the closest path to c in    
L (B) and NP – hard. 
Smallest Basis Problem 
Given B, find B’of minimum size, so that         L (B) = 
(B’) 
NP – time algorithm is known for any of them. 
 
Key Generation   

 
Let a person B wants to create a public/private 

key pair for the NTRU Public Key Cryptosystem. B first 
randomly chooses two small potential polynomials f and g 
in the ring of truncated polynomials R. A small 
polynomial is small relative to a random polynomial mod 
q. In a random   polynomial, the coefficients will in 
general be randomly distributed mod q; in a small 
polynomial, the coefficients are much smaller than q. B 
must keep the values of the polynomials f and g private, 
since anyone who knows the value of either one of them 
will be able to decrypt messages sent to B. B's next step is 
to compute the inverse of f modulo q and the inverse of f 
modulo p. Thus B computes polynomials fq and fp with 
the property that   f*fq = 1 (modulo q)       and           f*fp 
= 1 (modulo p). If by some chance these inverses do not 
exist, B will need to go back and choose another f. For 
information about computing inverses in the ring of 
truncated polynomials, Now B computes the product   h = 
p fq*g (modulo q).B's private key is the pair of 
polynomials f and fp. B's public key is the polynomial h.  
The CreateKey function   
Creating the inverse polynomial of the secret key modulo 
q, Fq.  
Creating the inverse polynomial of the secret key modulo 
p, Fp . 
Creating the Public Key, h = p * ((Fq )*g)  mod q . 
Also the algorithm assumes q = 2 w so the reduction will 
be performed by extracting the lower w bits. 
 

NTRU key generation implementation 
 
CreateKey(N; q; p; f; g; h; Fp; Fq) 
Require: p, q, N and random polynomials, f and g. 
Inverse_Poly_ Fq(f; Fq;N; q) 
Inverse_Poly _Fp(f; Fp;N; p) 
StarMultiply(Fq; g; h;N; q) 
for i = 0 to N - 1 do 
if h[i] < 0 then 
h[i] = h[i] + q  Make all coefficients in h   positive. 
end if 
h[i] = h[i]  * p mod q 
end for 
CreateKey returns the Public Key, h, and the inverse 
polynomial, Fp, through the argument list. 
 
 
 
StarMultiply 

 
This function outlined in algorithm performs 

the polynomial multiplication of a*b mod xN - 1. As a 
note, the M in Step 9 is either p or q depending upon 
which one is passed into the function. In contrast to the 
guideline, Algorithm only executes Step 9 if the current 
coefficients of a[i] and b[j] are both non-zero. This, 
therefore, eliminates approximately a third of the 
operations, which are unnecessary. Also, for the case M 
= q, Algorithm assumes q = 2w so the reduction is 
performed by extracting the lower w bits. 
StarMultiply(a; b; c;N;M) 
Require: N, the coefficient modulus, M, and the two 
polynomials to be multiplied a & b. 
for k = N - 1 down to 0 do 
c[k] = 0 
j = k + 1 
for i = N- 1 down to 0 do 
if j = N then 
j = 0 
end if 
if a[i] <> 0 and b[j]  <> 0 then 
c[k] = c[k] + (a[i]  * b[j]) mod M 
end if 
j = j + 1 
end for
end for 
StarMultiply returns the product polynomial c  through  
the argument list. 
 
Random Polynomial 
 

The RandPoly function, shown in algorithm, 
generates a random polynomial, r, whose coefficients 
are in the subset {-1, 0, 1}. The user specifies the 
number of ones (NumOnes) and the number of negative 
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ones (NumNegOnes) that will make up  the random 
polynomial, r. Basically, the algorithm works by 
randomly selecting a location (position) between 0 and N 
in the random polynomial vector, r. For each selected 
location, if the value is zero the algorithm replaces the 
zero with a 1 or a -1 until all the specified number of ones 
and negative ones have been entered into the vector. 
RandPoly (r;N, NumOnes, NumNegOnes) 
Require: N, NumOnes, NumNegOnes, and polynomial 
vector to be made random, r. 
r = 0 
while NumOnes <> 0 or NumNegOnes <> 0 do 
position = rand() mod N 
if r[position] = 0 then 
if NumOnes > 0 then 
r[position] = 1 
NumOnes = NumOnes - 1 
else if NumNegOnes > 0 then 
r[position] = -1 
NumNegOnes = NumNegOnes - 1 
end if 
end if 
end while 
RandPoly returns the newly generated random polynomial, 
r through the argument list. 
 
Inverse_Poly_ Fq 
 

The Inverse_Poly _Fq function in algorithm is 
responsible for generating the inverse polynomial of the 
secret key, f, modulo q. The first 40 lines of algorithm 
compute the inverse of the secret key modulo 2. Then, the 
last couple of lines in the algorithm finds the inverse 
polynomial modulo a power of 2, which is q. Algorithm is 
based o n the pseudo-code for   Inversion in 
(Z/2Z)[X]/(XN    - 1)" and Inversion in (Z/prZ)[X]/(X N   - 

1)". 
Inverse_Poly_F q(a; Fq;N; q) 
Require:the polynomial to invert a(x), N,and q. 
k = 0 
b = 1 
c = 0 
f = a 
g = 0  Steps 5-7 set g(x) = xN -1 
g[0] =  -1 
g[N] = 1 
loop 
while f[0] = 0 do 
for i = 1 to N do 
f[i-1] = f[i] {f(x) = f(x)/x} 
 c[N + 1- i] = c[N - i] {c(x) = c(x) *x 
 end for 
 f[N] = 0 
 c[0] = 0 
 k = k + 1 

 end while 
 if deg(f) = 0 then 
 goto Step 32 
 end if 
 if deg(f) < deg(g) then 
 temp = f  {Exchange f and g} 
 f = g 
 g = temp 
 temp = b {Exchange b and c} 
 b = c 
 c = temp 
 end if 
 f = f * g 
 b = b * c 
 end loop 
 j = 0 
 k = k mod N 
 for i = N - 1 down to 0 do 
 j = i - k 
 if j < 0 then 
 j = j + N 
 end if 
 Fq[j] = b[i] 
end for 
v = 2 
while v < q do 
v = v * 2 
StarMultiply(a; Fq; temp;N; v) 
temp = 2 - temp mod v 
StarMultiply(Fq ; temp; Fq;N; v) 
end while 
for i = N - 1 down to 0 do 
if Fq[i] < 0 then 
Fq[i] = Fq[i] + q 
end if 
end for 
Inverse-Poly Fq returns the inverse polynomial, Fq, 
through the argument list. 
 
Inverse_Poly_ Fp 

 
The Inverse_Poly_ Fp function in Algorithm is 

responsible for generating the inverse polynomial of the 
secret key, f, modulo p. Algorithm is based off the 
pseudo-code for Inversion in (Z/pZ)[X]/(XN - 1)”. 
Inverse _Poly_ F p(a; Fp;N; p) 
Require: the polynomial to invert a(x), N, and p. 
 k = 0 
 b = 1 
 c = 0 
 f = a 
 g = 0   Steps 5-7 set g(x) = xN - 1 
 g[0] = -1 
 g[N] = 1 
 loop 
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 while f[0] = 0 do 
 for i = 1 to N do 
 f[i - 1] = f[i] {f(x) = f(x)/x} 
 c[N + 1 - i] = c[N - i] {c(x) = c(x) * x} 
 end for 
 f[N] = 0 
 c[0] = 0 
 k = k + 1 
 end while 
 if deg(f) = 0 then 
 goto  Step 33 
 end if 
 if deg(f) < deg(g) then 
 temp = f {Exchange f and g} 
 f = g 
 g = temp 
 temp = b{Exchange b and c} 
 b = c 
 c = temp 
 end if 
 u = f[0] * g[0]-1  mod p 
 f = f - u * g mod p 
 b = b - u * c mod p 
 end loop 
 j = 0 
 k = k mod N 
 for i = N - 1 down to 0 do 
 b[i] = f[0] -1 * b[i] mod p 
 j = i - k 
 if j < 0 then 
 j = j + N 
 end if 
 F q[j] = b[i] 
 end for 
Inverse Poly Fp returns the inverse polynomial, Fp, 
through the argument. 
 
Polynomial generation 
 
randpoly() 
{int r[11]={0},n,numones,numnegones; 
int numzeros,position,i; 
clrscr();printf("enter number"); 
scanf("%d",&n); 
printf("enter number of ones"); 
scanf("%d",&numones); 
printf("enter number of negative ones"); 
scanf("%d",&numnegones); 
numzeros=n-(numones+numnegones); 
while((numones!=0)||(numnegones!=0)||(numzeros!=0)) 
{position=rand()%n; 
if(r[position]==0) 
{if(numones>0) 
{r[position]=1; numones--;} 
else if(numnegones>0) 

{r[position]=-1; numnegones--;} 
else if(numzeros>0) 
{r[position]=0; numzeros--; }}} 
for(i=0;i<n;i++) 
printf("%d\n",r[i]);} 
 
NTRU Encryption 
 

Let a person A wants to send a message to 
person B using B's public key h [5] 6]. Person A first 
puts the message in the form of a polynomial m whose 
coefficients are chosen modulo p, say between -p/2 and 
p/2 (in other words, m is a small polynomial mod q). 
Next the person A randomly chooses another small 
polynomial r. This is the blinding value, which is used 
to obscure the message. Then A uses the message m, 
and randomly chosen polynomial r, and B's public key h 
to compute the polynomial e = r*h + m (modulo q). The 
polynomial e is the encrypted message which A sends to 
B [7][8]. 
 
 
 
NTRU Encryption implementation 
 
main()  
{ 
FILE *fp,*fout; 
int n=11,m[11]={-1,0,0,1,-1,0,0,0,-
1,1,1},i=0,e[11],q=32,y[12]; 
int k,h,v,g,w; 
char st[8],st1[8],ch; 
clock_t start,end; 
fout=fopen("abc.txt","r"); 
fp=fopen("ntciph.txt","w"); 
key(); randpoly(); 
start=clock(); 
starmultiply(r,y,n,q); 
for(i=0;i<11;i++) 
y[i]=s[i]; 
do 
{ i=0; 
  do 
 {ch=fgetc(fout); 
 if(ch==EOF) 
 break;     m[i]=ch-48; 
i++;   }while(i<11); 
 w=i; 
 while(i<11) 
{ 
m[i]=0;   i++;} 
for(i=0;i<11;i++) 
s[i]=y[i]; 
for(i=0;i<=w;i++) 
{ s[i]=(s[i]+m[i])%q; 
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if(s[i]<0) 
s[i]=s[i]+q;} 
for(i=0;i<w;i++) 
{k=0; 
while(s[i]>0) 
{st[k]=(s[i]%2)+48; 
s[i]=s[i]/2;   k++;} 
st[k]='\0';h=strlen(st);h--; g=0; 
while(h>=0) 
{  st1[g]=st[h];  g++;  h--;} 
st1[g]='\0';h=strlen(st1);strcpy(st,""); 
while(h<8) 
{  strcat(st,"0");  h++;} 
strcat(st,st1); 
fprintf(fp,"%s",st);} 
}while(ch!=EOF); 
end=clock(); 
printf("%lf encryption time is",(double)(end-start)/18.2);} 
 
 
 
 
NTRU Decryption  

 
The person B has received A's encrypted 

message e and wants to decrypt [5] [6] it. The person B 
begins by using the private polynomial f to compute the 
polynomial a = f*e (mod q). Since B is computing a mod 
q, B can choose the coefficients of a to lie between –q/2 
and q/2. In general, B will choose the coefficients of a to 
lie in an interval of length q. The specific interval depends 
on the form of the small polynomials. It is very important 
that B does this before performing the next step. B next 
computes the polynomial   b = a (mod p), i.e., reduces 
each of the coefficients of a mod p. Finally B uses the 
other private polynomial fp to compute    c = fp*b 
(modulo p). The polynomial c will be A's original 
message m [7] [8]. 

 
NTRU Decryption implementation 
 
main() 
{ 
FILE *fout,*fh; 
int f[11]={-1,1,1,0,-1,0,1,0,0,1,-
1},e[11]={0,0,0,0,0,0,0,0,0,0,0},i=0,n=11,q=32,a[11],p=3
; 
int fp[11]={1,2,0,2,2,1,0,2,1,2,0},k,j,z,y,w; 
char ch,st1[20]; 
clock_t start,end;clrscr(); 
start=clock(); 
fout=fopen("ntciph.txt","r"); 
fh=fopen("ntdeciph.txt","w"); 
do 
{for(i=0;i<=n-1;i++) 

e[i]=0;i=0; 
do 
{k=0; 
do 
{ch=fgetc(fout); 
if(ch==EOF) 
break;st1[k]=ch;k++; 
}while(k<8); 
y=7;j=0; 
while(st1[j]!='\0') 
{z=st1[j]-48; 
e[i]=e[i]+z*pow(2,y); 
j++;y--;} 
i++; 
if(ch==EOF) 
break;}while(i<11); 
if(i<11) 
w=i-2; 
else 
w=i-1; 
starmultiply(f,e,n,q); 
starmultiply(fp,d,n,p); 
for(i=0;i<=w;i++) 
fprintf(fh,"%d",d[i]); 
}while(ch!=EOF); 
end=clock(); 
printf("%lf decryption time is",(double)(end-
start)/18.2);} 
starmultiply(int a[11],intb[11],int n,int m) 
{int c[11],k,j,i; 
for(k=n-1;k>=0;k--) 
{ 
c[k]=0; j=k+1; 
for(i=n-1;i>=0;i--) 
{if(j==n) 
j=0; 
if(a[i]!=0&&b[j]!=0) 
c[k]=(c[k]+a[i]*b[j])%m; 
j++;}} 
for(i=0;i<=n-1;i++) 
{if(c[i]<-15) 
d[i]=c[i]+m; 
else if(c[i]>16) 
d[i]=c[i]-m; 
else 
d[i]=c[i];} 

       for(i=0;i<=n-1;i++) 
{d[i]=d[i]%3; 
if(d[i]<-1) 
d[i]=d[i]+3; 
if(d[i]>1) 
d[i]=d[i]-3;}} 
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4.1 NTRU Performance 
 
Experiments were conducted on different text 

files. The encryption method is implemented with the key 
size of      51 bits and the decryption method is 
implemented with the key size of 20bits[11]. 

 
 
 

Text size Encryption Decryption 
128 bits 0.0000001 0.0000001 
256 bits 0.0000001 0.05490 
512 bits 0.05494 0.05490 
1K 0.10989 0.05490 
2K 0.27472 0.05490 
5K 0.65934 0.16484 
10K 1.31868 0.36100 
 Table 2: NTRU encryption and decryption execution timings 
  

 
                     Fig 5 NTRU performance 
 
 The detailed code of NTRU method in order to 
output the above table taking different text files is shown 
in above. 
 
Huffman Decoding 
 

The resulting code string can be uniquely 
decoded [1] to get the original output of the run length 
encoder. Using Huffman decoding procedure, we have 
decoded the resulting optimized code into original text 
files. 
 
5.0 Comparison of RSA and NTRU 
 
 Theoretically both RSA and NTRU are same in 
terms of P and NP problems. Particularly RSA is slow 
and NTRU is fast as per their claim. By the change of data 
structure RSA will be faster with same basic theory. RSA 

is based on the exponent multiplication and NTRU is 
based on exponent items of addition and subtraction.   
 
Encryption Analysis of RSA and NTRU 
 
 Encryption performance characteristic of RSA 
and NTRU methods are shown in the figure [6]. Though 
the key size is more for NTRU, the NTRU provides 
better performance over RSA.   
   

 
Fig 6 RSA and NTRU encryption performance 
 

Decryption Analysis of RSA and NTRU 
 
Decryption performance characteristic of RSA 

and NTRU methods are shown in Fig [7]. In this 
method also like encryption’s performance the NTRU is 
giving better results over RSA.   

 
 Fig 7 RSA and NTRU decryption performance 
        

The results obtained for encryption and 
decryption of RSA and NTRU were given in seconds. 
As per the observations, the computational running 
times are efficient in NTRU public key cryptosystems 
(even though the NTRU key size is more) as compare to 
RSA. The decryption process can be optimized [6] by 
representing the inverse polynomial in the form 
f=1+p*f1, Where the polynomial f1 will be in the in 
ring RN. Computing the inverse can be totally trivial. 
We have taken p as a number. If we consider the 
polynomials of the form p = X+2 then it solves all kinds 
of problems cleanly and elegantly [6]. There by the 
basic restriction of p be a number can be overwhelmed. 
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Generally, no other PKCS allows this kind of 
transformation. 

 
6.0 Conclusions 

 
The two-implemented systems RSA and NTRU 

are suitable for applications where it requires security 
based on the environment. Because of the RSA’s time 
complexity          O (n 3) and that of NTRU’s O (n log (n)), 
NTRU confirms its cryptography and delivers encryption, 
decryption and authentication at speeds of multiple times 
faster than RSA. NTRU is ideally suited for applications 
where high performance, high security and low power 
consumption are required. NTRU has its unprecedented 
performance advantages open up new options for security. 
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