
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

87

Manuscript received August 5, 2007

Manuscript revised August 20, 2007

 Performance Analysis of Public key Cryptographic
Systems RSA and NTRU

Narasimham Challa † and Jayaram Pradhan †† ,

† Faculty of MVGR College of Engineering, Vizianagaram, A.P., India.

†† Professor of Berhampur University, Berhampur, Orissa, India.

Summary

In many business sectors secure and efficient data
transfer is essential. To ensure the security to the applications of
business, the business sectors use Public Key Cryptographic
Systems (PKCS). An RSA and NTRU system generally belongs
to the category of PKCS. The efficiency of a public key
cryptographic system is mainly measured in
computational overheads, key size and bandwidth. In particular,
the RSA algorithm is used in many applications. Although the
security of RSA is beyond doubt, the evolution in computing
power has caused a growth in the necessary key length. The fact
that most chips on smart cards cannot process keys extending
1024 bit shows that there is a need for alternative. NTRU is
such an alternative and it is a collection of mathematical
algorithms based on manipulating lists of very small
integers and polynomials. This allows NTRU to achieve high
speeds with the use of minimal computing power. NTRU is
the first secure public key cryptosystem not based on
factorization or discrete logarithm problems. This means that
given sufficient computational resources and time, an adversary,
should not be able to break the key. The performance
characteristics of NTRU and RSA are observed by
implementing the algorithms for computation and comparing
their experimental running times. Encryption and decryption
speeds take O (n log (n)) operations. The RSA’s complexity
is O (n 3) operations and it compares with NTRU’s O (n log(n)
operations. In this paper, we proposed and presented these two
well known Public Key Cryptographic Systems, and were
implemented to verify their performance for different text files
of variable sizes.

Keywords

RSA, NTRU, Pubic Key, Private Key, Encryption, Decryption,
Cipher Text.

1.0 Introduction

RSA [4] is one of the oldest and most widely
used public key cryptographic systems. It was the first
algorithm known to be suitable for signing as well as
encryption [4], and one of the first great advances in
public key cryptography. RSA is still widely used in
electronic commerce protocols, and is believed to be

secure given sufficiently long keys. NTRU [5] is latest
in the line of PKCS. It is relatively new and was
conceived by Jeffrey Hoff stein, Jill Pipher and Joseph.
H. Silverman. NTRU uses polynomial algebra
combined with clustering principle based on elementary
mathematical theory. The security of NTRU comes
from the interaction of polynomial mixing system with
the independence of reduction modulo two relatively
prime numbers. The basic collection of objects used by
the NTRU Public Key Cryptosystem in the ring R that
consists of all truncated polynomials of degree N-1
having integer coefficients a =a 0+ a 1X + a 2X 2 + a
3X 3 +… + a N-2X N-2 + a N-1X N-1. Polynomials are added
in the usual way. They are also multiplied more or less
as usual, except that X N is replaced by 1, X N+1 is
replaced by X, X N+2 is replaced by X2 and so on. A
full implementation of the NTRU Public Key
Cryptosystem is specified by a number of parameters. N
the polynomials in the truncated polynomial ring have
degree N-1. Q large modulus, usually the coefficients
of the truncated polynomials will be reduced to mod q.
p small modulus. As the final step in decryption, the
coefficients of the message are reduced to mod p.

The objective of this paper is to compare the
performance of RSA and NTRU, which are readily
available for commercial use. We proposed this work to
test and verify the performance of these methods. There
is no doubt that RSA provides security for large values
of prime numbers, where as the NTRU provides the
same with smaller values and their polynomials.

In the next section we describe the method in
brief to convert the plain message file into binary file. In
section three we describe RSA method to convert the
plain text of different size text. In section four the
NTRU method is described in the similar manner. In
section five we compare the result of RSA and NTRU.
Our conclusions have been presented in the section six.

2.0 Huffman encoding

 David Huffman designed an optimal weighted
binary in 1952 in his classic paper [1]. Subsequently

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

88

that method was used for variable length encoding of the
plain text. Huffman method can be implemented using a
forest (i.e., collection of trees) each tree of which has its
leaves labeled by characters , whose codes we describe to
select and whose roots are labeled by the sum of the
weights(frequency of characters) of all the leaf labels.
Initially, each character is a one-node tree by itself and
when the algorithm ends, there will be only one tree with
all the characters at its leaves. In this tree, the path from
the root to any leaf represents the code for the label of that
leaf, according to left=0, right=1.
 After the construction of the tree we can
determine the code for each letter by starting at the leaf
and moving to the parent repeatedly until we reach the
root. Obviously we output “0” if the present position is
left child of the parent and “1” if the present position is
right child. The sequence of bits so outputted and reversed
is the code for that character. Here it may be noted that
the code is variable length code and optimal number of
bits for a fixed text.
 In brief frequently occurring symbols of the text
message are assigned short code words where as rarely
occurring symbols are assigned long code words. So for a
given text file message as input we outputted as follows:

 Fig1 Block diagram for overall procedure

3.0 RSA mathematical analysis

 The RSA method is mainly based on integer and
factoring as a one-way function. If the two large prime
numbers p and q are given i.e. F (p, q), computing N is
easy; the problem has a finite number of solutions (As
shown in Fig 2). This can be treated as polynomial time
solutions problem that is P problem [3].

Fig 2 RSA mathematical complexity

The other side If N is given, computing p and q

large polynomial is not so easy i.e. F-1 (N), the problem
can be computed in non-polynomial time solutions, and
can be considered as NP problem. The NP problem can
be solved in polynomial time by providing trapdoor
information (i.e, secret key). The security lies with the
multiplicative exponent.

RSA Key generation

RSA public and private key pair can be generated by the
following procedure. Choose two random prime
numbers p and q such that the bit length of p is
approximately equal to the bit length of q.
Compute n such that n = p * q.
Compute φ(n) such that φ(n) = (p-1)* (q-1).
Choose a random integer e, e < φ(n) and gcd (e, φ(n)) =
1 then compute the integer d, such that e*d = 1 mod
φ(n).
(n, e) is the public key, and d is the private key.

RSA Key generation implementation

main()
{
int p,q,f,g,t;
clrscr();
printf("enter two large primes");
scanf("%d\n%d",&p,&q);
fp=fopen("key.txt","w");
n=p*q; w=(p-1)*(q-1);
d=q+1; b:d++;
e=mul(d,w);
if(e<=0||e<log(n)/log(2)||e>q)
goto b;
printf("%d %d",e,d);
fprintf(fp,"%d",d);
fclose(fp);
fp=fopen("fs.txt","w");
fprintf(fp,"%d",n);
fclose(fp); }
mul(d,w)
{int x1,x2,x3,y1,y2,y3,q,t1,t2,t3;

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

89

x1=1; x2=0; x3=w; y1=0; y2=1;
y3=d;
a: if(y3==0)
{return 0;}
if(y3==1)
return y2;
q=x3/y3; t1=x1-q*y1; t2=x2-q*y2;
t3=x3-q*y3; x1=y1;x2=y2;x3=y3;
y1=t1;y2=t2;y3=t3;goto a;}

RSA Encryption

Person A transmits public key n & e to person B and
keeps the private key secret [4].
B then wishes to send message m to A.
B first turns m into a number, such that the number <n.
B then computes the cipher text c = number e mod n.
B then transmits c to A.

RSA Encryption implementation

main()
{
FILE *fp,*fhead,*fout;
long int i,j,a,temp=0,f,k,m;
int c; char st[20];
char st1[20],st3[20],ch;
clock_t start,end,clk_tck;
fp=fopen("abc.txt","r");
fout=fopen("ciph.txt","w");
k=7; i=0; key1();
start=clock();
while(e>0)
{ g[i]=e%2; e=e/2; i++; }
e=i-1; k=7;j=0;
do
{while(j<8)
{ch=fgetc(fp);
if(ch==EOF)
break;
st1[j]=ch;
a=ch-48;
temp=temp+a*pow(2,k);
j++;k--;}
st1[j]='\0';
if(j<8)
{temp=0;i=0;
p=strlen(st1);p--;
while(p>0)
{a=st1[i]-48;
temp=temp+a*pow(2,p);
p--;i++;}

c=temp;}
c=temp;f=c;
c=pow1(e,n,f);
f=c;if(f==0)
strcpy(st,"0000000000000000");
else
{j=0;
while(f>0)
{p=f%2;
st[j]=p+48;
f=f/2;j++;}
st[j]='\0';}
f=strlen(st);
j=0;
while(f>0)
{f--;st3[j]=st[f];
j++;}
st3[j]='\0';p=strlen(st3);
strcpy(st1,"");
while(p<16)
{strcat(st1,"0");
p++;}
strcat(st1,st3);
strcpy(st3,st1);
fprintf(fout,"%s",st3);
k=7;temp=0;j=0;
} while(ch!=EOF);
p=strlen(st1) ;end=clock();
printf("%lftime for encryption\n",(double)(end-
start)/18.2);}
pow1(e,n,f)
{long int d=1;
int a,i;a=f;
for(i=e;i>=0;i--)
{d=(d*d)%n;
if(g[i]==1)
d=(d * a)%n;}
if(a>n)
d=d+n;
return d; }

RSA Decryption

Person A can recover message m from c by using the
private key d [4].
Decrypted value = c d mod n.
Given decrypted value, A can recover the message m.

RSA Decryption implementation

main(){
FILE *fp,*fout;
char st[20],st1[20],ch;
long int i,j,temp,a,k,p,m,h,w;

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

90

int c;int f;clock_t start,end;
w=1;clrscr();key1();
start=clock();i=0;
while(d>0)
{g[i]=d%2;d=d/2;i++;}
o=i-1;fp=fopen("ciph.txt","r");
fout=fopen("deciph.txt","w");i=0 ;
while((ch=fgetc(fp))!=EOF)
{i++;}
i=i/16;w=i;rewind(fp);m=0;do
{j=0;temp=0; k=15;
while(j<16)
{ch=feetc(fp);if(ch==EOF)
{break;}
a=ch-48;
temp=temp+a*pow(2,k);
k-- ; j++;}
if(ch==EOF)
break;c=temp;f=c;
c=pow1(o,n,f);f=c;
if(f==0)
strcpy(st1,"00000000");
else
{j=0;while(f>0)
{p=f%2+48;st1[j]=p;f=f/2;j++;}
st1[j]='\0';p=strlen(st1);j=0;f=p;
while(j<f)
{p--;st[j]=st1[p];j++;}
st[j]='\0';
strcpy(st1,st);}
if(m<(w-1))
{f=strlen(st1);
strcpy(st,"");
if(f!=8)
{while(f<8)
{strcat(st,"0");f++;}}
strcat(st,st1);
strcpy(st1,st);}
fprintf(fout,"%s",st1);
m++;}while(ch!=EOF);
end =clock();
printf("%lfdecryptionime\n",(double)(end-start)/18.2);
fclose(fp);fclose(fout);}
pow1(o,n,f)
{long int b=1,a,i;a=f;
for(i=o;i>=0;i--)
{b=(b * b) %n;if(g[i]==1)b=(b*a)%n;}
if(a>n)
{
b=b+n; return b; }

3.1 RSA Performance

Experiments were conducted on different text
files. The encryption method is implemented with the key
size of 22 bits and the decryption method is implemented

with the key size of 10 bits. The computing times are
presented in the tabular form [11].

Text Size Encryption Decryption
128 bits 0.0549 0.0549
256 bits 0.1098 0.1098
512 bits 0.2197 0.1648
1K 0.3846 0.3296
2K 0.7142 0.6593
5K 1.7032 1.7032
10K 3.4020 3.4020

Table 1: RSA encryption and decryption execution timings

Fig 3 RSA performance

The detailed code of RSA method in order to

output the above table taking for different text files is
shown in above.

4.0 NTRU (Nth Degree Truncated
Polynomial Ring Units)

NTRU mathematical analysis

NTRU theory [5] is mainly based on polynomials and
not based on factoring as a one-way function. The one-
way function [3] is described in Fig4.

 Fig4 NTRU mathematical complexity

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

91

Let f and g are two potential polynomials in the ring RN,
computing fp & fq the inverses with respect to modulo p
and q respectively is easy. In other words, If x given,
computing f(x) is easy i.e., P problem (As shown in Fig 4).
But the reverse is hard i.e., NP problem. It is based on the
shortest non-zero lattice vector problem. The NP problem
can make easy with trap door function. The algorithms
key generation, evaluation and inversion can be shown as
Key generation (f, t) G (random)
Evaluation c = f(x) E (f, x)
Inversion x= f-1 (c) I (f, c, t)
Lattices v1, v2,……..,vn linearly independent in Rn
B = (V1, V2,………..,Vn) invertible matrix
L (B) = { Bx : x is an integer vector}

Closest Vector Problem
Given B and C belongs to RN, find the closest path to c in
L (B) and NP – hard.
Smallest Basis Problem
Given B, find B’of minimum size, so that L (B) =
(B’)
NP – time algorithm is known for any of them.

Key Generation

Let a person B wants to create a public/private

key pair for the NTRU Public Key Cryptosystem. B first
randomly chooses two small potential polynomials f and g
in the ring of truncated polynomials R. A small
polynomial is small relative to a random polynomial mod
q. In a random polynomial, the coefficients will in
general be randomly distributed mod q; in a small
polynomial, the coefficients are much smaller than q. B
must keep the values of the polynomials f and g private,
since anyone who knows the value of either one of them
will be able to decrypt messages sent to B. B's next step is
to compute the inverse of f modulo q and the inverse of f
modulo p. Thus B computes polynomials fq and fp with
the property that f*fq = 1 (modulo q) and f*fp
= 1 (modulo p). If by some chance these inverses do not
exist, B will need to go back and choose another f. For
information about computing inverses in the ring of
truncated polynomials, Now B computes the product h =
p fq*g (modulo q).B's private key is the pair of
polynomials f and fp. B's public key is the polynomial h.
The CreateKey function
Creating the inverse polynomial of the secret key modulo
q, Fq.
Creating the inverse polynomial of the secret key modulo
p, Fp .
Creating the Public Key, h = p * ((Fq)*g) mod q .
Also the algorithm assumes q = 2 w so the reduction will
be performed by extracting the lower w bits.

NTRU key generation implementation

CreateKey(N; q; p; f; g; h; Fp; Fq)
Require: p, q, N and random polynomials, f and g.
Inverse_Poly_ Fq(f; Fq;N; q)
Inverse_Poly _Fp(f; Fp;N; p)
StarMultiply(Fq; g; h;N; q)
for i = 0 to N - 1 do
if h[i] < 0 then
h[i] = h[i] + q Make all coefficients in h positive.
end if
h[i] = h[i] * p mod q
end for
CreateKey returns the Public Key, h, and the inverse
polynomial, Fp, through the argument list.

StarMultiply

This function outlined in algorithm performs

the polynomial multiplication of a*b mod xN - 1. As a
note, the M in Step 9 is either p or q depending upon
which one is passed into the function. In contrast to the
guideline, Algorithm only executes Step 9 if the current
coefficients of a[i] and b[j] are both non-zero. This,
therefore, eliminates approximately a third of the
operations, which are unnecessary. Also, for the case M
= q, Algorithm assumes q = 2w so the reduction is
performed by extracting the lower w bits.
StarMultiply(a; b; c;N;M)
Require: N, the coefficient modulus, M, and the two
polynomials to be multiplied a & b.
for k = N - 1 down to 0 do
c[k] = 0
j = k + 1
for i = N- 1 down to 0 do
if j = N then
j = 0
end if
if a[i] <> 0 and b[j] <> 0 then
c[k] = c[k] + (a[i] * b[j]) mod M
end if
j = j + 1
end for
end for
StarMultiply returns the product polynomial c through
the argument list.

Random Polynomial

The RandPoly function, shown in algorithm,
generates a random polynomial, r, whose coefficients
are in the subset {-1, 0, 1}. The user specifies the
number of ones (NumOnes) and the number of negative

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

92

ones (NumNegOnes) that will make up the random
polynomial, r. Basically, the algorithm works by
randomly selecting a location (position) between 0 and N
in the random polynomial vector, r. For each selected
location, if the value is zero the algorithm replaces the
zero with a 1 or a -1 until all the specified number of ones
and negative ones have been entered into the vector.
RandPoly (r;N, NumOnes, NumNegOnes)
Require: N, NumOnes, NumNegOnes, and polynomial
vector to be made random, r.
r = 0
while NumOnes <> 0 or NumNegOnes <> 0 do
position = rand() mod N
if r[position] = 0 then
if NumOnes > 0 then
r[position] = 1
NumOnes = NumOnes - 1
else if NumNegOnes > 0 then
r[position] = -1
NumNegOnes = NumNegOnes - 1
end if
end if
end while
RandPoly returns the newly generated random polynomial,
r through the argument list.

Inverse_Poly_ Fq

The Inverse_Poly _Fq function in algorithm is
responsible for generating the inverse polynomial of the
secret key, f, modulo q. The first 40 lines of algorithm
compute the inverse of the secret key modulo 2. Then, the
last couple of lines in the algorithm finds the inverse
polynomial modulo a power of 2, which is q. Algorithm is
based o n the pseudo-code for Inversion in
(Z/2Z)[X]/(XN - 1)" and Inversion in (Z/prZ)[X]/(X N -

1)".
Inverse_Poly_F q(a; Fq;N; q)
Require:the polynomial to invert a(x), N,and q.
k = 0
b = 1
c = 0
f = a
g = 0 Steps 5-7 set g(x) = xN -1
g[0] = -1
g[N] = 1
loop
while f[0] = 0 do
for i = 1 to N do
f[i-1] = f[i] {f(x) = f(x)/x}
 c[N + 1- i] = c[N - i] {c(x) = c(x) *x
 end for
 f[N] = 0
 c[0] = 0
 k = k + 1

 end while
 if deg(f) = 0 then
 goto Step 32
 end if
 if deg(f) < deg(g) then
 temp = f {Exchange f and g}
 f = g
 g = temp
 temp = b {Exchange b and c}
 b = c
 c = temp
 end if
 f = f * g
 b = b * c
 end loop
 j = 0
 k = k mod N
 for i = N - 1 down to 0 do
 j = i - k
 if j < 0 then
 j = j + N
 end if
 Fq[j] = b[i]
end for
v = 2
while v < q do
v = v * 2
StarMultiply(a; Fq; temp;N; v)
temp = 2 - temp mod v
StarMultiply(Fq ; temp; Fq;N; v)
end while
for i = N - 1 down to 0 do
if Fq[i] < 0 then
Fq[i] = Fq[i] + q
end if
end for
Inverse-Poly Fq returns the inverse polynomial, Fq,
through the argument list.

Inverse_Poly_ Fp

The Inverse_Poly_ Fp function in Algorithm is

responsible for generating the inverse polynomial of the
secret key, f, modulo p. Algorithm is based off the
pseudo-code for Inversion in (Z/pZ)[X]/(XN - 1)”.
Inverse _Poly_ F p(a; Fp;N; p)
Require: the polynomial to invert a(x), N, and p.
 k = 0
 b = 1
 c = 0
 f = a
 g = 0 Steps 5-7 set g(x) = xN - 1
 g[0] = -1
 g[N] = 1
 loop

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

93

 while f[0] = 0 do
 for i = 1 to N do
 f[i - 1] = f[i] {f(x) = f(x)/x}
 c[N + 1 - i] = c[N - i] {c(x) = c(x) * x}
 end for
 f[N] = 0
 c[0] = 0
 k = k + 1
 end while
 if deg(f) = 0 then
 goto Step 33
 end if
 if deg(f) < deg(g) then
 temp = f {Exchange f and g}
 f = g
 g = temp
 temp = b{Exchange b and c}
 b = c
 c = temp
 end if
 u = f[0] * g[0]-1 mod p
 f = f - u * g mod p
 b = b - u * c mod p
 end loop
 j = 0
 k = k mod N
 for i = N - 1 down to 0 do
 b[i] = f[0] -1 * b[i] mod p
 j = i - k
 if j < 0 then
 j = j + N
 end if
 F q[j] = b[i]
 end for
Inverse Poly Fp returns the inverse polynomial, Fp,
through the argument.

Polynomial generation

randpoly()
{int r[11]={0},n,numones,numnegones;
int numzeros,position,i;
clrscr();printf("enter number");
scanf("%d",&n);
printf("enter number of ones");
scanf("%d",&numones);
printf("enter number of negative ones");
scanf("%d",&numnegones);
numzeros=n-(numones+numnegones);
while((numones!=0)||(numnegones!=0)||(numzeros!=0))
{position=rand()%n;
if(r[position]==0)
{if(numones>0)
{r[position]=1; numones--;}
else if(numnegones>0)

{r[position]=-1; numnegones--;}
else if(numzeros>0)
{r[position]=0; numzeros--; }}}
for(i=0;i<n;i++)
printf("%d\n",r[i]);}

NTRU Encryption

Let a person A wants to send a message to
person B using B's public key h [5] 6]. Person A first
puts the message in the form of a polynomial m whose
coefficients are chosen modulo p, say between -p/2 and
p/2 (in other words, m is a small polynomial mod q).
Next the person A randomly chooses another small
polynomial r. This is the blinding value, which is used
to obscure the message. Then A uses the message m,
and randomly chosen polynomial r, and B's public key h
to compute the polynomial e = r*h + m (modulo q). The
polynomial e is the encrypted message which A sends to
B [7][8].

NTRU Encryption implementation

main()
{
FILE *fp,*fout;
int n=11,m[11]={-1,0,0,1,-1,0,0,0,-
1,1,1},i=0,e[11],q=32,y[12];
int k,h,v,g,w;
char st[8],st1[8],ch;
clock_t start,end;
fout=fopen("abc.txt","r");
fp=fopen("ntciph.txt","w");
key(); randpoly();
start=clock();
starmultiply(r,y,n,q);
for(i=0;i<11;i++)
y[i]=s[i];
do
{ i=0;
 do
 {ch=fgetc(fout);
 if(ch==EOF)
 break; m[i]=ch-48;
i++; }while(i<11);
 w=i;
 while(i<11)
{
m[i]=0; i++;}
for(i=0;i<11;i++)
s[i]=y[i];
for(i=0;i<=w;i++)
{ s[i]=(s[i]+m[i])%q;

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

94

if(s[i]<0)
s[i]=s[i]+q;}
for(i=0;i<w;i++)
{k=0;
while(s[i]>0)
{st[k]=(s[i]%2)+48;
s[i]=s[i]/2; k++;}
st[k]='\0';h=strlen(st);h--; g=0;
while(h>=0)
{ st1[g]=st[h]; g++; h--;}
st1[g]='\0';h=strlen(st1);strcpy(st,"");
while(h<8)
{ strcat(st,"0"); h++;}
strcat(st,st1);
fprintf(fp,"%s",st);}
}while(ch!=EOF);
end=clock();
printf("%lf encryption time is",(double)(end-start)/18.2);}

NTRU Decryption

The person B has received A's encrypted

message e and wants to decrypt [5] [6] it. The person B
begins by using the private polynomial f to compute the
polynomial a = f*e (mod q). Since B is computing a mod
q, B can choose the coefficients of a to lie between –q/2
and q/2. In general, B will choose the coefficients of a to
lie in an interval of length q. The specific interval depends
on the form of the small polynomials. It is very important
that B does this before performing the next step. B next
computes the polynomial b = a (mod p), i.e., reduces
each of the coefficients of a mod p. Finally B uses the
other private polynomial fp to compute c = fp*b
(modulo p). The polynomial c will be A's original
message m [7] [8].

NTRU Decryption implementation

main()
{
FILE *fout,*fh;
int f[11]={-1,1,1,0,-1,0,1,0,0,1,-
1},e[11]={0,0,0,0,0,0,0,0,0,0,0},i=0,n=11,q=32,a[11],p=3
;
int fp[11]={1,2,0,2,2,1,0,2,1,2,0},k,j,z,y,w;
char ch,st1[20];
clock_t start,end;clrscr();
start=clock();
fout=fopen("ntciph.txt","r");
fh=fopen("ntdeciph.txt","w");
do
{for(i=0;i<=n-1;i++)

e[i]=0;i=0;
do
{k=0;
do
{ch=fgetc(fout);
if(ch==EOF)
break;st1[k]=ch;k++;
}while(k<8);
y=7;j=0;
while(st1[j]!='\0')
{z=st1[j]-48;
e[i]=e[i]+z*pow(2,y);
j++;y--;}
i++;
if(ch==EOF)
break;}while(i<11);
if(i<11)
w=i-2;
else
w=i-1;
starmultiply(f,e,n,q);
starmultiply(fp,d,n,p);
for(i=0;i<=w;i++)
fprintf(fh,"%d",d[i]);
}while(ch!=EOF);
end=clock();
printf("%lf decryption time is",(double)(end-
start)/18.2);}
starmultiply(int a[11],intb[11],int n,int m)
{int c[11],k,j,i;
for(k=n-1;k>=0;k--)
{
c[k]=0; j=k+1;
for(i=n-1;i>=0;i--)
{if(j==n)
j=0;
if(a[i]!=0&&b[j]!=0)
c[k]=(c[k]+a[i]*b[j])%m;
j++;}}
for(i=0;i<=n-1;i++)
{if(c[i]<-15)
d[i]=c[i]+m;
else if(c[i]>16)
d[i]=c[i]-m;
else
d[i]=c[i];}

 for(i=0;i<=n-1;i++)
{d[i]=d[i]%3;
if(d[i]<-1)
d[i]=d[i]+3;
if(d[i]>1)
d[i]=d[i]-3;}}

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

95

4.1 NTRU Performance

Experiments were conducted on different text

files. The encryption method is implemented with the key
size of 51 bits and the decryption method is
implemented with the key size of 20bits[11].

Text size Encryption Decryption
128 bits 0.0000001 0.0000001
256 bits 0.0000001 0.05490
512 bits 0.05494 0.05490
1K 0.10989 0.05490
2K 0.27472 0.05490
5K 0.65934 0.16484
10K 1.31868 0.36100
 Table 2: NTRU encryption and decryption execution timings

 Fig 5 NTRU performance

 The detailed code of NTRU method in order to
output the above table taking different text files is shown
in above.

Huffman Decoding

The resulting code string can be uniquely
decoded [1] to get the original output of the run length
encoder. Using Huffman decoding procedure, we have
decoded the resulting optimized code into original text
files.

5.0 Comparison of RSA and NTRU

 Theoretically both RSA and NTRU are same in
terms of P and NP problems. Particularly RSA is slow
and NTRU is fast as per their claim. By the change of data
structure RSA will be faster with same basic theory. RSA

is based on the exponent multiplication and NTRU is
based on exponent items of addition and subtraction.

Encryption Analysis of RSA and NTRU

 Encryption performance characteristic of RSA
and NTRU methods are shown in the figure [6]. Though
the key size is more for NTRU, the NTRU provides
better performance over RSA.

Fig 6 RSA and NTRU encryption performance

Decryption Analysis of RSA and NTRU

Decryption performance characteristic of RSA

and NTRU methods are shown in Fig [7]. In this
method also like encryption’s performance the NTRU is
giving better results over RSA.

 Fig 7 RSA and NTRU decryption performance

The results obtained for encryption and
decryption of RSA and NTRU were given in seconds.
As per the observations, the computational running
times are efficient in NTRU public key cryptosystems
(even though the NTRU key size is more) as compare to
RSA. The decryption process can be optimized [6] by
representing the inverse polynomial in the form
f=1+p*f1, Where the polynomial f1 will be in the in
ring RN. Computing the inverse can be totally trivial.
We have taken p as a number. If we consider the
polynomials of the form p = X+2 then it solves all kinds
of problems cleanly and elegantly [6]. There by the
basic restriction of p be a number can be overwhelmed.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

96

Generally, no other PKCS allows this kind of
transformation.

6.0 Conclusions

The two-implemented systems RSA and NTRU

are suitable for applications where it requires security
based on the environment. Because of the RSA’s time
complexity O (n 3) and that of NTRU’s O (n log (n)),
NTRU confirms its cryptography and delivers encryption,
decryption and authentication at speeds of multiple times
faster than RSA. NTRU is ideally suited for applications
where high performance, high security and low power
consumption are required. NTRU has its unprecedented
performance advantages open up new options for security.

References

[1] A. Huffman “A method for the construction of

minimum redundancy codes Proc. IRE, vol. 40, pp.
1098–1101, Sept. 1952.

[2] Latha Pillai, “Huffman Coding” EXILINX, Virtex
Series, XAPP616 (v1.0) Apr 22, 2003.

[3] Whitefield Diffie, Martin E Hellman “New directions
in cryptography” IEEE Information theory, June 23-
25, 1975 and IEEE International Symposium on
Information theory, Sweden, June21-24, 1976.

[4] R.L.Rivest, A.Shamir, L.Adleman “A method for
obtaining digital signatures and Public-Key
Cryptosystems”, Communications of the ACM 21
(1978),120-126.

[5]Joffrey Hoffstein , Jill Pipher , Joseph H Silverman
“NTRU-A Ring based public key cryptosystem”
Lecture notes in Computer Science, Springer-Verlag,
Berlin 1433(1998),267-288.

[6] Joffrey Hoffstein, Joseph H Silverman “Optimizations
for NTRU” Proceedings of conference on Public key
Cryptography and Computational number theory,
Warsaw, De Gruyter ,2000 (Sep 11-15), 77-88.

[7] Collen Marie O’Rourke “Efficient NTRU
Implementation” A thesis For Master of Science at
Worcester Polytechnic Institute, Apr 2002.

[8] Karthik Thiagarajan “NTRU – A Public key ring
based algorithm” A thesis for Master of Science,
University of Texas, Dallas, 2003.

[9] NTRU Cryptosystem, Technical Reports 2002
available at http://www.ntru.com.

[10] J. Hoffstein, J. Pipher, J. H. Silverman “NTRU: A
new high speed public key cryptography system in
Algorithmic number theory” (ANTS III), Portland ,
OR, June 1998, Lecture Notes in Computer Science
1423 (J. P. Buhler, ed.) Springer-Verlag , Berlin 1998,
267-288.

[11] C. Narasimham, Jayaram Pradhan “Performance
analysis: RSA and Truncated polynomials”

Proceedings of the Internati€onal Conference
CISTM’07, PP40, July 2007.

Mr. Narasimham
Challa received his
Master of Computer
Applications Degree
from Andhra
University College of
Engineering, India in
the year 1998. He
received his M. Tech
Degree in Information

Technology in 2003 from Punjabi University,
Patiala, India. He has an experience of 14
years in teaching and about 18 months in
software industry. Presently, he is working as
Associate Professor in the Dept. of Computer
Science and Engineering in MVGR College of
Engineering, Vizianagaram, India. He has
published and presented six papers in various
national/international conferences.

J. Pradhan has joined in
the department of
Computer Science, Bhopal
University in the year 1985
after completing M.Phil
computer science from J.N
University New-Delhi. He
Joined in the Department of
Computer Science
Engineering & Application

of REC Rourkela in the year 1986 where he completed
his doctorial dissertation. In the year 1993 he joined in
the Department of Computer Science Berhampur
University as founder head of the department and
working as Professor now. During last more than two-
decade experience he has published many papers in
national, international journal and conferences and
offered different courses to DCA, MCA, BE, M.Tech
students. His present interests are data structure,
Algorithm analysis & design, Cryptography.

