
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

114

Manuscript received August 5, 2007

Manuscript revised August 20, 2007

Automatic Categorization of Software Modules

Parvinder Singh Sandhu † , Madhu Bala†† and Hardeep Singh†††,

Guru Nanak Dev Engineering College (Ludhiana), Guru Nanak Dev University (Amritsar)- India

Summary
The world of software has demonstrated the remarkable appeal
of communal software development. Large number of software
projects can leverage, reuse, and coordinate their work through
internet and web-based technology. For example, Source-Forge
currently hosts about sixty thousand software systems, similar
strategies have suggested for corporate software development.
With thousands of projects, manually locating related projects
can be difficult. Hence to use automatic software categorization
to find clusters of related software projects using only the source
code from projects, automatic categorization of software
experiments with a set of programs. Automatic categorization
of software systems is a novel and intriguing challenge on
software archive. Evolution has focused on determining intra-
component relations of given software system also increase to
differentiate between categories. Function oriented produces
better result than the object oriented. Automatic categorization of
software has provided better results than LSA retrieval
techniques in terms of Precision and Recall with multinomial
Naïve Bayes scheme has outperformed all other approaches and
shows better results than the existing approach (SVD), being
used by some open source code repositories e.g. Source forge
Hence, the tool can also be utilized for the automatic
categorization of software components and this kind of
automation may improve.
Key words:
LSA, SVD, Machine Learning.

1. Introduction

Manual categorization generally requires deep
understanding of not only the target software system, but
also other software systems and their classification policy.
With the increase in the number of software systems, e.g.,
Source-Forge now has over fifty-five thousand software
systems registered and continues to evolve, such manual
identification is not enough It is important for software
evolution to search and use existing similar software
systems from software archive. An evolution history of an
existing similar software system is useful. It may even
evolve a software system based on an existing one.
Automatic software categorization algorithm used to help
to finding similar software systems in software archive.
Categorization and explore several known approaches
including code clones-based similarity metric, decision

trees, and latent semantic analysis. Automatic
categorization would be helpful in several ways [1].

 I) Several of similar software can be group together
in a category for Ease of browsing

II) Developers working on a software system May
informed about related Software. Developers can learn
from experience with such Software Systems. They can
avoid duplicate work and promote more Reuse.
The accuracy of all automatic categorization systems is
highly dependent upon the effort and care taken during the
training or rule definition phase As the number of
categories increases, the number and complexity of the
rules must also increase to differentiate between categories
[2].
 A classification strategy is presented that involves the use
of supervised and unsupervised pattern classification and
multivariate visualization. These Techniques are applied
to the profiles executions in order to group together
failures with the same or similar causes. Classification
algorithms grouped into supervised and unsupervised
methods, although some algorithms combine features from
each group [3].
When used in a corporate setting, infrastructures for
project information sharing present new Opportunity. For
example, all projects that Have something in common, so
that the project Groups can collaborate and share their
work. With thousands of projects, manually locating
related projects can be difficult. Hence, use of Automatic
software categorization to find group of related software
projects, using only the source Code from projects.
Potential for automatic Categorization of software systems
without human
Kawaguchi in [1] used code clones-based similarity metric,
decision trees, and latent semantic analysis (LSA)
approaches to help finding similar software systems in
software archive. Further, Kawaguchi in [2] explained the
use of LSA approach to automatic categorization of
software systems and developed web interface to visualize
determined categories.
Latent Semantic Analysis (LSA) using Singular Value
Decomposition (SVD). The purely and hybrid Naïve
Bayes schemes are also tried for the Categorization of the
software components.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

115

2. Methodology Followed

The current study is based on Object Oriented and
Function Oriented techniques. In this paper, the present
work i.e. machine learning algorithms based technique is
compared with the already existing techniques i.e. LSA to
find out the best technique. The Naive Bayesian
classification is the optimal method of supervised learning.
In this paper there are six types of machine learning
algorithm i.e. Bayes, lazy, Meta Learner, Misc, Trees, goal
is to best algorithm for five-categories i.e. Graphics and
Games, File Input/Output, Network Application, Driver
Hardware, Memory Oriented. After finding the best
algorithm, compare this algorithm with Linguistic
techniques. There are certain algorithms present in all the
classes which are analyzed individually to find the over all
algorithm The categorization results are close to the
manual analysis, used to perform by the repository
managers. Hence the developed tool can be also be utilized
for the automatic evaluation phase statistics.
Categorization of software components and domain
relevancy of software components. This kind of
automation may improve the productivity and quality of
software development.
The present approach followed is performed over
Multinomial Naive Bayes is fast, easy to Implement and
relatively effective. The multinomial naive bayes there is
modeling and classification. In the Multinomial Naive
Bayes models the distribution of words in a document as a
multinomial. A document treated as a sequence of words
and it is assume that each word position generated
independently of every other. This is easy to see for binary
classification, where the boundary is defined by setting the
differences between the positive and negative class
parameters equal to zero. The multi-variety performs
well with small vocabulary sizes, but that the multinomia
performs usually performs even better at larger
vocabularysizes[12]. Various steps used for automatic
categorization of software.
(i) Collection of Data: Data in the form of programs are
collected, the various programs collected basically belongs
to both object oriented (object is taken as the vital entity)
and function oriented techniques (functions only take
inputs and produce outputs, and don't have any internal
state that affects the output produced for a given input),
are divided into following categories for each. i.e.
Graphics and Games, File Input/Output, Network
Application, Driver Hardware, Memory Oriented.

ii) Keyword Extraction: The basic on the extraction of
words, this is extract those names from the data which are
relevant in words of giving out the basic functioning of a
particular program, in order to obtain this all the keywords
which are not of any relevance should be excluded from

the current context.
(iii) Preprocessing of Data for Further Analysis: From the
frequency matrix is used and a file is created for further
analysis. Basically there are following formats in which
file can be converted and used for further analysis i.e
ARFF. ARFF file converts the output from the previous
steps to the relevant usable file default.
(iv) Evaluation of preprocessed data: The arff generated in
previous step is taken and various techniques are applied
to it, it can note that Files are generated e for the Function
Oriented Data. 10 fold cross validation is used in the
performance of each learning algorithm was evaluated
using 10 complete runs of 10-fold cross-validation. Cross-
validation this means that 100 calls of one classifier with
the training data and tested against test data. In each 10-
fold cross-validation, each data set randomly split into 10
equal-size segments and results averaged over 10 trials.
(v) Evaluation of Results and Selection of best Algorithm:
From the above each algorithm produce results those
results are collected for function based approach. From the
results best technique for the categorization is extracted
and over all best technique is presented which can be
categorized very easily and accurately.
• Use training set: The classifier is evaluated on how
well it predicts the class of the instances it trained
• Cross-validation: The classifier evaluate by cross-
validation, using the numbers of folds that entered in the
folds text field.

(vi) Approach wise best Algorithm: It is to be noted that
all the above 5 steps are performed for both function
oriented and object oriented approach. Afterwards
comparison is performed to get the best Approach.
(vii) Comparison with existing techniques: The results
extracted from the previous steps are compared with the
existing techniques i.e. LSA. LSA is performed over all
the input files and the results extracted from these are
compared with the present work.
The Latent Semantic Analysis (LSA) can be applied to
induce and represent aspects of the meaning of English
language words. LSA is a variant of the vector space model
that converts a representative sample of documents to a
term-by-document matrix in which each cell indicates the
frequency with which each term (rows) occurs in each
document (columns). Thus, a document becomes a column
vector and can be compared with a user's query represented
as a vector of the same dimension.

In SVD based technique, the query component’s similarity
with the other components in the repository is measured by
calculating the cosine between the vectors, xk and a query
vector, qk as shown below:

TS q A= %% (4)
Where

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

116

1 T
K KA S Pα−=% (5)

And the query vector is projected into the same
k-dimensional space [20] by:
 T

K Kq q W Sα=% (6)
 The performance of queries generally improves
as k increases, but will decrease past a threshold. It is
possible for an SVD based system to locate terms, which
do not even appear in a document. A document that is
located in a similar part of the Precision recall data for
SVD concept space (i.e. which have a similar meaning) is
retrieved, rather than only matching keywords.

2.1 Evaluation of Developed System

It is tried to evaluate the system in terms of Precision and
Recall criteria. Let S be a set of all software systems
contained in a repository. Precision and Recall are defined
in (18).

()
| |

softs S
precision s

Precision
S

ε= ∑ (7)

Where

)(sprecisionsoft =
|)(|

|)()(|
sC

sCsC

Actual

IdealActual ∩

 (8)

And

Recall =
||

)(
S

srecallSs soft∑ ε

(9)

where

)(srecallsoft =
|)(|

|)()(|
sC

sCsC

Ideal

IdealActual ∩
 (10)

Where Cactual(s) is a set of clusters containing software “s”,
generated by our software and CIdeal(s) is a set of clusters
containing input software “s”, determined manually by the
domain experts. Using Precision and Recall values F-value
is calculated as a measure of performance evaluation i.e.

rp

prValueF
+

=−
2

(14)

Where p is the Precision and r is the Recall of the
system.

3. Implementation and Results

As a software implementation of the discussed concept, a
deployable function oriented based component, Which
Microsoft’s binary standard is for object interoperability is
developed. The developed component’s objects can be
accessible through C++ or any other language that supports
function oriented or object oriented. A sample data from
various Reusable Repositories of ‘C++’ components is
collected belonging to five categories

3.1 Selection of best approach in Functional
oriented:

In this section, the various selected algorithms based on
maximum accuracy and minimum error are shown in
Table 1.1. The basis of the comparison is the 10-fold
statistics, on the first term on which comparison is carried
out is accuracy in case some of the algorithms have same
accuracy then the comparison is performed on the basis of
least error amongst the algorithms being compared. The
thorough analysis of each algorithm selected is given
below :
The first algorithm selected in Bayes class is multinomial
Naïve Bayes with 72.9167 (Accuracy %),0.107(MAE),
0.3187 (RMSE), which is incomparable with the other
members of the class except complement naïve bayes its
accuracy is less
• Second algorithm selected from Function Class is
Simple logistic with 47.917(Accuracy %), 0.2083(MAE),
0.4564 (RMSE), as it has highest accuracy amongst the
another functional class
• Third algorithm selected from the Lazy class is
LWL[33][34] with 43.75 (Accuracy %), 0.2435 (MAE),
0.3642 (RMSE), as it has highest accuracy amongst the
class
• Fourth algorithm selected from Meta Class is Logic
Boosting [35][36] with 66.6667(Accuracy %), 0.1352
(MAE), 0.3036 (RMSE), as it has highest accuracy
amongst the class.
• Fifth algorithm selected from the Misc Class is VFI [37]
with 58.3333 (Accuracy %), 0.2319 (MAE), 0.3749
(RMSE), as it has highest accuracy amongst the class.
Finally, Sixth algorithm selected from Trees class is LMT
[38] with 66.6667 (Accuracy %), 0.1293 (MAE), 0.3262
(RMSE), as it has highest accuracy amongst the class.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

117

Table 1. Classification Results of best algorithms used for Function Oriented Software Data

Table 2. Classification Results of best algorithms used for the Object Oriented Software Data

3.2 Selection of best approach for OO Data

In this section, the various selected algorithms based on
maximum accuracy and minimum error are shown in
Table 2.
• Bayes class is complement naïve bayes with 55.2239
(Accuracy %), 0.1791(MAE), 0.423(RMSE), which is
incomparable with the other members of the class except
naïve bayes multinomial its accuracy is less.
• Second algorithm selected from Function Class is RBF
networks with 54.223(Accuracy %), 0.1818(MAE), 0.417
(RMSE), as it has highest accuracy amongst the another
 functional class.
• Third algorithm selected from the Lazy class is IB1 with
32.8358(accuracy %), 0.2687 (MAE), 0.4183(RMSE), as
it has highest accuracy amongst the class.
• Fourth algorithm selected from Random committee
with 49.2537(Accuracy %), 0.2487 (MAE), 0.3715
(RMSE), as it has highest accuracy amongst the class.
• Fifth algorithm selected from the Misc Class is VFI with
44.7761(Accuracy %), 0.2648(MAE), 0.4121(RMSE), as
it has highest accuracy amongst the class.
• Finally, Sixth algorithm selected from Trees class is
Random tree with 37.3134 (Accuracy %), 0.1293 (MAE),
0.3262 (RMSE), as it has highest accuracy amongst the
class.

The accuracy of best algorithm in object oriented. i.e.
complement naïve bayes is 55.2239%, and the accuracy of
best algorithm in functional oriented i.e. multinomial naïve
bayes is 72.9167 %. A result shows accuracy of
multinomial is high.

Table 3. Result of SVD by using precision, recall and F-measure

Precision Recall F-Measure
1.0000 0.2500 0.4000
0.1500 0.4286 0.2222
0.8000 0.5000 0.6154

0 0 0
0.2500 0.3846 0.3030

If SVD and multinomial are compared on the basis of
precision, Recall and F-measure As shown in table 1.3 and
1.4 multinomial performs better results than the existing
approach.

Table 1.3: Result of Multinomial by using precision, recall and F-
measure

Precision Recall F-Measure
0. 0.6 0.667 0.632
0.625 0.714 0.667
0.833 0.625 0.714
0.909 0.909 0.909
0.692 0.692 0.692

Classification Training Statistics Statistics after 10 fold
Cross-Validation

Algorithm
Accuracy (%) MAE RMSE Accuracy (%) MAE RMSE

NaïveBayes
 Multinomial 95.8333 0.0167 0.1291 72.9167 0.107 0.3187

Simple logistic 100 0 0 47.9177 0.2083 0.4564
LWL 66.6667 0.2113 0.3151 43.75 0.2435 0.3642
Logic boosting 100 0.0024 0.0052 66.6667 0.1352 0.3036
Mean VFI 89.5833 0.3175 0.3968 58.333 0.2319 0.3749
LMT 100 0 0 66.6667 0.1293 0.3262

Classification Training Statistics Statistics after 10 fold
Cross-Validation

Algorithm
Accuracy (%) MAE RMSE Accuracy (%) MAE RMSE

Complement naïve bayes 91.0448 0.0358 0.1893 55.2239 0.1791 0.4232
RBF Network 95.5224 0.032 0.1264 54.2239 0.1818 0.417
IB1 98.5075 0.006 0.0773 32.8358 0.2687 0.4183
Random committee 98.5075 0.006 0.0546 49.2537 0.2487 0.3715

VFI 83.5821 0.3187 0.3983 44.7761 0.2648 0.4121
Random tree 98.5075 0.1318 0.1318 37.3134 0.2647 0.3809

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

118

4. Conclusion

The results on the basis of accuracy of functional oriented
and object oriented, function oriented performs better than
the object oriented. The multinomial naïve based software
categorization approach provides better results than
purely SVD based retrieval techniques in terms of Precision
and Recall. The categorization results are close to the
manual analysis, used to be performed by the
programmers/repository managers. Ultimately, this kind of
automation may improve the productivity and quality of
software development.

References
[1] Kawaguchi, S., P. K. Garg, M. Matsushita and K. Inoue,

2003. Automatic categorization algorithm for evolvable
software archive Software Evolution. Sixth International
Workshop on Principles of Software Evolution (IWPSE'03),
pp. 195 – 200.

[2] Kawaguchi, S., P. K. Garg, M. Matsushita and K. Inoue,
2004. MUDABlue: an automatic categorization system for
open source repositories. 11th Asia-Pacific Software
Engineering Conference (2004), pp. 184 – 193.

[3] Bouckaert. R. R. (2004), “Bayesian Network Classifiers in
Weka”, 2004.

[4] Dinkelacker, J., Garg, P., Nelson, D. and R. Miller.
(2002), “Progressive Open Source”, In Proceedings
of the International Conference on Software Engineering,
Orlando, Florida (2002) , pp. 177-184.

[5] Frank, E., Hall, M. and Pfahringer, B. (2003), “Locally
Weighted Naive Bayes”, Proceedings Nineteenth
Conference in Uncertainty in Artificial Intelligence, 2003,
pp. 249-256.

[6] Frank, E. and Hall, M. (2001), “A Simple Approach to
Ordinal Classification”, Proceedings Twelfth European
Conference on Machine Learning, 2001, pp. 145- 156.

[7] Ho, T. K. (1998), “The Random Subspace Method for
Constructing Decision Forests”, Proceeding IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, 8, 1998, pp. 832-844.

[8] Joachims, T. (1998), “Text Categorization with Support
Vector Machines: Learning with Many Relevant Features”.
(1998)

[9] Kaariainen. M and Malinen. T. (2004), “Selective
Rademacher Penalization and Reduced Error Pruning of
Decision Trees”, Journal of Machine Learning Research 5
(2004), pp. 1107– 1126.

[10] Rennie, J.D.M., Shih, L. (2003), “Tackling the Poor
Assumptions of Naive Bayes Text Classifiers”, Proceedings
Twentieth international Conference on Machine Learning
(ICML), 2003, pp. 616-623.

[11] WEKA, www.cs.waikato.ac.nz/~ml/weka/
[12] Yang. Y and Liu.X (1999), “A reexamination of text

categorization methods”, Proceedings of the ACM SIGIR
Conference on Research and Development in Information
Retrieval 1999, pp. 42—49.

[13] McCallum. A and Nigam. K.(1998), “A Comparison of
Event Models for Naive Bayes Text Classification”, In

AAAI-98 Workshop on Learning for Text Categorization,
1998, pp. 250-255.

[14] Pedersen. T. (2002), “A Simple Approach to Building
Ensembles of Naive Bayesian Classifiers for Word Sense
Disambiguation”, Proceedings of the ACL-02 workshop on
Word sense disambiguation.

[15] Freund, Y. and Schapire, R.E. (1996), “Experiments with a
new boosting algorithm”, Proceedings Thirteenth I
international Conference on Machine Learning, San
Francisco, 1996, pp. 148-156.

[16] Holte, R. C. (1993), “Very Simple classification Rules
Perform Well on Most Commonly Used Datasets”,
Machine Learning, Vol. 11, 1993, pp. 63- 91.

[17] Shi, H. (2007), “Best-first decision tree learning”,
Hamilton, NZ.

[18] Ting, K. M. and Witten, I. H. (1997), “Stacking Bagged and
Dagged Models”, In Fourteenth international Conference
on Machine Learning, San Francisco, CA, 1997, pp.
367-375.

[19] Wang. Z. and Webb. G .I (2000), “A Heuristic Lazy
Bayesian Rule Algorithm”, The Australasian Data Mining
Workshop, 2002.

[20] Zou, B., Ma, X., Kemme, B., Newton, G . and Precup,
D. (2006), “Data mining using Relational Database
Management Systems”, Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), 2006.

[21] Quinlan, J. R. (1993), “C4.5: Programs for Machine
Learning”, Morgan Kaufmann Publishers. [12] Yang. Y
and Liu.X (1999), “A reexamination of text categorization
methods”, Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval 1999,
pp. 42—49.

Parvinder S. Sandhu is working
as Assistant Professor in the
Department of Computer Science
and Engineering with Guru Nanak
Dev Engineering College,
Ludhiana (Punjab). He is Master of
Engineering in Software
Engineering, M.B.A. and Bachelor
in Computer Engineering from NIT,
Kurukshetra. He is doing research

work leading to Ph.D. with Guru Nanak Dev University,
Amritsar. He has published 11 research papers in referred
International journals and 15 papers in renowned international
conferences. His current research interests are Software
Reusability, Software Maintenance and Machine Learning.

Hardeep Singh is working as Professor in the Department of
Computer Science and Engineering with Guru Nanak Dev
University, Amritsar, India. His date of birth is Feb. 16 and he
has got twenty years of teaching experience. He is member of
high profile committees of Government of India related with the
technical education. He is Doctorate in Modeling and Design of
Software Metrics for Object Oriented Systems. He has thirty five
International and National publications to his name. He is live
interest in Software Engineering, Object Oriented Paradigm,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

119

Management Information & Decision Support Systems,
Ergonomics, Computer Networks, Artificial Intelligence.

Madhu Bala is currenly doing her Masters from Guru Nanak
Dev Engineering College, Ludhiana and doing research on the
categorization of components in the software repositories under
supervision of Prof. Parvinder S. Sandhu. She did her Bachelor
in Computer Science and Engineeirng from Punjab technical
university Jalandhar.

