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Summary 
The main objective of the work is to provide a general setting for 
quantitative quality measures of Knowledge-Based System 
behavior. It includes ‘Metrics Suite studies’: an analysis of all 
the metrics available related to AI (Artificial Intelligence) based 
systems which includes both qualitative metrics and quantitative 
metrics and it is shown that how system quality changes as a 
function of values of the design descriptors of the AI programs. 
To show the feasibility of this approach, we have applied it in 
Prolog Language. AI is the part of computer science concerned 
with designing intelligent computer systems, that is, computer 
systems that exhibit the characteristics we associate with 
intelligence in human behavior-understanding language, learning, 
reasoning and solving problems. It is the ability of these new 
electronic machines to store large amounts of information and 
process it at very high speeds that gave researchers the vision of 
building systems which could emulate some human abilities. AI 
is the branch of science concerned with the study and creation of 
computers systems that exhibit some form of intelligence: 
systems that learn new concepts and tasks, system that can 
reason and draw useful conclusions about the world around us, 
systems that can understand a natural language or perceive and 
comprehend, a visual scene, and systems that perform other 
types of feats that requires human types intelligence. 
Key words: 
Artificial Intelligence, Knowledge Base, Metrics, Quality, Prolog 

1. Introduction 

There is lack of effective methods for ensuring the quality 
and reliability of AI system, means these metrics lack in 
measuring all the basic mechanisms of AI systems 
paradigm and moreover there is no correlation revealed 
between the basic mechanisms and the quality attributes. 
One impediment to the growing use of AI-based software 
is the lack of metrics suite for determining various 
characteristics as well as effective methods for ensuring 
the quality and reliability of this type of system. In 
particular, the nature of AI applications often confounds 
conventional software requirements specification 
techniques, while the characteristic architectures of AI-
based systems confound conventional verification and 
testing techniques. This has lead to a great deal of interest 
in studying the metrics suite for AI-based systems and 
then with further refinement of metrics takes place in 
order to extract its design factors from the design of AI-
based software. So the need to study the Artificial 
Intelligence lies in the idea of developing such metrics 

based on the design descriptors of AI, so that these metrics 
gives an idea about the aspects of AI programs. 
Measurement of different aspects related to the program 
code here refers to measurement of coverage, granularity, 
extent, scope, correctness, consistency, robustness, 
effectiveness, efficiency, completeness and validness. 
From the refinement of metrics suite, the main work is 
how to evaluate the quality of the AI programs which are 
already considered as complex programs and it turns to be 
more difficult when there were no criteria on the basis of 
which one can evaluate quality of these systems. It is clear 
from the survey of the past literature that till now there 
was no strategy based on metrics which can evaluate the 
quality in an either way. It is also written that as AI 
programs have large complexity, they are usually 
degraded programs in relation to quality. So it’s very 
difficult to measure quality traits of such AI programs. 
The work tends to evaluate the quality of software by 
means of metrics which are suited to quantify design 
characteristics in the different stages of software 
development. Results of empirical validation studies are 
reported to show the analytical and predictive power of 
metrics. 

2. Evaluating Quality based on Metrics Suite 

In order to evaluate the quality of the AI systems based on 
the Metrics Suite, the need is to extract the design 
descriptors from the design of AI based systems This has 
lead to a great deal of interest in studying the metrics suite 
for AI-based systems and then with further refinement of 
metrics takes place in order to extract its quality factors 
from the design of AI-based software.  

 
To study AI systems, all the metrics related to these 
systems directly or indirectly are collected and then 
thoroughly studied and revised. These metrics suite 
include both qualitative and quantitative aspects, means AI 
systems qualitative and quantitative behavior. With the 
help from the Metrics Suite, a set of Prolog files are 
analyzed and its design descriptors are determined. Design 
descriptors are the facets that contain the manifestation of 
Artificial Intelligence systems. These traits characterize 
these systems in all ways: - Quantitatively and 
Qualitatively. Prolog file is read by the framework engine 
designed and upon analyzing the file, its various facets are 
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determined. The purpose of the work is to study the 
metrics suite for the AI based systems in order to refine 
the metrics suite which adds to the fact of designing the 
framework engine to extract the various characteristics of 
these Knowledge Based Systems. From the study of the 
past literature, it is clear that there exists no particular 
metrics suite for the AI based systems specially Prolog 
Based Systems. And in the last, a quality model is 
provided which describes the different descriptors which 
can be considered to measure the performance and quality 
of these knowledge based systems. 

 
So the first step is to study the metrics suite of AI systems 
and then extracting the metrics from which we can further 
determine the design descriptors in order to reveal the 
design of AI systems, especially prolog systems. A set of 
rules is specified on some contrary basis which provides 
the extent of quality for these AI based systems. 
Depending on the value of these design facets and the 
rules specified, the quality of AI systems can be 
determined. But this metrics suite and rule set cannot be 
compared as there was no strategy or framework exists 
earlier which can be used to evaluate the quality of these 
prolog systems. 
  

2.1 Metrics Suite for AI-based Systems 

Metrics suite for the AI systems includes both qualitative 
and quantitative behavior. All the metrics collected over 
and studied in order to analyze the prolog systems are 
given below with their important aspects. 

Metrics for Appropriateness Measurement: 
Appropriateness measurement attempts to use answer 
patterns to recognize a typical examinees. These 
procedures are the statistical tests for choosing between a 
null hypothesis of normal test-taking behavior and an 
alternative hypothesis of a typical test-taking behavior.  

Coverage Metrics: Coverage analysis is the process of 
finding areas of a program not exercised by a set of test 
cases, creating additional test cases to increase coverage, 
and determining a quantitative measure of code coverage, 
which is an indirect measure of quality and identifying 
redundant test cases that do not increase coverage. 

Data Flow Testing: The Data Flow Testing method selects 
test paths of a program according to the locations of the 
definitions and uses of the variables in the program. If the 
program user wants to test the data flow in program, one 
can do it by discovering the minimum number of paths [1]. 
A challenge of path coverage is to discover the input 
values that will cause a particular path to be executed. 

Using data flow graphs to create USEDEF  paths for 
variables used in the program [2] makes it easier to 
discover how a particular input value affects program flow. 
Another set of constructs, based on dataflow, traces values 
from their definition point to their subsequent usage [3].  

Granularity Metrics: It is a measure of the size or 
descriptions of components, which make up a system. 
Systems of large components are called coarse-grained, 
and systems of small components are called fine-grained. 

Checking Prolog Policies: The Prolog policies specify 
constraints on the classes and instances of entities allowed 
for performing certain kinds of tasks. An example of a 
class-level constraint is that no Audio Presentation 
application component should be used to notify a user in 
case he is in a meeting. This rule is expressed as: 

( ) −:,,Pr Usernotifyesentationdisallow
( )
( ).,

,Pr,Pr
meetingUseractivity

esentationaudioesentationsubclass

 

Policies specify which parameter values may be preferred 
depending on the state of different entities, the context and 
state of the environment, the semantic similarity of the 
class of the value to the developer-specified class and the 
end-user performing the task and assigns numerical values 
to the utility of different entities in different contexts [4]. 

Time Complexity Metrics: To measure the complexity in 
terms of time, the main task is to determine the similar 
classes of entities from the ontology hierarchy. The 

average time to discover all these classes is ( )i
nΟ , where 

the number of concepts in the ontology hierarchy is n  and 
i  is the length of the path from the root of the hierarchy to 
the fourth level ancestor. The step is to checking class 
level constraints. The time taken to check the constraints is 
given in equation (1): 

( ) ( )sconstraclassclassesleafsimilarlysemanticaltime int## Ο×Ο= ( )1

The next step is querying the Prolog Knowledge Base and 
other repositories to get instances of the similar classes 
that satisfy instance level constraints. Ref. [5] shows the 
number of queries sent to the Prolog Knowledge Base is 
Ο ( n ), in the worst case, where n  is the number of 
classes as given in equation (2) as 

( ) ( )classpercesinsncesinsofnumber tan#tan Ο×Ο= ( )2

The final step is ranking the different instances to choose 
the best ones. So, the net complexity of the whole process 
is given as equation (3) where the number of concepts in 
the ontology hierarchy is n .   
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )classpercesinsn

constraitsceinsclasspercesinsnsconstraclassnn
tan#

tan#tan#int#
Ο×Ο

+Ο×Ο×Ο+Ο×Ο+Ο ( )3
 

Extent Metrics: the graphic token based metrics and the 
volume based metrics are used to measure the extent of 
prolog systems. 

Graphics Token Based Metrics: Approach is to extend the 
Graphic Token Count of Nickerson [6] to produce 
operator and operand counts. The standard Software 
Science notation [7] includes as 1η  is the Number of 

unique operators, 1N  is the total number of operators, 2η  

is the Number of unique operands, 2N  is the total number 
of operands, Vocabulary and N  is the Software Science 
“size”. Number of unique operators as given in equation 
(4),  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +++
=

presentadjoinment
presentenclosuretypeslabelofnumbertypesedgeofnumber

_
_______

1η  ( )4

And, Number of unique operands as given in equation (5),  

( )typestokentextualofnumbertypesnodeofnumber _______2 +=η ( )5

Correctness Metrics:  Correctness of a program is asserted 
when it is said that the program is correct with respect to a 
specification. Functional correctness refers to the input-
output behavior of the program.  

Measuring Function Point from Specifications: A 
knowledge based approach for the automated 
measurement of the Function Point Metric [8] starting 
from the specifications of a software system expressed in 
the form of an Entity Relationship Diagram plus a Data 
Flow Diagram. An integration of the two diagrams, as 
illustrated in [9], ER-DFD, in which the data stores of 
DFD are substituted by the entities and relationships of the 
ER. A knowledge based system automatically counts 
Function Point by analyzing the graph [10].  

Scope Metrics:   

Interface Size:  Procedure Count ( )np  is the total count of 
procedures that are publicly declared by an interface in the 
program. Argument Count ( )na  is the total count of 
arguments of the publicly declared procedures. Procedure 
Count and Argument Count allow measurement of 
component size using only the interface. Interface size has 
an effect on component reusability. It is believed that 
interfaces that have fewer procedures and arguments tend 
to be easier to understand. This implies that smaller 
component interfaces will have better reusability [11]. 

Arguments per Procedure ( )APP  measure the mean size 
of procedure declarations of an interface, and given as 
equation (6): 

Metrics for Adequateness Measurement: Adequateness 
means that the program has sufficient ability to satisfy a 
requirement or meet a need. Quality of being able to meet 
a need satisfactorily is adequacy.  

Robustness Metrics: A dynamic metric is robust if a 
“small” change in program behavior results in a 
correspondingly small change in the measured value. It is 
difficult to precisely determine what a “small” change is; it 
is also difficult to achieve robustness when quantifying 
program behavior. As illustrated in [12], basic problems 
encountered when trying to accurately and reasonably 
measure dynamic properties of a program are discussed.  

Complexity Measure: The complexity of a data set relative 
to a theory is defined as the length of the shortest program 
necessary to reconstruct it from that theory. The total 
information required to represent the data ( )DI ,   is the 
amount of information necessary to specify the 
theory ( )TI , plus the information necessary to specify the  

data given the theory ( )TDI  can be written as equation 
(7). 

This formulation encapsulates a trade off between a 
complex, over-fitted, theory where ( )TI  is large and 

( )TDI  small, and a simple, over-general, where ( )TI  

is small and ( )TDI  large. Aim is to compare different 
theories on the same data [13]. 

Naturalness and Friendliness Metrics: The assumption of 
naturalness means that unless a more detailed explanation 
exists, all conceivable terms in the effective action that 
preserve the required symmetries should appear in this 
effective action with natural coefficients. The friendliness 
feature makes the software program easy to understand or 
easy for use. Semantic complexity can be defined using a 
new concept of meaning automata [14]. 

Metrics for Content Measurement: Content refers to 
the subject matter of a written work. Content can be 
measured by measuring consistency, correctness, validity 

np
naAPP =

 
( )6
 

( ) ( ) ( )TDITIDI +=  
    ( )7  
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as well as the completeness of a program. All these facets 
are measured by the following metrics [15]. 

Consistency Metrics: The relative number of ‘contradict 
relationships’ out of all relationships can indicate the 
degree of inconsistency as defined in equation (8). RCC is 
the set of relationships that connect concepts in RS. 

( )( ){ }
RCC

xcontradictnegationRCCxx
yConsistenc

∧∈
=

 
  ( )8

Completeness Metrics: Missing requirements cause 
additional cost. All in ontology should be mentioned in RS 
ideally. Completeness can be given as equation (9) where 
Con is the concept and Rel is the relations. 

( ){ }
lCon

yFxqItemyexistslConxx
ssCompletene

Re
.Re:Re int

∪

∈∧∪∈
= ( )9

 

Correctness Metrics: Domain ontology is a guideline to 
decide requirement’s naturally required, so all statements 
in RS should correspond to elements in the ontology in 
domain. Correctness can be defined as given in equation 
(10). 

( ){ }
qItem

xFqItemxx
scorrectnes

Re
Re int Φ≠∧∈

=
 

   ( )10

Validity Metrics: When a requirement statement is 
mapped onto several elements that are not semantically 
related, the statement is regarded as an ambiguous one. 
Validity can be defined as given in equation (11). 

( ){ }
qItem

CloxFqItemxx
validity

Re
Re int ⊆∧∈

=
 

   ( )11

Where ‘Clo’ is the transitive closure of relationships 
except contradict and antonym. 

Metrics for Coupling and Cohesion Measurement: In 
an empirical study [16], it is shown that metrics values 
indicating lower modularity were in fact associated with 
lower productivity, greater rework effort and greater 
design effort in the context of object-oriented systems. 

Metrics for Frames and Rules: These metrics are 
quantitative models of the fundamental concepts coupling 
and cohesion, which represent important aspects of the 
modularity of software systems [17]. In this sense, we 
show the theoretical soundness of our coupling and 
cohesion metrics. Doing so, we also show how to assess 
the theoretical soundness of newly proposed metrics. 
Coupling and cohesion can be explained in terms of 
elements (like modules, classes or frames) that are linked 

in some way [18, 19]. The metric ( )fFDC p  (Degree of 
Coupling of Frame) is defined as the number of edges 
from the vertices corresponding to the slots of the frame to 
the vertices corresponding to the slots of other frames. 
Then the metric for cohesion, ChF  (Cohesion of Frame) 
is defined as the number of actual edges divided by the 
number of possible edges in fG as shown in [20] and 
given by the equation (12): 

( ) ( ) ( ) .111
12 2

≤>
−

=
⎪⎩

⎪
⎨
⎧

= sifandsif
ss

EE
fChF f

s

f

 

( )12
 

Metrics for Size Measurement: Size can be defined as 
character, value, or status with reference to relative 
importance or the capacity to meet given requirements or 
the actual state of affairs. 

Metrics for Estimating Size: A model to size Prolog 
programs is developed using the concepts of an “operator” 
and an “operand” from software science. By separating the 
operator counts into counts of Prolog predicates and non-
predicate operators, and the operand count into counts of 
instantiated and uninstantiated variables [21], it is possible 
to deduce a model which is as accurate as any model 
produced for sizing programs. By banding the model’s 
parameters, it is also shown that the complexity of the 
model can be reduced whilst retaining its high level of 
accuracy. Dividing system size by PM effort gives a 
measure of productivity and a useful indicator of the 
feasibility of developing a system and reliability of this 
type of system means these metrics lack in measuring all 
the basic mechanisms of AI systems paradigm and 
moreover there is no correlation revealed between the 
basic mechanisms and the quality attributes. One 
impediment to the growing use of AI-based software is the 
lack of metrics suite for determining various 
characteristics as well as effective methods for ensuring 
the quality and reliability of this type of system. In 
particular, the nature of AI applications often confounds 
conventional software requirements specification 
techniques, while the characteristic architectures of AI-
based systems confound conventional verification and 
testing techniques. This has lead to a great deal of interest 
in studying the metrics suite for AI-based systems and 
then with further refinement of metrics takes place in 
order to extract its design factors from the design of AI-
based software. From the refinement of metrics suite, the 
main work is how to evaluate the quality of the AI 
programs which are already considered as complex 
programs and it turns to be more difficult when there were 
no criteria on the basis of which one can evaluate quality 
of these systems. It is clear from the survey of the past 
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literature that till now there was no strategy based on 
metrics which can evaluate the quality in an either way. It 
is also written that as AI programs have large complexity, 
they are usually degraded programs in relation to quality. 
So it’s very difficult to measure quality traits of such AI 
programs. The work tends to evaluate the quality of 
software by means of metrics which are suited to quantify 
design characteristics in the different stages of software 
development. Results of empirical validation studies are 
reported to show the analytical and predictive power of 
metrics [22].  
 
After reviewing the different metrics under design 
descriptor category, it is clear that metrics can be used to 
evaluate the quality of AI based programs (prolog 
programs) in both ways: 

• Qualitatively  
• Quantitatively 

 
Qualitative research is one of the two major approaches to 
research methodology in social sciences. Qualitative 
research involves an in depth understanding of human 
behavior and the reasons that govern human behavior. 
Unlike quantitative research, qualitative research relies on 
reasons behind various aspects of behavior. Simply put, it 
investigates the why and how of decision making, as 
compared to what, where, and when of quantitative 
research. Hence, the need is for smaller but focused 
samples rather than large random samples, which 
qualitative research categorizes data into patterns as the 
primary basis for organizing and reporting results. We can 
measure quality both using qualitative as well as 
quantitative metrics. So firstly, the need is to extract the 
design descriptors from the design of AI based systems. In 
particular, the nature of AI applications often confounds 
conventional software requirements specification 
techniques, while the characteristic architectures of AI-
based systems confound conventional verification and 
testing techniques. This has lead to a great deal of interest 
in studying the metrics suite for AI-based systems and 
then with further refinement of metrics takes place in 
order to extract its quality factors from the design of AI-
based software. From the literature survey, we can 
categorize these metrics as shown. 
 
Qualitative Metrics: - These metrics make use of 
characteristics in order to evaluate the quality traits of the 
programs taken under consideration. These metrics 
considers those facets of the programs which governs the 
human behavior like the friendliness and naturalness of the 
program. These metrics used to measure the extent of the 
interaction between the program and the human behavior.  
 

The qualitative metrics include the following metrics: -
  

• Coverage Metrics: - Data Flow Testing, Program 
Fault Testing, Syntax Testing 

• Granularity Metrics: - Checking Prolog Policies 
• Extent Metrics: - Volume Based Metrics 
• Correctness Metrics: - Using Complementary 

Code to resolve External Dependencies 
• Robustness Metrics 
• Naturalness and Friendliness Metrics 
• Effectiveness Metrics: - Complexity 

Measurement 
• Efficiency Metrics: - Dialogue Structure 
• Metrics for Content Measurement: - Consistency 

Metrics, Completeness Metrics, Correctness 
Metrics, Validity Metrics 

 
These all are the qualitative metrics based on the traits 
which determine the human response towards the program 
execution. These metrics can be used to evaluate the 
quality of AI programs in terms of the human behavior 
towards the program behavior and upon their interaction 
with each other. 
 
Quantitative Metrics: - Software systems and in particular 
also Artificial Intelligence-based systems become 
increasingly large and complex to understand. In response 
to this challenge, software engineering has a long tradition 
of advocating modularity. For measuring certain important 
aspects of modularity, coupling and cohesion metrics have 
been developed. For AI based systems, it presents the core 
of the first metrics suite, its coupling and cohesion metrics. 
These metrics measure modularity in terms of the relations 
induced between facts through their common references in 
rules. Study will show the soundness of these metrics 
according to theory and report on their usefulness in 
practice. As a consequence, we propose using our metrics 
in order to improve Quality of AI- based systems 
development, and developing other important metrics and 
assessing their theoretical soundness along these lines. So 
the quality of something depends on the criteria being 
applied to it. Something might be good because it is useful, 
because it is beautiful, or simply because it exists. 
 
 Quantitative Metrics can be categorized as: 

• Granularity Metrics: - Time Complexity Metrics 
• Extent Metrics: - Graphic Token Based Metrics 
• Correctness Metrics: - Measuring Function Points 

from Specifications 
• Scope Metrics: - Interface Size Metrics 
• Metrics for Coupling and Cohesion 

Measurement: - Metrics for Frames and Rules 
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• Metrics for Size Measurement: -  Metrics for 
estimating Size 

 
These metrics are used to measure the quantifiable 
descriptors which then are used to evaluate quality of the 
programs taken under consideration. Depending on the 
values of these metrics, quality can be evaluated. One 
thing is that we cannot measure the exact value or 
approximate value of the quality. But this implemented 
strategy yet evaluates the quality based on the metrics 
values only. There was no existing strategy in the past for 
evaluating the quality based on Metrics Suite or any other 
criteria 
 

2.2 Rule Specification 

It is clear from the survey reports that the AI programs are 
generally of low quality.  All the design facets cannot 
agree with each other for the quality of the program to be 
high. These rules are used to specify the value for each 
metrics and for the combination of these metrics values 
define the value for the quality measure. If there are values 
for the metrics for which no rule is specified, then they are 
considered to be laying near the boundary cases just above 
and just below. The design descriptors that are determined 
using the Metrics Suite Framework Engine are: - 

• Number of operators and operands 
• Program  length (Halstead measurements) 
• Degree of coupling and cohesion 
• Granularity 
• Lines of code (size) 
 
 
 
 
 

Table 1: Rule Specification for AI systems 
  

Granula

r-ity 

Coupli

-ng 

Cohesio

--n 

LOC Halstead 

Mmts 

Qualit

y 

Low High 

/Low 

Very 

Low 

Low Very Low Nil 

Low High Low Medium Medium Very 

Low 

High High Low Medium Medium Low 

High Low High Medium Medium High 

High Low Very 

High 

Medium High Very 

High 

High Very 

Low 

Very 

High 

Medium High Excelle

-nt 

 
 

2.3 Quality Model for AI Systems 

To evaluate the software quality more quantitatively and 
objectively, software metrics appears to be powerful and 
effective technology to measure the software quality. 
Currently metrics is the core technology of software 
quality evaluation [23], which objectively assigns a value 
to characterize certain specific quality attribute. There 
exists difference between those quality attributes we really 
care about (external attributes) and what can be directly 
measured from the software (internal attributes).  

This quality model comprises several works which focus 
on the problem of what a KBS evaluation method should 
measure in order to determine the quality. In order to 
allow comparisons among different proposals, we have 
grouped evaluation criteria into four broad classes: 

 

 

Fig. 1 Performance and Quality Evaluation Model 
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Validity: concerning correctness, quality, accuracy, and 
completeness of responses (solutions, decisions, advice); 

Usability: concerning quality of human-computer 
interaction, understandability, explanation facilities; 

Reliability: including hardware and software reliability, 
robustness, sensitivity; 

Effectiveness: including cost-effectiveness, efficiency, 
development time and cost, maintainability and 
extensibility. 

Defining and Measuring Performance and Quality (P & 
Q): An appropriate definition of P&Q can be obtained 
through decomposition, that is behavior and ontology can 
be decomposed into independent components, using a 
hierarchical classification method. Components thus 
obtained can be decomposed into finer grained 
components.  

Behavior: Behavior of a KBS includes two main 
components: Static behavior, which concerns the behavior 
of a KBS over a time interval during which its ontology is 
fixed; Dynamic behavior, which concerns the behavior of 
a KBS over a time interval during which its ontology is 
changed. So, Static behavior concerns how a KBS 
responds to the inputs it receives during normal operation. 
Dynamic behavior concerns how a KBS reacts to the 
modifications performed to its structure and knowledge 
base by the project or maintenance team during its 
development life.  

Ontology: Ontology of a KBS includes five main 
components, Structure, which refers to the architecture, 
knowledge representation structures, reasoning algorithms, 
interfaces, and support systems which are designed to 
implement a KBS. Content, which denotes the knowledge 
actually represented and stored in the knowledge base of a 
KBS. System software on which the KBS is implemented; 
Hardware system on which the KBS is installed. 

Relation between Behavior and Ontology: On the basis of 
the taxonomy of components introduced previously, we 
can now analyze in greater detail the relations existing 
between ontology and behavior of a KBS. Ontology is in a 
sense the necessary condition, or in other words, the 
efficient cause of behavior. In fact, the ontology is 
purposely designed in such a way that it can produce the 
desired behavior, and thus meet the specifications. The 
elementary components of P&Q may be partitioned into 
two classes, namely: behavioral components (BC) and 
ontological components (OC), defined as the leaves of the 
P&Q taxonomy descending from behavior and ontology, 
respectively. While we may assume that components in 

each one of these two classes are independent from each 
other, there is, of course, a causal dependence between 
ontological. 

3. Results and Discussion 

The implementation of the system is done in Visual .NET 
and the following objectives are achieved:  

• Refinement of design metrics,  

• Framework for generating design for the AI 
based Systems,  

• Determining quality factors and 

• Measuring software systems quality.  

In our active user interface, the framework engine works 
as analyzer which is used to analyze the design facets of 
the programs under consideration. It tends to evaluate the 
effectiveness of this approach as previously there was no 
such model or strategy which can be used to measure 
quality on the basis of metrics suite. There were many 
problems in measuring the quality as these AI programs 
are very complex in nature and their complexity increases 
as the size of the program increases. It is also clear from 
the survey reports that these AI programs are generally of 
low quality. There were no prolog programs that are of 
high quality because if for quality to be high, all the design 
descriptors should be high and that is not possible in a 
single prolog program. All the design facets cannot agree 
with each other for the quality of the program to be high.  

Samples of the outputs generated upon application of 
metrics to the prolog code are shown as below. 

 

 

Fig. 2 Snapshot of Analysis of Prolog Code 1 
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Fig. 3 Quality Evaluation of Prolog Code 1 

 

 

Fig. 4 Snapshot of Analysis of Prolog Code 2 

 

Fig. 5 Quality Evaluation of Prolog Code 2 

Study will show the soundness of these metrics according 
to theory and report on their usefulness in practice. As a 
consequence, we propose using our metrics in order to 
improve quality of AI- based systems development, and 
developing other important metrics and assessing their 
theoretical soundness along these lines. The above shown 
are the screenshots of analyzing the prolog programs and 
evaluating the quality of prolog code depending on the 

values of design descriptors. Following table shows the 
results of analyzing different prolog codes and their 
quality evaluation in a tabular form. 

Table 2. Results of analyzing the prolog programs using the metrics suite 

Design 
Descriptors 

(Metrics) 

Prolog 
pgm 1 

Prolog 
pgm 2 

Prolog 
pgm 3 

Prolog pgm 
4 

Number of 
operators 

9 5 32 40 

Number of 
operands 

11 6 41 42 

Degree of 
Cohesion 

4 3 20 12 

Degree of 
Coupling 

2 1 0 4 

Lines of Code 3 8 12 12 

Program 
Length 

3 3 5 6 

Granularity 14 6 58 66 

Quality Nil Nil High Low 

 

 

The question is how much autonomous we need in doing 
the job and how we can validate the new knowledge 
before committing it to the existing knowledge without 
causing any conflicting. Most of the approaches, although 
proposing interesting new ideas and methods, lack a sound 
foundation and are affected by several practical limitations. 
In particular: all knowledge-base oriented approaches are 
partial: in fact, knowledge-base checking is only one 
aspect, though very important, of AI evaluation; 
approaches based on evaluation criteria are weak for at 
least two reasons: i) the lists of evaluation criteria 
proposed lack precise definitions, and therefore, are often 
vague and poorly organized, ii) the problem of how 
evaluation criteria should be actually applied to real AI's is 
not dealt with adequately; approaches based on evaluation 
methods, although very interesting for the practical issues 
they face, are mostly based only on empiric principles and 
lack generality, being often oriented towards very specific 
application domains. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

147

4. Conclusion and Future Scope 

In this work entitled as “Evaluating Quality of AI- Based 
Systems”, I have presented a simple approach to evaluate 
the quality of AI based systems (prolog programs) using 
the metrics suite framework. I have started by 
recapitulating the experiences with language dependent 
software metrics and have then abstracted from that 
context to come up with a general way to create metrics 
suite independently. I have reported on some experiences 
regarding the implementation of a metrics suite for 
analyzing the prolog programs. The benefits of this 
approach are the increased extensibility, i.e., one can 
introduce new metrics from arbitrary contexts which 
provide us with a standard metrics suite without having to 
implement new metrics each time such a new context is 
introduced. The objective of this approach are that 
currently software metrics suite designed can be used to 
evaluate the quality of the prolog programs and it is up to 
the best level in the area of artificial intelligence as there 
exists no such implementation or strategy that makes use 
of metrics in order to measure the quality of AI systems. 
Certain metrics tend to be very specialized and are thus 
difficult to define in a generic way. Another problem is 
that for some metrics, there is still no consensus about 
what is the best way to define them. For these reasons we 
did not consider efficiency metrics, content measurement 
metrics and effectiveness metrics. Furthermore, as, due to 
this research in reengineering, we come from a more 
pragmatic side, it is not solely the definition of the metrics 
which interest us. Indeed, it is the creation of concrete 
metrics, which we can then use as a quality measure, this 
interests us. In this context other problems arise, whose 
solutions lie mainly at the implementation level: what are 
the exact definitions of those metrics, how many can we 
generate and when does it make sense to stop generating 
metrics? Are the generated metrics actually usable and 
which ones do make sense in the given contexts? We plan 
to answer some of these questions in our future work.  The 
critical literature survey reported in the previous sections 
allows us to identify a basic set of requirements for an 
ideal KBS evaluation approach. This includes: a precise 
definition of AI evaluation and related concepts and 
terminology; a sound foundation of the concept of AI 
evaluation, where it is clearly stated i) what characteristics 
of an AI are to be evaluated, and ii) what to evaluate them 
against; a general methodology, defined according to the 
concept of AI evaluation adopted, specifying what to 
measure and how; an effective procedure to apply the 
general methodology to real cases. In future, research 
work can be extended with determining quality factors or 
attributes, deciding and refining of metrics suite for AI 
systems in different contexts and framework for 

evaluating quality factors in detail for the AI based 
systems.  
 
In simple words, we can explain the software quality 
attributes as follows:- 

• Functionality: Does the software satisfy stated 
needs? 

• Reliability: How often does the software fail? 
• Usability: How easy is the software to use? 
• Efficiency: How good is the performance of the 

software? 
• Maintainability: How easy is the software to 

repair? 
• Portability: How easy is the software to 

transport? 
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