
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

139

Manuscript received August 5, 2007

Manuscript revised August 20, 2007

Evaluating Quality of AI-Based Systems

Satvir Kaur Toor and Parvinder Singh Sandhu

Guru Nanak Dev Engineering College, Gill Park, Ludhiana, India.

Summary
The main objective of the work is to provide a general setting for
quantitative quality measures of Knowledge-Based System
behavior. It includes ‘Metrics Suite studies’: an analysis of all
the metrics available related to AI (Artificial Intelligence) based
systems which includes both qualitative metrics and quantitative
metrics and it is shown that how system quality changes as a
function of values of the design descriptors of the AI programs.
To show the feasibility of this approach, we have applied it in
Prolog Language. AI is the part of computer science concerned
with designing intelligent computer systems, that is, computer
systems that exhibit the characteristics we associate with
intelligence in human behavior-understanding language, learning,
reasoning and solving problems. It is the ability of these new
electronic machines to store large amounts of information and
process it at very high speeds that gave researchers the vision of
building systems which could emulate some human abilities. AI
is the branch of science concerned with the study and creation of
computers systems that exhibit some form of intelligence:
systems that learn new concepts and tasks, system that can
reason and draw useful conclusions about the world around us,
systems that can understand a natural language or perceive and
comprehend, a visual scene, and systems that perform other
types of feats that requires human types intelligence.
Key words:
Artificial Intelligence, Knowledge Base, Metrics, Quality, Prolog

1. Introduction

There is lack of effective methods for ensuring the quality
and reliability of AI system, means these metrics lack in
measuring all the basic mechanisms of AI systems
paradigm and moreover there is no correlation revealed
between the basic mechanisms and the quality attributes.
One impediment to the growing use of AI-based software
is the lack of metrics suite for determining various
characteristics as well as effective methods for ensuring
the quality and reliability of this type of system. In
particular, the nature of AI applications often confounds
conventional software requirements specification
techniques, while the characteristic architectures of AI-
based systems confound conventional verification and
testing techniques. This has lead to a great deal of interest
in studying the metrics suite for AI-based systems and
then with further refinement of metrics takes place in
order to extract its design factors from the design of AI-
based software. So the need to study the Artificial
Intelligence lies in the idea of developing such metrics

based on the design descriptors of AI, so that these metrics
gives an idea about the aspects of AI programs.
Measurement of different aspects related to the program
code here refers to measurement of coverage, granularity,
extent, scope, correctness, consistency, robustness,
effectiveness, efficiency, completeness and validness.
From the refinement of metrics suite, the main work is
how to evaluate the quality of the AI programs which are
already considered as complex programs and it turns to be
more difficult when there were no criteria on the basis of
which one can evaluate quality of these systems. It is clear
from the survey of the past literature that till now there
was no strategy based on metrics which can evaluate the
quality in an either way. It is also written that as AI
programs have large complexity, they are usually
degraded programs in relation to quality. So it’s very
difficult to measure quality traits of such AI programs.
The work tends to evaluate the quality of software by
means of metrics which are suited to quantify design
characteristics in the different stages of software
development. Results of empirical validation studies are
reported to show the analytical and predictive power of
metrics.

2. Evaluating Quality based on Metrics Suite

In order to evaluate the quality of the AI systems based on
the Metrics Suite, the need is to extract the design
descriptors from the design of AI based systems This has
lead to a great deal of interest in studying the metrics suite
for AI-based systems and then with further refinement of
metrics takes place in order to extract its quality factors
from the design of AI-based software.

To study AI systems, all the metrics related to these
systems directly or indirectly are collected and then
thoroughly studied and revised. These metrics suite
include both qualitative and quantitative aspects, means AI
systems qualitative and quantitative behavior. With the
help from the Metrics Suite, a set of Prolog files are
analyzed and its design descriptors are determined. Design
descriptors are the facets that contain the manifestation of
Artificial Intelligence systems. These traits characterize
these systems in all ways: - Quantitatively and
Qualitatively. Prolog file is read by the framework engine
designed and upon analyzing the file, its various facets are

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

140

determined. The purpose of the work is to study the
metrics suite for the AI based systems in order to refine
the metrics suite which adds to the fact of designing the
framework engine to extract the various characteristics of
these Knowledge Based Systems. From the study of the
past literature, it is clear that there exists no particular
metrics suite for the AI based systems specially Prolog
Based Systems. And in the last, a quality model is
provided which describes the different descriptors which
can be considered to measure the performance and quality
of these knowledge based systems.

So the first step is to study the metrics suite of AI systems
and then extracting the metrics from which we can further
determine the design descriptors in order to reveal the
design of AI systems, especially prolog systems. A set of
rules is specified on some contrary basis which provides
the extent of quality for these AI based systems.
Depending on the value of these design facets and the
rules specified, the quality of AI systems can be
determined. But this metrics suite and rule set cannot be
compared as there was no strategy or framework exists
earlier which can be used to evaluate the quality of these
prolog systems.

2.1 Metrics Suite for AI-based Systems

Metrics suite for the AI systems includes both qualitative
and quantitative behavior. All the metrics collected over
and studied in order to analyze the prolog systems are
given below with their important aspects.

Metrics for Appropriateness Measurement:
Appropriateness measurement attempts to use answer
patterns to recognize a typical examinees. These
procedures are the statistical tests for choosing between a
null hypothesis of normal test-taking behavior and an
alternative hypothesis of a typical test-taking behavior.

Coverage Metrics: Coverage analysis is the process of
finding areas of a program not exercised by a set of test
cases, creating additional test cases to increase coverage,
and determining a quantitative measure of code coverage,
which is an indirect measure of quality and identifying
redundant test cases that do not increase coverage.

Data Flow Testing: The Data Flow Testing method selects
test paths of a program according to the locations of the
definitions and uses of the variables in the program. If the
program user wants to test the data flow in program, one
can do it by discovering the minimum number of paths [1].
A challenge of path coverage is to discover the input
values that will cause a particular path to be executed.

Using data flow graphs to create USEDEF paths for
variables used in the program [2] makes it easier to
discover how a particular input value affects program flow.
Another set of constructs, based on dataflow, traces values
from their definition point to their subsequent usage [3].

Granularity Metrics: It is a measure of the size or
descriptions of components, which make up a system.
Systems of large components are called coarse-grained,
and systems of small components are called fine-grained.

Checking Prolog Policies: The Prolog policies specify
constraints on the classes and instances of entities allowed
for performing certain kinds of tasks. An example of a
class-level constraint is that no Audio Presentation
application component should be used to notify a user in
case he is in a meeting. This rule is expressed as:

() −:,,Pr Usernotifyesentationdisallow
()
().,

,Pr,Pr
meetingUseractivity

esentationaudioesentationsubclass

Policies specify which parameter values may be preferred
depending on the state of different entities, the context and
state of the environment, the semantic similarity of the
class of the value to the developer-specified class and the
end-user performing the task and assigns numerical values
to the utility of different entities in different contexts [4].

Time Complexity Metrics: To measure the complexity in
terms of time, the main task is to determine the similar
classes of entities from the ontology hierarchy. The

average time to discover all these classes is ()i
nΟ , where

the number of concepts in the ontology hierarchy is n and
i is the length of the path from the root of the hierarchy to
the fourth level ancestor. The step is to checking class
level constraints. The time taken to check the constraints is
given in equation (1):

() ()sconstraclassclassesleafsimilarlysemanticaltime int## Ο×Ο= ()1

The next step is querying the Prolog Knowledge Base and
other repositories to get instances of the similar classes
that satisfy instance level constraints. Ref. [5] shows the
number of queries sent to the Prolog Knowledge Base is
Ο (n), in the worst case, where n is the number of
classes as given in equation (2) as

() ()classpercesinsncesinsofnumber tan#tan Ο×Ο= ()2

The final step is ranking the different instances to choose
the best ones. So, the net complexity of the whole process
is given as equation (3) where the number of concepts in
the ontology hierarchy is n .

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

141

() () () () () ()
() ()classpercesinsn

constraitsceinsclasspercesinsnsconstraclassnn
tan#

tan#tan#int#
Ο×Ο

+Ο×Ο×Ο+Ο×Ο+Ο ()3

Extent Metrics: the graphic token based metrics and the
volume based metrics are used to measure the extent of
prolog systems.

Graphics Token Based Metrics: Approach is to extend the
Graphic Token Count of Nickerson [6] to produce
operator and operand counts. The standard Software
Science notation [7] includes as 1η is the Number of

unique operators, 1N is the total number of operators, 2η

is the Number of unique operands, 2N is the total number
of operands, Vocabulary and N is the Software Science
“size”. Number of unique operators as given in equation
(4),

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +++
=

presentadjoinment
presentenclosuretypeslabelofnumbertypesedgeofnumber

_

1η ()4

And, Number of unique operands as given in equation (5),

()typestokentextualofnumbertypesnodeofnumber _______2 +=η ()5

Correctness Metrics: Correctness of a program is asserted
when it is said that the program is correct with respect to a
specification. Functional correctness refers to the input-
output behavior of the program.

Measuring Function Point from Specifications: A
knowledge based approach for the automated
measurement of the Function Point Metric [8] starting
from the specifications of a software system expressed in
the form of an Entity Relationship Diagram plus a Data
Flow Diagram. An integration of the two diagrams, as
illustrated in [9], ER-DFD, in which the data stores of
DFD are substituted by the entities and relationships of the
ER. A knowledge based system automatically counts
Function Point by analyzing the graph [10].

Scope Metrics:

Interface Size: Procedure Count ()np is the total count of
procedures that are publicly declared by an interface in the
program. Argument Count ()na is the total count of
arguments of the publicly declared procedures. Procedure
Count and Argument Count allow measurement of
component size using only the interface. Interface size has
an effect on component reusability. It is believed that
interfaces that have fewer procedures and arguments tend
to be easier to understand. This implies that smaller
component interfaces will have better reusability [11].

Arguments per Procedure ()APP measure the mean size
of procedure declarations of an interface, and given as
equation (6):

Metrics for Adequateness Measurement: Adequateness
means that the program has sufficient ability to satisfy a
requirement or meet a need. Quality of being able to meet
a need satisfactorily is adequacy.

Robustness Metrics: A dynamic metric is robust if a
“small” change in program behavior results in a
correspondingly small change in the measured value. It is
difficult to precisely determine what a “small” change is; it
is also difficult to achieve robustness when quantifying
program behavior. As illustrated in [12], basic problems
encountered when trying to accurately and reasonably
measure dynamic properties of a program are discussed.

Complexity Measure: The complexity of a data set relative
to a theory is defined as the length of the shortest program
necessary to reconstruct it from that theory. The total
information required to represent the data ()DI , is the
amount of information necessary to specify the
theory ()TI , plus the information necessary to specify the

data given the theory ()TDI can be written as equation
(7).

This formulation encapsulates a trade off between a
complex, over-fitted, theory where ()TI is large and

()TDI small, and a simple, over-general, where ()TI

is small and ()TDI large. Aim is to compare different
theories on the same data [13].

Naturalness and Friendliness Metrics: The assumption of
naturalness means that unless a more detailed explanation
exists, all conceivable terms in the effective action that
preserve the required symmetries should appear in this
effective action with natural coefficients. The friendliness
feature makes the software program easy to understand or
easy for use. Semantic complexity can be defined using a
new concept of meaning automata [14].

Metrics for Content Measurement: Content refers to
the subject matter of a written work. Content can be
measured by measuring consistency, correctness, validity

np
naAPP =

()6

() () ()TDITIDI +=
 ()7

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

142

as well as the completeness of a program. All these facets
are measured by the following metrics [15].

Consistency Metrics: The relative number of ‘contradict
relationships’ out of all relationships can indicate the
degree of inconsistency as defined in equation (8). RCC is
the set of relationships that connect concepts in RS.

()(){ }
RCC

xcontradictnegationRCCxx
yConsistenc

∧∈
=

 ()8

Completeness Metrics: Missing requirements cause
additional cost. All in ontology should be mentioned in RS
ideally. Completeness can be given as equation (9) where
Con is the concept and Rel is the relations.

(){ }
lCon

yFxqItemyexistslConxx
ssCompletene

Re
.Re:Re int

∪

∈∧∪∈
= ()9

Correctness Metrics: Domain ontology is a guideline to
decide requirement’s naturally required, so all statements
in RS should correspond to elements in the ontology in
domain. Correctness can be defined as given in equation
(10).

(){ }
qItem

xFqItemxx
scorrectnes

Re
Re int Φ≠∧∈

=

 ()10

Validity Metrics: When a requirement statement is
mapped onto several elements that are not semantically
related, the statement is regarded as an ambiguous one.
Validity can be defined as given in equation (11).

(){ }
qItem

CloxFqItemxx
validity

Re
Re int ⊆∧∈

=

 ()11

Where ‘Clo’ is the transitive closure of relationships
except contradict and antonym.

Metrics for Coupling and Cohesion Measurement: In
an empirical study [16], it is shown that metrics values
indicating lower modularity were in fact associated with
lower productivity, greater rework effort and greater
design effort in the context of object-oriented systems.

Metrics for Frames and Rules: These metrics are
quantitative models of the fundamental concepts coupling
and cohesion, which represent important aspects of the
modularity of software systems [17]. In this sense, we
show the theoretical soundness of our coupling and
cohesion metrics. Doing so, we also show how to assess
the theoretical soundness of newly proposed metrics.
Coupling and cohesion can be explained in terms of
elements (like modules, classes or frames) that are linked

in some way [18, 19]. The metric ()fFDC p (Degree of
Coupling of Frame) is defined as the number of edges
from the vertices corresponding to the slots of the frame to
the vertices corresponding to the slots of other frames.
Then the metric for cohesion, ChF (Cohesion of Frame)
is defined as the number of actual edges divided by the
number of possible edges in fG as shown in [20] and
given by the equation (12):

() () () .111
12 2

≤>
−

=
⎪⎩

⎪
⎨
⎧

= sifandsif
ss

EE
fChF f

s

f

()12

Metrics for Size Measurement: Size can be defined as
character, value, or status with reference to relative
importance or the capacity to meet given requirements or
the actual state of affairs.

Metrics for Estimating Size: A model to size Prolog
programs is developed using the concepts of an “operator”
and an “operand” from software science. By separating the
operator counts into counts of Prolog predicates and non-
predicate operators, and the operand count into counts of
instantiated and uninstantiated variables [21], it is possible
to deduce a model which is as accurate as any model
produced for sizing programs. By banding the model’s
parameters, it is also shown that the complexity of the
model can be reduced whilst retaining its high level of
accuracy. Dividing system size by PM effort gives a
measure of productivity and a useful indicator of the
feasibility of developing a system and reliability of this
type of system means these metrics lack in measuring all
the basic mechanisms of AI systems paradigm and
moreover there is no correlation revealed between the
basic mechanisms and the quality attributes. One
impediment to the growing use of AI-based software is the
lack of metrics suite for determining various
characteristics as well as effective methods for ensuring
the quality and reliability of this type of system. In
particular, the nature of AI applications often confounds
conventional software requirements specification
techniques, while the characteristic architectures of AI-
based systems confound conventional verification and
testing techniques. This has lead to a great deal of interest
in studying the metrics suite for AI-based systems and
then with further refinement of metrics takes place in
order to extract its design factors from the design of AI-
based software. From the refinement of metrics suite, the
main work is how to evaluate the quality of the AI
programs which are already considered as complex
programs and it turns to be more difficult when there were
no criteria on the basis of which one can evaluate quality
of these systems. It is clear from the survey of the past

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

143

literature that till now there was no strategy based on
metrics which can evaluate the quality in an either way. It
is also written that as AI programs have large complexity,
they are usually degraded programs in relation to quality.
So it’s very difficult to measure quality traits of such AI
programs. The work tends to evaluate the quality of
software by means of metrics which are suited to quantify
design characteristics in the different stages of software
development. Results of empirical validation studies are
reported to show the analytical and predictive power of
metrics [22].

After reviewing the different metrics under design
descriptor category, it is clear that metrics can be used to
evaluate the quality of AI based programs (prolog
programs) in both ways:

• Qualitatively
• Quantitatively

Qualitative research is one of the two major approaches to
research methodology in social sciences. Qualitative
research involves an in depth understanding of human
behavior and the reasons that govern human behavior.
Unlike quantitative research, qualitative research relies on
reasons behind various aspects of behavior. Simply put, it
investigates the why and how of decision making, as
compared to what, where, and when of quantitative
research. Hence, the need is for smaller but focused
samples rather than large random samples, which
qualitative research categorizes data into patterns as the
primary basis for organizing and reporting results. We can
measure quality both using qualitative as well as
quantitative metrics. So firstly, the need is to extract the
design descriptors from the design of AI based systems. In
particular, the nature of AI applications often confounds
conventional software requirements specification
techniques, while the characteristic architectures of AI-
based systems confound conventional verification and
testing techniques. This has lead to a great deal of interest
in studying the metrics suite for AI-based systems and
then with further refinement of metrics takes place in
order to extract its quality factors from the design of AI-
based software. From the literature survey, we can
categorize these metrics as shown.

Qualitative Metrics: - These metrics make use of
characteristics in order to evaluate the quality traits of the
programs taken under consideration. These metrics
considers those facets of the programs which governs the
human behavior like the friendliness and naturalness of the
program. These metrics used to measure the extent of the
interaction between the program and the human behavior.

The qualitative metrics include the following metrics: -

• Coverage Metrics: - Data Flow Testing, Program
Fault Testing, Syntax Testing

• Granularity Metrics: - Checking Prolog Policies
• Extent Metrics: - Volume Based Metrics
• Correctness Metrics: - Using Complementary

Code to resolve External Dependencies
• Robustness Metrics
• Naturalness and Friendliness Metrics
• Effectiveness Metrics: - Complexity

Measurement
• Efficiency Metrics: - Dialogue Structure
• Metrics for Content Measurement: - Consistency

Metrics, Completeness Metrics, Correctness
Metrics, Validity Metrics

These all are the qualitative metrics based on the traits
which determine the human response towards the program
execution. These metrics can be used to evaluate the
quality of AI programs in terms of the human behavior
towards the program behavior and upon their interaction
with each other.

Quantitative Metrics: - Software systems and in particular
also Artificial Intelligence-based systems become
increasingly large and complex to understand. In response
to this challenge, software engineering has a long tradition
of advocating modularity. For measuring certain important
aspects of modularity, coupling and cohesion metrics have
been developed. For AI based systems, it presents the core
of the first metrics suite, its coupling and cohesion metrics.
These metrics measure modularity in terms of the relations
induced between facts through their common references in
rules. Study will show the soundness of these metrics
according to theory and report on their usefulness in
practice. As a consequence, we propose using our metrics
in order to improve Quality of AI- based systems
development, and developing other important metrics and
assessing their theoretical soundness along these lines. So
the quality of something depends on the criteria being
applied to it. Something might be good because it is useful,
because it is beautiful, or simply because it exists.

 Quantitative Metrics can be categorized as:

• Granularity Metrics: - Time Complexity Metrics
• Extent Metrics: - Graphic Token Based Metrics
• Correctness Metrics: - Measuring Function Points

from Specifications
• Scope Metrics: - Interface Size Metrics
• Metrics for Coupling and Cohesion

Measurement: - Metrics for Frames and Rules

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

144

• Metrics for Size Measurement: - Metrics for
estimating Size

These metrics are used to measure the quantifiable
descriptors which then are used to evaluate quality of the
programs taken under consideration. Depending on the
values of these metrics, quality can be evaluated. One
thing is that we cannot measure the exact value or
approximate value of the quality. But this implemented
strategy yet evaluates the quality based on the metrics
values only. There was no existing strategy in the past for
evaluating the quality based on Metrics Suite or any other
criteria

2.2 Rule Specification

It is clear from the survey reports that the AI programs are
generally of low quality. All the design facets cannot
agree with each other for the quality of the program to be
high. These rules are used to specify the value for each
metrics and for the combination of these metrics values
define the value for the quality measure. If there are values
for the metrics for which no rule is specified, then they are
considered to be laying near the boundary cases just above
and just below. The design descriptors that are determined
using the Metrics Suite Framework Engine are: -

• Number of operators and operands
• Program length (Halstead measurements)
• Degree of coupling and cohesion
• Granularity
• Lines of code (size)

Table 1: Rule Specification for AI systems

Granula

r-ity

Coupli

-ng

Cohesio

--n

LOC Halstead

Mmts

Qualit

y

Low High

/Low

Very

Low

Low Very Low Nil

Low High Low Medium Medium Very

Low

High High Low Medium Medium Low

High Low High Medium Medium High

High Low Very

High

Medium High Very

High

High Very

Low

Very

High

Medium High Excelle

-nt

2.3 Quality Model for AI Systems

To evaluate the software quality more quantitatively and
objectively, software metrics appears to be powerful and
effective technology to measure the software quality.
Currently metrics is the core technology of software
quality evaluation [23], which objectively assigns a value
to characterize certain specific quality attribute. There
exists difference between those quality attributes we really
care about (external attributes) and what can be directly
measured from the software (internal attributes).

This quality model comprises several works which focus
on the problem of what a KBS evaluation method should
measure in order to determine the quality. In order to
allow comparisons among different proposals, we have
grouped evaluation criteria into four broad classes:

Fig. 1 Performance and Quality Evaluation Model

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

145

Validity: concerning correctness, quality, accuracy, and
completeness of responses (solutions, decisions, advice);

Usability: concerning quality of human-computer
interaction, understandability, explanation facilities;

Reliability: including hardware and software reliability,
robustness, sensitivity;

Effectiveness: including cost-effectiveness, efficiency,
development time and cost, maintainability and
extensibility.

Defining and Measuring Performance and Quality (P &
Q): An appropriate definition of P&Q can be obtained
through decomposition, that is behavior and ontology can
be decomposed into independent components, using a
hierarchical classification method. Components thus
obtained can be decomposed into finer grained
components.

Behavior: Behavior of a KBS includes two main
components: Static behavior, which concerns the behavior
of a KBS over a time interval during which its ontology is
fixed; Dynamic behavior, which concerns the behavior of
a KBS over a time interval during which its ontology is
changed. So, Static behavior concerns how a KBS
responds to the inputs it receives during normal operation.
Dynamic behavior concerns how a KBS reacts to the
modifications performed to its structure and knowledge
base by the project or maintenance team during its
development life.

Ontology: Ontology of a KBS includes five main
components, Structure, which refers to the architecture,
knowledge representation structures, reasoning algorithms,
interfaces, and support systems which are designed to
implement a KBS. Content, which denotes the knowledge
actually represented and stored in the knowledge base of a
KBS. System software on which the KBS is implemented;
Hardware system on which the KBS is installed.

Relation between Behavior and Ontology: On the basis of
the taxonomy of components introduced previously, we
can now analyze in greater detail the relations existing
between ontology and behavior of a KBS. Ontology is in a
sense the necessary condition, or in other words, the
efficient cause of behavior. In fact, the ontology is
purposely designed in such a way that it can produce the
desired behavior, and thus meet the specifications. The
elementary components of P&Q may be partitioned into
two classes, namely: behavioral components (BC) and
ontological components (OC), defined as the leaves of the
P&Q taxonomy descending from behavior and ontology,
respectively. While we may assume that components in

each one of these two classes are independent from each
other, there is, of course, a causal dependence between
ontological.

3. Results and Discussion

The implementation of the system is done in Visual .NET
and the following objectives are achieved:

• Refinement of design metrics,

• Framework for generating design for the AI
based Systems,

• Determining quality factors and

• Measuring software systems quality.

In our active user interface, the framework engine works
as analyzer which is used to analyze the design facets of
the programs under consideration. It tends to evaluate the
effectiveness of this approach as previously there was no
such model or strategy which can be used to measure
quality on the basis of metrics suite. There were many
problems in measuring the quality as these AI programs
are very complex in nature and their complexity increases
as the size of the program increases. It is also clear from
the survey reports that these AI programs are generally of
low quality. There were no prolog programs that are of
high quality because if for quality to be high, all the design
descriptors should be high and that is not possible in a
single prolog program. All the design facets cannot agree
with each other for the quality of the program to be high.

Samples of the outputs generated upon application of
metrics to the prolog code are shown as below.

Fig. 2 Snapshot of Analysis of Prolog Code 1

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

146

Fig. 3 Quality Evaluation of Prolog Code 1

Fig. 4 Snapshot of Analysis of Prolog Code 2

Fig. 5 Quality Evaluation of Prolog Code 2

Study will show the soundness of these metrics according
to theory and report on their usefulness in practice. As a
consequence, we propose using our metrics in order to
improve quality of AI- based systems development, and
developing other important metrics and assessing their
theoretical soundness along these lines. The above shown
are the screenshots of analyzing the prolog programs and
evaluating the quality of prolog code depending on the

values of design descriptors. Following table shows the
results of analyzing different prolog codes and their
quality evaluation in a tabular form.

Table 2. Results of analyzing the prolog programs using the metrics suite

Design
Descriptors

(Metrics)

Prolog
pgm 1

Prolog
pgm 2

Prolog
pgm 3

Prolog pgm
4

Number of
operators

9 5 32 40

Number of
operands

11 6 41 42

Degree of
Cohesion

4 3 20 12

Degree of
Coupling

2 1 0 4

Lines of Code 3 8 12 12

Program
Length

3 3 5 6

Granularity 14 6 58 66

Quality Nil Nil High Low

The question is how much autonomous we need in doing
the job and how we can validate the new knowledge
before committing it to the existing knowledge without
causing any conflicting. Most of the approaches, although
proposing interesting new ideas and methods, lack a sound
foundation and are affected by several practical limitations.
In particular: all knowledge-base oriented approaches are
partial: in fact, knowledge-base checking is only one
aspect, though very important, of AI evaluation;
approaches based on evaluation criteria are weak for at
least two reasons: i) the lists of evaluation criteria
proposed lack precise definitions, and therefore, are often
vague and poorly organized, ii) the problem of how
evaluation criteria should be actually applied to real AI's is
not dealt with adequately; approaches based on evaluation
methods, although very interesting for the practical issues
they face, are mostly based only on empiric principles and
lack generality, being often oriented towards very specific
application domains.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

147

4. Conclusion and Future Scope

In this work entitled as “Evaluating Quality of AI- Based
Systems”, I have presented a simple approach to evaluate
the quality of AI based systems (prolog programs) using
the metrics suite framework. I have started by
recapitulating the experiences with language dependent
software metrics and have then abstracted from that
context to come up with a general way to create metrics
suite independently. I have reported on some experiences
regarding the implementation of a metrics suite for
analyzing the prolog programs. The benefits of this
approach are the increased extensibility, i.e., one can
introduce new metrics from arbitrary contexts which
provide us with a standard metrics suite without having to
implement new metrics each time such a new context is
introduced. The objective of this approach are that
currently software metrics suite designed can be used to
evaluate the quality of the prolog programs and it is up to
the best level in the area of artificial intelligence as there
exists no such implementation or strategy that makes use
of metrics in order to measure the quality of AI systems.
Certain metrics tend to be very specialized and are thus
difficult to define in a generic way. Another problem is
that for some metrics, there is still no consensus about
what is the best way to define them. For these reasons we
did not consider efficiency metrics, content measurement
metrics and effectiveness metrics. Furthermore, as, due to
this research in reengineering, we come from a more
pragmatic side, it is not solely the definition of the metrics
which interest us. Indeed, it is the creation of concrete
metrics, which we can then use as a quality measure, this
interests us. In this context other problems arise, whose
solutions lie mainly at the implementation level: what are
the exact definitions of those metrics, how many can we
generate and when does it make sense to stop generating
metrics? Are the generated metrics actually usable and
which ones do make sense in the given contexts? We plan
to answer some of these questions in our future work. The
critical literature survey reported in the previous sections
allows us to identify a basic set of requirements for an
ideal KBS evaluation approach. This includes: a precise
definition of AI evaluation and related concepts and
terminology; a sound foundation of the concept of AI
evaluation, where it is clearly stated i) what characteristics
of an AI are to be evaluated, and ii) what to evaluate them
against; a general methodology, defined according to the
concept of AI evaluation adopted, specifying what to
measure and how; an effective procedure to apply the
general methodology to real cases. In future, research
work can be extended with determining quality factors or
attributes, deciding and refining of metrics suite for AI
systems in different contexts and framework for

evaluating quality factors in detail for the AI based
systems.

In simple words, we can explain the software quality
attributes as follows:-

• Functionality: Does the software satisfy stated
needs?

• Reliability: How often does the software fail?
• Usability: How easy is the software to use?
• Efficiency: How good is the performance of the

software?
• Maintainability: How easy is the software to

repair?
• Portability: How easy is the software to

transport?

References

[1] Howden, W.E. (1985) “The Theory and Practice of

Foundation Testing”, IEEE Transactions on Software
Engineering, vol. 2, no. 5, Page(s):6 – 17.

[2] Huang, C.Y. and Lin C.T. (2006) “Software Reliability
Analysis by Considering Fault Dependency and Debugging
Time Lag”, IEEE Transactions on Reliability, vol. 55, no. 3,
Page(s):436 – 450.

[3] Gutjahr, W.J. (1999) “Partition Testing vs. Random Testing:
The Influence of Uncertainty”, IEEE transactions on
Software Engineering, vol. 25, no. 5, Page(s):661 – 674.

[4] Henry, S. and Kafura, D. (1981) “Software Structure Metrics
based on Information Flow”, IEEE Transactions on Software
Engineering, vol. 7, no. 5, Page(s):510–518.

[5] Ranganathan, A. (2000) “A Task Framework for Autonomic
Ubiquitous Computing”, IIT Madras.

[6] Nickerson, J.V. (1994) “Visual Programming: Limits of
Graphic Representation”, IEEE Symposium on Visual
Languages, IEEE Computer Society Press: Los Alamitos, CA,
St. Louis, Missouri, Page(s):178-179.

[7] Halstead, M. (1977) “Elements of Software Science,
Operating, and Programming Systems”, Elsevier, volume 7.

[8] Albrecht, A. and Gaffney, J. (1983) “Software Function,
Source Lines of Code and Development Effort Prediction: A
Software Science Validation”, IEEE Transactions on
Software Engineering, vol. 9, no. 6, Page(s): 639-648.

[9] Fuggetta, C., Ghezzi, D., Mandrioli M. and Morzenti, A.
(1988) "VLP: A Visual Language for Prototyping", IEEE
Workshop on Languages for Automation, College Park, MD,
August 1988.

[10] M. Stefik, “Introduction to Knowledge Systems”,
Morgan Kaufmann Publications, San Francisco, CA,
(USA), 1995.

[11] Boxall, A.S. and Araban, S. (1998) “Interface Metrics
for Reusability Analysis of Components”.

[12] Dufour, B., Hendren, L. and Verbrugge C. (2003)
“Problems in Objectively Quantifying Benchmarks using
Dynamic Metrics”, Sable Technical Report Number: 2003-
2006, School of Computer Science, Sable Research Group,
McGill University.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

148

[13] Cleary, J.G., Legg, S. and Witten, I.H. (1993) “AN MDL

Estimate of Significance of Rules”.
[14] Zadrozny, W. (1995) “Measuring Semantic Complexity”,

IBM Research.
[15] Kaiya, H. and Saeki, M. (2000) “Ontology Based

Requirement Analysis: Lightweight Semantic Processing
Approach”, Japan.

[16] Chidamber, S., Darcy, D. and Kemerer, C. (1998)
“Managerial Use of Metrics for Object-Oriented Software: An
Exploratory Analysis”, IEEE Transactions on Software
Engineering, vol. 24, no. 8, Page(s): 629-639.

[17] Briand, L.C., Morasca, S. and Basili V.R. (1997) “Response
to: Comments on “Property-based Software Engineering
Measurement”: Refining the Additivity Properties”, IEEE
Transactions on Software Engineering, vol. 23, no. 3, Page(s):
196-197.

[18] Briand, L.C. and Wust, J.K. (2001) “The Impact of Design
Properties on Development Cost in Object-Oriented Systems”,

 In Proceedings of IEEE Metrics’2001, IEEE Computer Society
Press, Los Alamitos, Calif.

 [19] Briand, L.C., Wust, J.K., Daly, J.W. and Porter, V. (2000)
“Exploring the Relationships between Design Measures and
Software Quality in Object-Oriented Systems”, J. System
Software, vol. 51, Page(s): 245-273.

[20] Kramer, S. (Technische Univ.) and Kaindal, H. (Vienna
Univ. of Technology) (2004) “Coupling and Cohesion Metrics
for Knowledge-Based Systems Using Frames and Rules”.

[21] Myers, M. and Kaposi, A. (1991) “Modeling and
Measurement of Prolog Data”, Software Engineering Journal,
vol. 6, no. 6, Page(s): 413-434.

[22] Moores, T.T. (2001) “A Model to Size the Development of
Prolog Programs”, Department of Information Systems, City
University of Hong Kong.

[23] Guida, G. and Mauri, G. (1993) “Evaluating Performance
and Quality of Knowledge-Based Systems: Foundation and
Methodology”, IEEE Transactions on Knowledge and Data
Engineering, vol.5, no. 2, Page(s): 234-274.

