
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

This work was supported in part by MIC & IITA( N07008 , Invstigation of high-performance File Transfer System through 
intelligence TCP tunning)  

 

149

The Algorithm of Sharing Incomplete Data in Decentralized P2P 

Jin-Wook Seo† ,  Dong-Kyun Kim†† , Hyun-Chul Kim†††, and Jin-Wook Chung† 
†Dept.of Electrical and Computer Engineering, Sunkyunkwan University, South Korea 

  
††Korea Institute of Science and Technology Information, South Korea 

  
†††Dept.of Computer Science, Namseoul University, South Korea 

  
 

Summary 
This paper takes sharing way of incomplete data in order 
to improve performance in decentralized P2P network. In 
order to get file in decentralized P2P network in present 
respond peer that only have complete data. This is to 
prevent several problems that occur in case use incomplete 
data. This paper explains about some algorithms and 
modules to solved this problem. Through this, wish to 
improve decentralized P2P's performance. 
Key words: 
Decentralized P2P , sharing incomplete data, improve 
performance,  

1. Introduction 

The Internet, a cooperative network formed by 
millions of hosts spread around the world, is a shared 
resource. Applications these days, more so than ever, 
concentrate on ‘how to use the network, consume the 
bandwidth more efficiently, and send packets faster and 
safer to more distant locations [1] 

Such perspective has become to prefer the P2P model, 
a horizontal network model in the traditional and 
perpendicularly hierarchical client/server model.  

The P2P technology differs from the existing notion 
of client/server in that PCs are connected among 
themselves to share resources and thereby making each 
participant a client and a server at the same time. In P2P 
overlay network, peers are able to directly share and 
exchange information without the help of a server. This 
results in a prompt and secure sharing of network 
resources and data handling. 

When request file that user wants to get files, do to 
transmit complete data by response in decentralized P2P 
Network as Gnutella. 

if Peer which have incomplete data sends requested 
data, user can not know is come on what part of complete 
data. so it occur problems. 

and can malicious attack that receives fake files. 

 This paper takes sharing way of incomplete data in 
order to improve performance in decentralized P2P 
network. 

2. Related Work 

This chapter takes P2P protocols using incomplete 
data for file sharing in centralized P2P network. 

2.1 E-donkey(ED2K) 

The eDonkey network (also known as eDonkey2000 
network or eD2k) is a decentralized, server-based, peer-to-
peer file sharing network used primarily to exchange audio 
files, video files and computer software. Like most file 
sharing networks, it is decentralized; files are not stored on 
a central server but are exchanged directly between users 
based on the peer-to-peer principle. [2] 

 The original eD2k protocol has been extended by 
subsequent releases of both eserver and eMule programs, 
generally working together to decide what new features 
the eD2k protocol should support. However, the eD2k 
protocol is not formally documented (specially, in its 
current extended state), and it can be said that in practice 
the eD2k protocol is what eMule and eserver do together 
when running. As eMule is open-source, its code is open 
for peer-review of the workings of the protocol (at the 
program source code level). Examples of eD2k protocol 
extensions are "peer exchange", "protocol obfuscation" 
and support for files bigger than 4 Gbytes, among others. 
The other eD2k client programs, given time, generally 
follow suit adopting those protocol extensions. [3] 

 ED2K (E-donkey) protocol uses data for share 
basically that cuts 972Kb to one piece of data chunk. Do 
so that can receive at the same time from several peers 
without receiving data through this from only one peer. 

Even if data is incomplete, it is doing thing so that 
can share this if have data chunks of complete piece. 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

150 

Hash algorithm that use in ED2K's case to use hash 
algorithm to confirm whether incomplete datum or each 
data chunk piece is no mistake is MD4. 

 Files on the eDonkey network are uniquely identified 
using MD4 root hash of a MD4 hash list of the file. This 
treats files with identical content but different names as the 
same, and files with different contents but same name as 
different.  

Files are divided in full chunks of 9,728,000 bytes 
(9500 x 1024 bytes) plus a remainder chunk, and a 
separate 128-bit MD4 checksum is computed for each. 
That way, a transmission error is detected and corrupts 
only a chunk instead of the whole file. Furthermore, valid 
downloaded chunks are available for sharing before the 
rest of the file is downloaded, speeding up the distribution 
of large files throughout the network. [3] 

A file's identification checksum is computed by 
concatenating the chunks' MD4 checksums in order and 
hashing the result. In cryptographic terms, the list of MD4 
checksums is a hash list, and the file identification 
checksum is the root hash, also called top hash or master 
hash. 

It is possible for two different chunks or files to have 
the same checksum and thus appear the same (see 
Birthday attack), but the chance of that happening is so 
small that for all practical purposes it never happens, and 
checksums are considered unique identifiers. [3] 

2.2 BitTorrent 

If a displayed equation needs a number, place it flush 
with BitTorrent is a peer-to-peer file sharing (P2P) 
communications protocol. BitTorrent is a method of 
distributing large amounts of data widely without the 
original distributor incurring the entire costs of hardware, 
hosting and bandwidth resources. Instead, when data is 
distributed using the BitTorrent protocol, recipients each 
supply data to newer recipients, reducing the cost and 
burden on any given individual source, providing 
redundancy against system problems, and reducing 
dependence upon the original distributor. 

A BitTorrent client is any program which implements 
the BitTorrent protocol. Each client is capable of 
preparing, requesting, and transmitting any type of 
computer file over a network, using the protocol. A peer is 
any computer running an instance of a client. [4] 

To share a file or group of files, a peer first creates a 
"torrent." This is a small file which contains metadata 
about the files to be shared, and about the tracker, the 
computer that coordinates the file distribution. Peers that 
want to download the file first obtain a torrent file for it, 
and connect to the specified tracker which tells them from 
which other peers to download the pieces of the file. 

Though both ultimately transfer files over a network, 
a BitTorrent download differs from a classic full-file 
HTTP request in several fundamental ways: 

 
 BitTorrent makes many small P2P requests 

over different TCP sockets, while web-
browsers typically make a single HTTP 
GET request over a single TCP socket.  
 

 BitTorrent downloads in a random or 
"rarest-first" approach that ensures high 
availability, while HTTP downloads in a 
contiguous manner.  

 
Taken together, BitTorrent achieves much lower cost, 

much higher redundancy, and much greater resistance to 
abuse or "flash crowds" than a regular HTTP server. 
However, this protection comes at a cost: downloads take 
time to ramp up to full speed because these many peer 
connections take time to establish, and it takes time for a 
node to get sufficient data to become an effective uploader. 
As such, a typical BitTorrent download will gradually 
ramp up to very high speeds, and then slowly ramp back 
down toward the end of the download. This contrasts with 
an HTTP server that, while more vulnerable to overload 
and abuse, ramps up to full speed very quickly and 
maintains this speed throughout 

The peer distributing a data file treats it as a number 
of identically-sized pieces, typically between 64 kB and 1 
MB each. A piece size of greater than 512 kB will reduce 
the size of a torrent file for a very large payload, but is 
claimed to reduce the efficiency of the protocol [5]. The 
peer creates a checksum for each piece, using a hashing 
algorithm, and records it in the torrent file. When another 
peer later receives that piece, its checksum is compared to 
the recorded checksum to test that it is error-free.[6] Peers 
that provide a complete file are called seeders, and the 
peer providing the initial copy is called the initial seeder. 

The exact information contained in the torrent file 
depends on the version of the BitTorrent protocol. By 
convention, the name of a torrent file has the 
suffix .torrent. Torrent files contain an "announce" section, 
which specifies the URL of the tracker, and an "info" 
section which contains (suggested) names for the files, 
their lengths, the piece length used, and a SHA-1 hash 
code for each piece, which clients should use to verify the 
integrity of the data they receive. 

Users browse the web to find a torrent of interest, 
download it, and open it with a BitTorrent client. The 
client connects to the tracker(s) specified in the torrent file, 
from which it receives a list of peers currently transferring 
pieces of the file(s) specified in the torrent. The client 
connects to those peers to obtain the various pieces. Such 
a group of peers connected to each other to share a torrent 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

151

is called a swarm. If the swarm contains only the initial 
seeder, the client connects directly to it and begins to 
request pieces. As peers enter the swarm, they begin to 
trade pieces with one another, instead of downloading 
directly from the seeder. 

Clients incorporate mechanisms to optimize their 
download and upload rates; for example they download 
pieces in a random order, to increase the opportunity to 
exchange data, which is only possible if two peers have 
different pieces of the file. 

The effectiveness of this data exchange depends 
largely on the policies that clients use to determine to 
whom to send data. Clients may prefer to send data to 
peers that send data back to them (a tit for tat scheme), 
which encourages fair trading. But strict policies often 
result in suboptimal situations, where newly joined peers 
are unable to receive any data (because they don't have 
any pieces yet to trade themselves) and two peers with a 
good connection between them do not exchange data 
simply because neither of them wants to take the initiative. 
To counter these effects, the official BitTorrent client 
program uses a mechanism called “optimistic unchoking,” 
where the client reserves a portion of its available 
bandwidth for sending pieces to random peers (not 
necessarily known-good partners, so called preferred 
peers), in hopes of discovering even better partners and to 
ensure that newcomers get a chance to join the swarm.[7] 

3. Algorithm for sharing partial data 

This chapter wish to present way to share incomplete 
data in decentrilized P2P protocol.    

Present pseudo code algorithm in reply with module 
explanation about peer that share file and peer that request 
file. 

3.1 Upload Peer 

Next picture is explaining about modlue that peer that 
share and uploads file must have. 

Peer that do upload can compose by three modules. 
 

<Fig 1. Module in Upload Peer> 

File Registration Module is module that register file 
that user has by oneself to share file. A next table presents 
algorithm about this module. 

<Table 1. File Registration Module Algorithm> 

 
  

Store hash value of file that user registers using hash 
algorithm first if register file that want to share by oneself. 

And do to divide file as much as data chunk's size 
that use in P2P protocol. 

Save hash value about each data chunk, and each 
chunk's hash value and hash value for file using P2P 
protocol each peer inform make. 

Do to prevent that fake file or fake data chunk occurs 
about file that user through this registers. 

 
When Response Module receives search message 

from other peer, is module that respond in reply. 
A next table presents algorithm about this module. 

<Table 2. Response Module Algorithm> 

 
 

message ← request message ( include file 
information ) 
sharelist ← sharing file list in upload peer 
 
Response ( message ) 
1 Temp = Find ( message ) 
2 If temp != NULL & temp == complete file 
3   Send ( Response Message ) 
4 Else If temp != NULL & temp != complete file 
5   Send ( sharing file information ) 
6 Else  
7 S d ( E )
Find ( message ) 
1   temp = hash value into message  
2   For t ← 1 to t == length[sharelist] 
3      IF Hash ( sharelist[t] ) == temp 
4         return ( sharelist[t] ) 
5      End if 
6   End for 

A ← sharing data (complete data) 
PartSize ← split data size 
Part ← partial data from A 
 
File Registration ( A ) 
1 Hash ( A ) 
2 IF length ( A ) > PartSize 
3    Split ( A , PartSize, part )  
4    For t ← 1 to t == length[part] 
5     Hash ( part ) 
6    End for 
7 End if 
8 Send ( each information) 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

152 

Search since peer that receive search message is 
relevant file among file that share by oneself through hash 
value for file and file name in message. 

If is not, do to send error message that inform that 
there is no relevant file. 

If is, after examine whether relevant file is complete 
data file, send information message that inform that data 
chunk of file that if is not perfect data file own has is 
response message that inform that is part that peer has 
complete data chunk. 

 
Uploading Module acts role that transmit relevant 

part if responded other peer requests file. 
Because there is information of file to is response 

mallet, Uploading Module only file to receive download 
Peer role that send data chunk part that require do. 

3.2 Downloading Peer 

 Next picture is explaining about modlue that peer 
that share and downloads file must have.  

Peer that do download can compose by two modules. 
 

 

<Fig 2. Module in Download Peer> 

Request Module informs and acts role that find peer 
that have this to peers that connect with own about file 
that user requires. 

Send request message that fill information of hash 
value and so on in reply with file name that user wants to 
each peers. 

 
Downloading Module acts role that request data 

chunk of file to peer that have file that require through 
search and receive download. 

A next table presents algorithm about this module. 
 
 
 
 
 
 
 
 
 
 

<Table 3. Downloading Module Algorithm> 

 
 

This module that receive message confirms whether 
peer that have relevant file has one part of data or have 
whole. 

If  have whole, own requests necessary data chunk 
part and this to do download present. 

In case have one part that is not whole, confirm 
whether one part of file that other person peer through 
information of response message has is necessary part by 
oneself. 

If is part that own has, without doing download 
request, do download request if have part that own is 
necessary. 

Whether each data chunk's hash value is correct, 
unite data chunk to single file after is rapidly, and confirm 
whether also hash value of file is correct and do lest 
problem should happen. 

4. Conclusion 

The Internet started off as a perfectly symmetrical 
network, or a P2P network of users who cooperate with 
each other. As the Internet became vaster, accommodating 
an enormous number of users who swarmed to the online 
world, it created issues such as the bottleneck problem 
between the local network and the backbone caused by the 
network overloading between a relatively smaller number 
of servers and many clients.  

Such phenomenon resulted in the emergence of the 
P2P network, thereby resolving the network difficulties. 

This paper takes sharing way of incomplete data in 
order to improve performance in decentralized P2P 
network. Such attempt could bring about a P2P network 
with an improved performance. 
 
 
 
 

message ← response message  
 
Downloading ( message ) 
1 If file information in message == complete 
2   Send ( necessary part ) & download 
3 Else 
4   boolean t = Find ( necessary part , message) 
5   IF t == true 
6     Send ( necessary part ) & download 
7   End if 
8 End if 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 

 

153

References 
[1] Nelson Minar & Marc Hedlund, “Peer to Peer”, oreilly, 

1999. 
[2] http://www.emule-project.net/home/perl/general.cgi?l=1 
[3] Yoram Kulbak & Danny Bickson, “The eMule Protocol 

Specification” , 2005 
[4] http://bittorrent.org/introduction.html  
[5] http://www.bittorrent.org/protocol.html 
[6] Dongyu Qui & R. Srikant , “Modeling and Performance 

Analysis of BitTorrent-Like Peer-to-Peer Networks”, 
sigcomm 2004 

[7] http://wiki.theory.org/BitTorrentSpecification 
[8] Ripeanu, M. "Peer-to-peer architecture case study: 

Gnutella network", Peer-to-Peer Computing, 2001. 
Proceedings. First International Conference on 27-29 Aug. 
2001 Page(s):99 – 100 

[9] M.Bawa, B.F.Cooper, A.Crespo, N.Daswani, "Peer-to-Peer 
Research at Stanford" 

[10] 10. Clip. "The Gnutella Protocol Specification v0.41 
Document Revision 1.2"  

 

 


