
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

181

Manuscript received August 5, 2007

Manuscript revised August 20, 2007

Assessment System For UML Class Diagram
Using Notations Extraction

Noraida Haji Ali1, Zarina Shukur2 and Sufian Idris2

1Computer Science Dept. , Faculty of Science and Technology, Universiti Malaysia Terengganu, MALAYSIA.
2Computer Science Dept., Faculty of Information Science and Technology, Universiti Kebangsaan Malaysi, MALAYSIA

Summary

The extraction is the process of removing or obtaining something
from something else; whether with force or difficulty, or
chemically. It is a one of separation technique used in most science
researches. In our research focusing, extraction process is the
process of converting captured notation information into data. Our
proposed approach for notation extraction will play an important
role in assessment process later. Notations differ in their extraction
depending on their keyword and text structure in Rational Rose
petal files. An ideal notation extraction process can digest target
Rational Rose file that are visible only as petal file pages, and
create a local replica of those tables as a result. Proper notation
extraction also requires solid data validation and error recovery to
handle data extraction failures. Extraction process should be as
accurate and reliable as possible because its results will be used as
a base to develop an Assessment system for UML Class Diagram.
This paper discusses the extraction process from Rational Rose
petal file that represents the structure for each notation of UML
class diagram as a text form. The UML class diagram of notations
have involved are class object notation, inheritance notation and
relationship notation such as Association, Association class,
generalization, aggregation and composition. Each notation which
is extracted will keep as a data in a few tables. All these tables will
be accessed in assessment process later to implement the UML
Class Diagram Assessment System that proposed in our main
research.

Keywords :
Object-oriented Modeling, UML Class Diagram, Rational Rose
and Petal File.

1. Introduction

Model is crucial in engineering discipline and it was used by
the engineers to describe the shapes or actions of any
construction that they want to build or develop. Normally,
graphic symbols, relation and explanation in texts will be
used to visualize the model. Some of the benefits of this
model are it can clarify on requirements, functions, designs
and performance of a construction or system. This model is
used to get the prediction of cost or budget and time
requirement to finish a system. However, the model cannot
describe the accurate solution for the system, instead it has

to be constantly reorganized and customized according to
the changes in system requirements and specifications. The
main objective in software engineering discipline is to
determine a method that can support system complexity and
reduce the error in software development processes. Thus,
studies on complex concepts, languages, techniques or tools
to fulfill this requirement have started long ago. Until now,
the attention has been given to the acceptance of this
approach in software engineering that can be used and
applied in model process for system development [1].

Rational Rose tool has been widely used to produce a
model of system design, which is based on UML model.
Rational Rose is a set of operation tool that applies UML to
cover semantic domain and strong architecture/design. The
goal of UML, as stated by designers is to model system
using object-oriented concepts. Models are used to describe
something and to communicate the results with the use of a
method. A model is expressed in a modeling language. A
modeling language consists of notations – the symbols used
in the models – and a set of rules directing how to use it.
The rules are syntactic, semantic and pragmatic. UML
notations can be identified graphically via diagrams such as
class diagram, activity diagram and sequence diagram [2].
These diagrams can be drawn by Rational Rose tool easier
and produce a petal file. Our research focuses more on UML
class diagram. The class diagram includes all information
about the system structure such as class object and relations
between those classes. This paper discusses the extraction
process from this petal file that review in detail the format
of structure as a text form for each notation of UML class
diagram. We also discuss how the system handles automatic
assessment and the way data is stored. Extraction process is
a process to extract a small item from the original item. This
paper will discuss in detail the flow of the extraction process.
List of notations involved in this process are class object
notation, inheritance notation, relationship notation such as
Association, Association class, generalization, aggregation
and composition. Extracted notation will be kept as data in
appropriate tables. These tables will be used to implement
the assessment process in UML Class Diagram Assessment
System that was proposed in our main research.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

182

2. Rational Rose Petal File

Rational Rose (RR) is solution software for visual modeling
is used to construct, analyze, design, view, modify and
manipulate one component. It can visualize the system
behavior on the whole graphically through diagrams that are
provided in this tool. RR is one of the most popular
software used in designing software through UML (Unified
Modeling Language) approach. Rational Rose tool has been
widely used to analyze problem domain and to represent the
system requirement graphically via appropriate diagram. [2].
UML class diagram describes the structure of the classes
that form the system’s architecture. It is used to show the
existence of classes and their relationships in the logical
view of a system. This class diagram will be saved in a text
form as .mdl file and known as petal file. This text structure
represents the UML class diagram notations. This file can
be accessed or opened by Rational Rose tool where the class
diagram will be displayed graphically. Besides that, this file
can also save the model in text form which can be read via
notepad or WordPad. Structure of RR petal file that
produced by Rational Rose (ended with .mdl atau .ptl),
looks like LISP data structure which contains a few nested
levels and ended with bracket, where it is shaped in tree
node. This whole file is divided into two parts as being
suggested by M.Dahm [3]. It is visualized in figure 1.
Structure in this RR petal file is given attention because
notation extraction process for object orientation model
from UML class diagram will be conducted based on this
input file.

3. Notation Extraction Process

Notation extraction process for a UML Class Diagram is
involved two inputs from user. There are the input .mdl file
from student as a solution for the coursework given and the
input .mdl file from instructors as a solution model for that
coursework. These files will be traced line by line to be
match each notation keyword defined. Output is generated
from this process will keep notation details in different
tables.

Figure 2 show the process flow for extraction process
of notation of the UML class diagram.

Class diagram is used to describe the structure of the
classes that form the system’s architecture. It is used to
show the existence of classes and their relationships in the
logical view of a system. Figure 3 shows an example of a

class diagram graphically for transaction process of a
Banking System which was drawn using Rational Rose.

Transaction
date : Date
time : Time

Customer
name : String
address : String

Account
acNo : Int
balance : Int = 0

withdraw()
deposit()

**

customer

*

account

*

checkaccount

bank

Check

CheckingAccount
credit_limit : Int

CheckBook

20..501

check

20..501

0..1

1..20

Fig 2: Process flow for notations extraction

Fig 3: Example of UML Class Diagram for a Banking System

Fig1: Petal file of UML diagram

 student
Input RR petal file Instructor

Extraction
Process

Data
Tables

Assessment
Process

 (object Petal
 version 45
 _written "Rose 7.6.0109.2314"
 charSet 0)

[seksyen pertama : <petal>]

(object Design "Logical View"
 is_unit TRUE
 is_loaded TRUE
 :
 :
 root_usecase_package (object Class_Category "Use Case View"
 quid "4385E4570257"
 exportControl "Public"
 global TRUE
 logical_models (list unit_reference_list)
 logical_presentations (list unit_reference_list
 :
 :
 root_category (object Class_Category "Logical View"
 quid "4385E4570256"
 exportControl "Public"
 global TRUE
 subsystem "Component View"
 quidu "4385E4570258"
 logical_models (list unit_reference_list
 (object Class "Account"
 :
 :
 root_subsystem (object SubSystem "C omponent View"
 quid "4385E4570258"
 :
 :
 process_structure (object Processes
 quid "4385E4570259"
 ProcsNDevs (list
 :
 :
 properties (object Properties
 attributes (list Attribute_Set
 (object Attribute
 tool "Cplusplus"
 :
 :
 :
 [seksyen kedua : <design>]

First section :

Second section : <design>

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

183

3.1 Class object notation

In UML class diagram, classes and objects are represented
as boxes with three compartments: the first compartment
portrays the name of the class, the second depicts its
attributes, the third its operations. Classes are abstractions
that specify the common structure and behavior of a set of
objects. Objects are instances of classes that are created,
modified and destroyed during the execution of the system.
An object has state that includes the values of its attribute
and its links with other objects [4]. In class object notation,
it is divided into three parts, and they are class name,
attribute and operation. The class object, ‘Account’, below is
one of an example of class object in the banking system and
is shown in figure 4.

The number of class object and its item depend on system
requirement. The above class object notation is represented
as text form in petal file Rational Rose is shown in figure 5.

The name of the class should be derived from the problem
domain. It should be a noun; for instance, Account,
Customer, Check and so on. Extraction for the name of each
notation could be recognized by its keyword, ‘object class’,
as shown in the above figure. Result from this extraction
process will generate data table named ‘SClass’. This table
will keep all the names of object class notation that involved
in class diagram. Referring to the class diagram for

transaction process of the Banking System given, it has six
class objects as shown in table 1 below.

Attributes can describe the properties of individual objects.
The correct attributes capture the information that describes
a specific instance of the class. An attribute has a type,
which depict what kind of attribute it is. Extraction for
attribute name of each class name could be recognized by its
keyword,‘objects ClassAttribute’, as shown in figure x
above. Result from this extraction process will generate data
table named ‘SAtribute’ is illustrated in table 2.

Operations are used to manipulate the attributes and are
normally called functions. It can be applied only to objects
of that class. The operation in a class is described what the
class can do. Extraction for operation’s name for each class
could be recognized by its keyword, ‘objects Operation’, as
shown in the above figure. Result from this extraction
process will generate data table namely ‘SOperation’. Table
3 shows data that is generated from this extraction process.

3.2 Relationship Notations

Class diagram consists of classes and the relationship
between classes. We define four basic relationship based on

IdClass Class
K1 Account
K2 Customer
K3 Transaction
K4 checkingAccount
K5 Checkbook
K6 Check

IdClass Attribute Type_Attribute
K1 acNo Int
K1 Balance Int
K2 Name String
K2 Address String
K3 Date Date
K3 Time Time
K4 Creditlimit Int

Class_Name IdOp Operation
K1 Op1 Withdraw
K1 Op2 Deposit

Table 1: data table SClass

Table 2: data table SAtribute

Fig 4: An example of class object notation

Table 3: data table Speration

 logical_models (list unit_reference_list
 (object Class "Account"
quid "4385E498015E"
operations (list Operations
 (object Operation "withdraw"
quid "4385E844037D"
:
:
:)
 (object Operation "deposit"
quid "4385E85D030A"
:
:
:)

class_attributes (list class_attribute_list
 (object ClassAttribute "acNo"
quid "4385E82C029C"
type "Int")
 (object ClassAttribute "balance"
quid "4385E8350096"
type "Int"
initv "0"
exportControl "Public")))

Notasi Nama Kelas
Katakunci :
 object Class

Notasi operasi
Katakunci :

object Operation

Notasi atribut
Katakunci :
 object Attribute

Rajah xx : Ekstrak notasi bagi kelas

Keyword for class
name :
object Class

Keyword for
operation :
object Operation

Keyword for
 Attribute:
object ClassAttribute

Fig 5: Extraction for class object notation

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

184

Transaction
date : Date
time : Time

Customer
name : String
address : String

Account
acNo : Int
balance : Int = 0

withdraw()
deposit()

**

customer

*

account

*

checkaccount

bank

Check

CheckingAccount
credit_limit : Int

CheckBook

20..501

check

20..501

0..1

1..20

Fig 7: Extraction for generalization notation

Fig 6: An example of generalization notation

Fig 8: Association and Association Class notation

Fig 9: Extraction for association notation

its function. The relationships that can be used are
Association, Association Class, Aggregation, generalization
and composition.

• Generalization Notation

A class hierarchy is a graph where classes are connected to
each other via generalization relationship. Generalization
(sometimes called inheritance) is a relationship between a
general and a specific class. Generalization is shown as a
solid line from the more specific class (the subclass) to the
more general class (the superclass), with a large hollow
triangle at the superclass end of the line [4]. An example of
a generalization relationship in class diagram for a banking
system is shown in figure 6.

Figure 7 shows the text form produced in Rational Rose
petal file that represent the generalization notation in figure
6.

Generalization or inheritance enables us to describe all the
attributes and operations that are common to a set of classes.
The specific class, called the subclass, inherits everything
from the general class, called the superclass. Extraction for

class name of each generalization relationship is recognized
by its keyword, ‘superclasses’, as shown in the above figure.
Result from this extraction process will generate data table
named ‘SInherit’. Table 4 shows data generated from this
extraction process.

• Association and Association Class Notation

Association - Association relationship shows the
communication between two or more classes. It can be
drawn by solid line between classes. Association often has a
name that near the line representing the association, and also
consist of the cardinality that expresses how many objects
are linked. An example of this relationship is illustrated in
figure 8.

Association class - Association class allows association to
be attached to a new class. It is used to add information on a
link and can be drawn by a dotted line across the association
line [4]. An example of this relationship also is illustrated in
figure 8.

Figure 9 shows the text form produced in Rational Rose
petal file that represent this notation.

Id Subclass Superclass
1 CheckingAccount Account

Table 4: data table SInherit

 (object Association "$UNNAMED$0"
 quid "4385E4F801E9"
 roles (list role_list
 (object Role "customer"
 quid "4385E4F9032A"
 label "customer"
 supplier "Logical View::Customer"
 quidu "4385E4B80381"
 client_cardinality (value cardinality "*")
 exportControl "Implementation"
 is_navigable TRUE)
 (object Role "account"
 quid "4385E4F9032C"
 label "account"
 supplier "Logical View::Account"
 quidu "4385E498015E"
 client_cardinality (value cardinality "*")
 exportControl "Implementation"
 is_navigable TRUE))
 AssociationClass "Logical View::Transaction")

Keyword for class:
Supplier

Keyword for cardinality:
Value cardinality

Keyword for
Association status:
is_navigable

Keyword for
Association:
Object Association

Keyword for
Association’s name:
object Role

 (object Class "Checking Account"
quid "4451A58402E7"
superclasses (list inheritance_relationship_list
 (object Inheritance_Relationship
quid "4451A5AC024E"
supplier "Logical View::Account"
 quidu "4385E498015E")))

Notasi pewarisan
Katakunci :
 superclasses

Mewakili
Kelas2
(yang diwarisi)

Mewakili
Kelas1
(yang mewarisi)

Keyword for
Subclass:
object Class

Keyword for
Generalization:
superClassess

Keyword for
Superclass :
Supplier

Account

acNo : Int
balance : Int = 0

withdraw()
deposit()

CheckingAccount
credit_limit : Int

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

185

Fig 10: Aggregation notation

Fig 11: composition aggregation notation

Fig 12: Extraction for composition aggregation notation

An association for each class depict as a role name in
petal file as a text form as shown in the above figure. Role
names are part of the association and it is optional.
Extraction for each item in association relationship is
recognized by specific keyword that is shown in the above
figure. Result from this extraction process will generate data
table named ‘SRelation’. Table 5 shows data generated from
this extraction process based on the class diagram for the
banking system given before.

• Aggregation and Composition Notation
Aggregation - An aggregation denoting a whole-part
relationship between two classes. An object composed of
one or more other objects, each of which is considered a
part of the aggregate object. Class diagram of the Banking
System does not have this relationship. However, to show
this notation clearly, we illustrate generally in figure 10 that
shows an aggregate as a line with a hollow diamond
attached to one end of the line.

 Composition - A Composition aggregation owns its parts
with strong ownership. It can be shown with a line and a
solid diamond attached to the whole side. Example of
composition is shown in figure 11.

Figure 12 shows the text form produced in Rational Rose
petal file that represent the composition aggregation
notation in figure 11.

Aggregation and composition relationship is determined by
text Containment in Rational Rose petal file. They are
distinguished by the value of keywords in the figure 13
below.

Table 6 is used to determine the types of relationship.

A Composition also held in roles structure in Rational Rose
petal file. Extraction for each item that indicates a
composition association relationship can be recognized by
specific keyword as shown in the above figure. The result
from this extraction process will then be kept in table
‘SRelation’. Table 7 shows the data expanded from this
extraction process based on class diagram for the banking
system given before.

All of these tables will be used to implement assessment
process to determine either student’s diagram input is
correct or not. It is also used to specify either it is matched
with teacher’s diagram as a solution model of UML class
diagram or not.

4. Analysis and comparison

The main objective of our research is to evaluate UML
class diagram that is produced by students. The class
diagram must be drawn using Rational Rose tool. Rational
Rose stores the diagram in a file which is called petal files.
The input for this system is petal file Rational Rose with
extension .mdl. The process is to assess or evaluate the
input given by students whether it is errors free or not.

IdH Class1 Kd1 Class2 Kd2 THub
H1 Customer * Account * Association
H2 Transaction Association Class

Type Containment
<string>

is_navigable
<boolean>

is_aggregate
<boolean>

Aggregation “By Value” TRUE TRUE
Composition “By Reference” TRUE TRUE

Id Classs1 Kd1 Class2 Kd2 THub
H1 Customer * Account * Association
H2 Transactio

n
 Association

Class
H3 Check 20..

50
Checkbook 1 Composition

Table 7: data table SRelation

Table 5: data table SRelation

Containment <string> // aggregation or composition ?
 is_navigable <boolean> // association
 is_aggregate <boolean> // aggregation?

Table 6: Types of Relationship

Fig 13: text structure for aggregation and composition notaiton

 roles (list role_list
 (object Role "check"
 quid "4385E61B002E"
 label "check"
 supplier "Logical View::Check"
 quidu "4385E4E302C5"
 client_cardinality (value cardinality "20..50")
 Containment "By Value"
 exportControl "Implementation")
 (object Role "$UNNAMED$5"
 quid "4385E61B0038"
 supplier "Logical View::CheckBook"
 quidu "4385E4D803C3"
 client_cardinality (value cardinality "1")
 exportControl "Implementation"
 is_aggregate TRUE)))

Mewakili
hubungan
composition

Mewakili
Kelas1

Keyword for
object aggregated
Supplier

Keyword for Composition
Containment "By Value"
is_aggregate TRUE

 ClassName ClassName

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

186

The output of the system is a list of comments on the
students’ diagram, in a text format, as guidance to the
students. This guidance will be used by students to modify
their UML class diagrams if these diagrams contain any
errors. This feedback also will be used by students to
evaluate their level of understanding in designing the
system requirement using UML class diagram. By
reviewing their old answers and the feedback given by this
system, the students can correct their submission and learn
from their mistakes. This system also can omit the
differences in evaluation between different instructors who
check the same exercise. Beside that, students can submit
their answer for multiple assessments and receive
immediate feedback on the answers. However, this system
does not produce any grades or marks.

 The purpose of CASE tools is to reduce the gap
between theory and practical. However, the tools do not
focus on the learning environments which need more aids
to increase users’ understanding especially for students.
The first attempt at using computers to automate the
process of assessing student work was reported in the early
1960’s [5]. Early automatic assessment systems were built
almost exclusively towards computer science related
subjects, especially programming and numerical based
subjects. A lot of research has been done on assessing
subjects that is in the form of text based. Previous
researches focus more to programming exercise
assessment. Over the years, there have been dozens of
different systems created where its early start was in 1961
by Forsythe and Wirth [6]. Examples of this type of
assessment systems are created by Naur [7] that grade the
Algol programming, ASSYST [8] that automate the
assessment system for ADA program, Ceilidh [9], which is
an assessment system for C, C++ and UNIX programming,
and Style++ [10] that was used to measure programming
styles for C++ program. Research that refers exclusively to
the automation of assessment of student diagrams however
has not yet received much attention.

 Research by Thomas et al [11] used the notion of
patterns to successfully apply to the automated marking of
student attempts to drawing entity-relationship (ER)
diagrams. TRAKLA2 [5] is an automatic assessment
systems for data structure and algorithm exercises at
Helsinki University of Technology. CourseMaster and
DATsys system [12] are two platforms built at the
University of Nottingham to support diagram-based
exercises. Diagram notation specifications are authored by
the course developer using its own authoring tool and use
its own platform for assessing UML Class diagrams,
flowcharts and logical circuits automatically. Some
students experiencing difficulties were helped by
CourseMaster’s feedback and as a result were able to draw
the correct diagram. System will then give a list of correct

notations in diagram as a feedback to students. Student’s
experience stated by marking status produced by the
system such as ‘excellent’, ‘correct’ and ‘rotten’. In the
previous system, they use their own platform to get the
input of the diagram and to be assessing directly.

Our proposed automatic assessment system can
get the input from existing authoring tools to draw UML
diagram, Rational Rose, and the assessment process is
divided into three modules namely the class structure
analysis module, verification process and language
checking module. Each module process is inter-related
with each others. This means that each module will be
implemented in sequence. This sequence process is vital in
order to make sure the input of the students’ UML class
diagram match with those of instructors. For example, the
second process is the verification process; it cannot be
activated if errors have been detected in the first process.
Assessment processes are carried out in order to verify that
the input diagram is error free. Apart from that, it will also
generate list of feedback to be used as guidance to the
students and hopefully it helps to improve their
understanding in subject matter. The automatic assessment
process was done by the system is accomplished by
comparing the students’ diagram with the solution diagram.
Prior to implementing the comparison process, we use
notation extraction technique to derived each notation in
the UML class diagram and keep it as data in appropriate
tables.

5. Conclusion

As a conclusion, extraction process is the method to convert
the notation information into data that could be extracted
from text structure in Rational Rose petal file involved in the
diagram assessment process. This extraction process is
needed to implement the assessment process for UML class
diagram. Our research focuses more on UML class diagram
since it describes the existence of classes and their
relationships in the logical view of a system. We can draw
this diagram using Rational Rose that is a computer aided
software engineering (CASE) tool used for object-oriented
software development with Unified Modeling
Language. UML Class Diagram can be drawn using this
CASE tool and can be saved as a file with .mdl extension.
This .mdl file is also known as petal file that is displayed as a
text structure. The text structure is represented differently
based on the UML class diagram drawn by users.

References

[1] S. Bennett, S. McRobb and R. Farmer, Object-oriented
systems analysis and design using UML .
Glasgow:McGraw-Hill. 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

187

[2] Fundamentals of Rational Rose, student manual, version
2002, Rational software corporation, Rational university,
US. 2002.

[3] M.Dahm, Grammar and API for Rational Rose Petal
files, 2001.

[4] E. Hans-Erik and M.Penker, UML Toolkit, John-Wiley
& Sons. 1998

[5] J. Nikander, Managing Automatically Assessed
Exercises in TRAKLA2, Master Thesis, 2005.

[6] G.,Forsythe and N.,Wirth Automatic grading of
programs, Communication of the ACM, Issue 8, 275-
278.1965.

[7] P.Naur. Automatic grading of students’ ALGOL
programming. BIT 4, pages 177–188, 1964.

[8] D. Jackson and M. Usher. Grading student programs
using ASSYST. In Proceedings of 28th ACM SIGCSE
Tech. Symposium on Computer Science Education,
pages 335–339, San Jose, California, USA, 1997.
ACM Press, New York.

[9] S.D.Benford, E.K.Burke, and E.Foxley. Courseware to
support the teaching of programming. In Proceedings
of the Conference on Developments in the Teaching of
Computer Science, pp.158–166.University of Kent,
1992.

[10] K.Ala-Mutka, T. Uimonen, and H-M. Järvinen.
Supporting students in C++ programming courses with
automatic program style assessment. Journal of
Information Technology Education, 3:245–262, 2004.

[11] P.Thomas. N.Smith and K.Waugh, Computer
Assissted Assessment of Diagrams, Proceedings of the
ITiCSE ’07, 68-72, 2007.

[12] C. Higgins, P. Symeonidis, and A.Tsintsifas. The marking
system for CourseMaster. In Proceedings of the 7th annual
conference on Innovation and Technology in Computer
Science Education, pages 46–50. ACM Press, 2002.

Noraida Haji Ali received the
B.Sc. and M.Sc. degrees in
Computer Science from Universiti
Kebangsaan Malaysia in 1995 and
1999, respectively. After working
as a tutor (from 1997-1999), she
has been a lecturer at Universiti
Malaysia Terengganu until
present. Her teaching interests are
in the areas of Computer

Programming, Graphic Programming and Object-Oriented
Analysis and Design. Now she furthers her study in PhD at
Universiti Kebangsaan Malaysia in software engineering
area. She was doing her PhD research in object-oriented and
formal modeling in specific area.

Zarina Shukur is a faculty
member in the Computer Science
Department of the Faculty of
Information Science and
Technology at Universiti
Kebangsaan Malaysia. She holds a
PhD in Computer Science from the
University of Nottingham, UK. She
has been faculty member in UKM

since 1996. Her research interests are in the areas of
Teaching of Programming and Formal Methods.

Sufian Idris is a faculty member in
the Computer Science Department
of the Faculty of Information
Science and Technology at
Universiti Kebangsaan Malaysia.
He holds an MSc in Computer
Science from The University of
Manchester, UK and a PhD in
Computer Science from the
University of Manchester Institute

of Science and Technology, UK. He has been faculty
member in UKM since 1988. His teaching interests are in
the areas of Computer Programming, and Object-Oriented
Analysis and Design. His research interests and work are in
the areas of Teaching of Programming, Programming Tools,
Object-Oriented Development and Mobile Computing. He
has published papers in journals such as the WSEAS
Transactions on Computers and conferences such as the
International Conference on Enterprise Information Systems.

