
 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

220

Manuscript received August 5, 2007

Manuscript revised August 20, 2007

A New Characterization Scheme of Reusable Software Components

Parvinder Singh Sandhu1, Hardeep Singh2, Baljit Saini3

1Assistant Professor, Department of Computer Science & Engineering, Guru Nanak Dev Engineering College, Ludhiana (Punjab), India. Email:

2Professor & Head, Department of Computer Science & Engineering, Guru Nanak Dev University, Amritsar (Punjab), India.
3Department of Computer Science & Engineering, Guru Nanak Dev Engineering College, Ludhiana (Punjab), India.

Summary
The software reuse has been gathering the attention of the
software industry due to its potential to revamp the software
development process. The systematic use of the software reuse is
practical and the industrial user data shows that it improves the
productivity and quality of the software. However there are issues
which have been limiting the wide spread use of software reuse.
These relate to software component representation, its storage
and retrieval. Understanding and codifying the characteristics of
components is essential to the effective management and
development of component-based software systems. This paper
presents a new characterization scheme for reusable software
component based on information retrieval theory. Different
organizations of the extracted keywords that represent the
semantic feature of the software component are evaluated. This
approach allows using uncontrolled vocabulary and automatic
indexing of software components that are stored a reusable
component library. It could be beneficial for improving the
productivity of reuse repository manager by easy identification
and retrieval of desired software components.

Key words:
Characterization, Semantic Relation, Repository, Indexing,
Importance factor, Relevance factor, Similarity function.

1. Introduction

Software professionals have recognized reuse as a
powerful means of potentially overcoming the problem [1]
of software crisis [2]-[5] and it promises significant
improvements in software productivity and quality [6].
Though significant progress has been made on software
reuse, however, there are issues which have been limiting
the wide spread use of software reuse process. These issues
relate to software component characterization, its storage
and retrieval need greater attention of the research
community [7]-[8].

In literature, systematic software reuse has been
discussed under two broad headings – compositional reuse
and generative reuse [9]-[10]. The compositional reuse
demands the creation of a Software Reuse Library (SRL),
which stores Software Components (SC). Software

developer retrieves the prospective SCs from the SRL. He
selects the best one satisfying his needs, adapts it, and
integrates it into the new application under development.
On the other hand, the generative reuse encompasses the
reuse knowledge into a tool (such as an application
generator) or a language. Then the tool adapts the SC
automatically into the new application [12]. The work
reported in this paper falls under compositional reuse. For
Compositional reuse, several representation methods have
been reported in the literature. Frakes and Pole [13] have
classified these methods into four categories –
Information/Library Science-based methods, AI-based
methods, Formal Specification-based methods, and
Hypertextbased approaches. Although these representation
methods are useful for classification and retrieval of SCs
but they have significant limitations as well. Frakes and
Isoda [14] define a representation as a language (textual,
graphical or other) used to describe a set of objects.
Indexing, or classification, is the process used to create a
representation using traditional library methods. For
Indexing, different indexing techniques can be used. These
techniques are classified into two broad categories:
controlled vocabulary based - such as enumerated, faceted,
keyword based etc. and uncontrolled vocabulary or
free-text indexing. In the former, the terms used to describe
a component are selected from a predefined set. In the
latter, no restrictions are placed on the vocabulary for
describing the component.

Enumerated system [15] is a controlled vocabulary
method in which every possible class of the vocabulary is
predefined. Classes are mutually exclusive and arranged in
a hierarchy. Its hierarchical nature makes the system
relatively simpler and it is easy to retrieve components.
However, in this system, without a thorough knowledge of
the subject domain, it is difficult to enumerate all the
classes in advance. Secondly, the class hierarchy
established is fixed and it is difficult to restructure it i.e. it
does not allow SRL designer to add additional levels to the
hierarchy.

Another influential technique of controlled-vocabulary
type in retrieving SCs is the faceted classification method

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 221

[16]. In this scheme, vocabularies are indexed into facets.
It allows creating a new facet as and when needed and, thus,
it overcomes the limitation of fixed hierarchy in the
enumerated approach. Many others [17]-[18] have also
adapted similar approaches in their works. But these
techniques have their own limitations such as manual
indexing, difficulties in query formulation and expensive
domain analysis. On the other hand, the free-text indexing
methods [19]-[20] do not tend to place the components into
classes or facets. They are, therefore, not very informative
about relationships between the terms used to describe the
components. One such system is CATALOG [19], which
uses a free text indexing approach for ‘C’ components. In
this system, index terms are automatically extracted from
the descriptive headers of ‘C’ modules and functions.
Another similar system, RSL (Reusable Software Library)
[20], automatically scans source code files and extracts
specially labeled comment statements with attributes such
as keywords describing the functionality of components,
author, date created, etc. These attributes provide a list of
free-text single term indices. The main limitations of these
methods are – their domain specific nature, applicable to
code components only, less effectiveness due to single
keyword based indexing. Knowledge-based methods
[21]-[24] include semantic nets and rule-based systems.
Semantic nets consist of a directed graph where the nodes
represent the SCs and the arcs represent relationships
among them. Rule-based methods [21] consist of a set of
predefined rules, which are consulted by the system when
assisting users in searching components. One important
aspect of knowledge-based representations is that they
offer powerful ways to express relations between
components. On the other hand, the knowledge acquisition
problem sometimes proves to be very difficult.

Hypertext-based methods [25]-[26] are similar to
semantic nets in that they provide links between the
resources. In comparison to knowledge-based system, the
user is less aware of these relationships. The major
disadvantage of hypertext-based systems is that their
construction is considerably more difficult than the other
indexing methods.

In this paper, we proposed a new characterization
scheme based on information retrieval theory and the
concept of lexically related doublet and triplet of words
discussed in this paper, which addresses the limitations of
earlier models discussed above. The rest of the paper is
divided into the following sections. Section 2 describes the
proposed representation scheme; section 3 explains the
criteria of evaluation of the proposed approach; section 4
describes the implementation and results and finally
section 5 gives the concluding remarks.

2. Proposed Scheme

The reusable Software Component (SC) is any part of
the software development life cycle that denotes a single
abstraction and can be reused. It can be a specification,
data model, design, diagram, documentation, function,
class, package, module, subsystem, framework etc.
Different SCs use different formalisms such as a design
component which may be specified by using unified
modeling language (UML), similarly, a code component
can be a SC which may be written in some programming
language, say C++. Despite these differences, there is
some commonality among all kinds of components. That
commonality is a natural language (say English)
documentation associated with every SC, for instance, the
function of an SC described in textual form, comments
inserted into the source code, naming conventions used in
the source code etc. The proposed scheme exploits this
natural language description of the functionality of the SC
in from of comments and the identifiers used in the SC’s
design or code. The next section describes the different
sources of representation information for an SC.

2.1Sources of Representation Information (RI)

The Representation Information (RI) is the information,
from where index terms can be extracted. The following
two sources of RI are considered: i) the comments in the
source code describing the function of the chunks of code,
ii) good naming conventions used in the high-level
language source code. Interfaces of the code components
(such as function, class, module etc) make high use of
verbs, nouns, adjectives and adverbs. These verb phrases
convey the functional characteristics of the component.
Therefore, function name, constant names and
variable-names used make a good source of RI. We
exclude reserved because they have no relation with
software features. For instance, the pairs ‘Close
Document’, ‘End Cursor’ etc in OLE components (here,
‘Close’ & ‘End’ are function names and ‘Document’ &
‘Cursor’ are their arguments respectively) convey
functional information about the component.

2.2 Indexing Unit – A Semantic Relation (SR)

An indexing unit (IU) is an atomic unit of an index to be
created for an SC. The IU in the proposed scheme consists
of a doublet and triplet of words instead of a single word as
used in the earlier approaches. The authors call this
grouping of words a semantic relation (SR) as they are
semantically related. In linguistics, two words are
semantically related if they are involved in
modifier-modified relationship. Consider the following
examples of SRs - count word, close document, open file,

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 222

copy file, and move file. The words involved in these pairs
are semantically related and provide some functional
information about the component. In contrast to a
single-word IU, an SR based IU provides some additional
contextual information about the component because it
contains relation between words. Thus, a doublet or triplet
of words can form a better indexing unit as compared to a
single keyword based indexing unit.

2.3Extraction of SRs from RI

The RI consisting of textual lines are extracted from any
of the three sources discussed in section II.2. Each line is
either an English sentence (for the sources of type i) or a
collection of words extracted from interfaces, design or
code of the code components (for the source of type ii).
The words in the lines can be divided into two categories –
open-class words and closed-class words. Words, which
are nouns, verbs, adjectives or adverbs, are called
open-class words and are supposed to convey desired
functional information about the component. The
closed-class words include articles, pronouns, prepositions,
conjunctions, interjections, helping verbs and do not
convey any functional information. The closed-class
words are eliminated from the lines and SRs are extracted
from the remaining open-class words. Further, open-class
words are stemmed in order to reduce different versions of
a word to one form. For instance, the words ‘compute’,
‘computing’ and ‘computation’ will be reduced to
‘compute’. Let us illustrate the concept through an
example. Consider a line, which after elimination of
closed-class words, consists of four open-class words say
w1, w2, w3, and w4. From this line, the doublet of words
(SRs) extracted would be: (w1, w2), (w1,w3), (w1, w4), (w2,
w3), (w2, w4), (w3, w4) and Triplet of words (SRs) extracted
would be (w1, w2, w3), (w1, w2, w4), (w1, w3, w4) and (w2,
w3, w4). Let Li(w1, w2) represents ith SR, where w1, w2
indicate the first and the second word of an SR and Li(w1,
w2, w3) represents ith SR, where w1, w2 ,w3 indicate the first,
second and third word of an SR. The words involved in an
SR are stemmed and sorted i.e. LI(w1, w2) = Li
(Sort(Stem(w1), Stem(w2)) (similarly for Li(w1, w2, w3)).
Where Stem and Sort represent functions for stemming and
sorting words of an SR respectively. The algorithm
employs the table look-up strategy to eliminate
closed-class words and uses Porter algorithm [27] for
stemming of words.

2.4 Mathematical formulation of the Model

Full-length For the storage and retrieval of SCs in
Software Reuse Library (SRL), SCs are to be indexed. The
reuser retrieves SCs by specifying the functionalities of the
desired SC. Therefore, the index of the SC should be based

on its functional information. Since, the RI describes the
functionality of an SC, therefore, the index of an SC is
extracted from the RI and this index represents an SC in the
SRL. We tried to formulate a model using this
representation for retrieving SCs according to their
functionalities. The following sub-sections describe the
mathematical formulation of the model for indexing and
retrieving an SC from SRL.

The proposed model is based on the inverse document
frequency of Information Retrieval (IR) theory and
concept of SRs discussed in section II.2. The inverse
document frequency (idf) defined in the Vector Model of
IR theory [28] which is reproduced below.

Let N be the total number of documents in the system
and ni be the number of documents in which an index term
ki appears. Then inverse document frequency idfi for ki is
defined in (1).

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

nidf
i

i

Nlog (1)

In the Vector Model, the idf factor plays an important
role. According to this, a low idf factor implies that the
terms, which appear in many documents, are not very
useful for distinguishing a relevant document from a
non-relevant document.

Using the concept of idf factor in Vector model, we can
define a Importance Factor η(w) of a word ‘w’ in RI. The
Importance factor of a word in an RI will represent the
ability of the word to distinguish a relevant SC from a
non-relevant SC. A word appearing very frequently in an
RI of an SC is very common word and is likely to appear in
all RIs in SRL. Such words are not useful for
distinguishing a relevant SC from a non-relevant SC. Let N
be the total number of open-class words in an RI and fW is
the frequency of an open-class word w in the RI, then the
Importance factor of an open-class word w in the RI can be
defined as shown in (2).

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

f w

Nw log)(η (2)

Like idf factor, the value of η(w) is lesser for the words
with high frequency of occurrence and is higher for words
with low frequency of occurrence. On the lines similar to
Importance factor of a word, Importance factor of an SR in
the RI can also be defined. This will represent the ability of
an SR to distinguish a relevant SC from a non-relevant SC.
If the words involved in an SR are having high frequency
of occurrence then such SRs are likely to appear in the Ris
of all SCs in the SRL and hence are not useful for
distinguishing a relevant SC from a non-relevant SC.
Using the concepts of idf factor and Importance factor of a
word, Importance factor of an SR in the RI (means (η(w1,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 223

w2)) for doublet and means (η(w1, w2, w3)) for triplet of
words) can be defined as shown in (3) and (4).

()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

ff
Nww

ww 21

2

21 log,η (3)

()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

fff
Nwww

www 321

3

321 log,,η (4)

Where w1, w2 and w3 are the words involved in an SR
and N is total number of words in an RI. The fW1, fW2 and fW3
are the frequencies of occurrence of first, second and third
words involved in the SR respectively. As it is obvious
from (3) and (4) that the value of η(w1, w2) or η(w1, w2, w3)
is lesser, if the frequencies of occurrence of the words
involved in an SR are high.

Since all the SRs extracted from an RI are not equally
significant for using in the representation of an SC.
Therefore, to determine the relevance of an SR in the
representation of an SC, a Relevance FactorI of an SR is
defined. The more frequently an SR appears in an RI, the
more significant it is, because it has the more functional
characteristics of an SC. The relevance factor of an SR,
therefore, depends upon the frequency of occurrence of an
SR and the significant factor of the SR. It can be defined as
the product of the frequency of an SR and Importance
factor of an SR as shown in (5) and (6).

()wwf

ww
R 21,

21
η= (5)

()wwwf
www

R 321 ,,
321
η= (6)

Where f ww 21
 and f www 321

indicates the frequency of

an SR in an RI. Let Li be the list of SRs extracted from the
RI of an SC and Ri (computed by using (5) and (6)) is the
corresponding relevance factor of Li for a particular SC.
The value of Ri can be normalized as shown in (7).

σ
RRR i

i

__
−

= (7)

Where R denotes the average and σ denotes the
standard deviation of Ri values. The number of SRs
extracted from RI would be very large. If all the SRs were
used for indexing, then the index size would become very
large. To reduce the number of SRs to be used for indexing
an SC, an average of Ri as used as cut off value. The most
relevant SRs (i.e. SRs having values of Ri greater than
cutoff value) would be used in the index.

2.5 Representation of a Software Component
Now, the representation of an SC in SRL consists of the

SC’s physical contents (say ‘C’) and its index. Index,
further consists of a list of most relevant SRs (Li) and list of
corresponding relevance factors (Ri) Therefore, an SC in
the SRL would be represented by a triplet as shown in (8).

⎭
⎬
⎫

⎩
⎨
⎧= RLCSC ii ,, (8)

Thus SC representation forms the foundation for
classifying and retrieving SCs from SRL. The next
subsection describes the criteria for finding functional
similarity between two SCs.

2.6 Inter-Components Similarity Function

Inter-component similarity function specifies the degree
of closeness between the functionalities of two SCs.
Common SRs between the representations of two SCs
would be used to indicate the functional similarity between
two SCs. The more the SRs are common, the more two SCs
are similar. To obtain the similarity between two SCs, the
Relevance Factors of common SRs between the
representations of two SCs are multiplied and summed.
This implies that the more relevant SRs get the higher
weightage and lesser relevant SRs get less weightage, as
the product of large numbers becomes larger and product
of small numbers becomes smaller. Therefore,
Inter-component Similarity function, S for two
components CP and Cq (pth and qth components of the
SCL) can be defined as shown in (9).

() RRCC q
LL

p i
qp

ii
qpS ∑

∈

=
I

, (9)

Where Rpi
and Rqi

indicate the lists of relevance

factors of common SRs in the representation of
components CP and Cq respectively. LP and Lq indicate the
lists of most relevant SRs in the representation of CP and Cq
respectively. S given by (9) can be used to determine the
functional similarities among the components stored in the
SRL. It can also be used for retrieving an SC from the SRL
by matching the required SC with the SCs stored in the
SRL.

3. Evaluation of Proposed Approach

It is tried to evaluate the system in terms of Precision
and Recall criteria. Let S be a set of all software systems
contained in a repository. Precision and recall are defined
in (10)-(13).

||

)(
S

sprecision
Precision Ss soft∑

= ε

(10)

Where

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007 224

|)(|
|)()(|

)(
sC

sCsC
sprecision

Actual

IdealActual
soft

∩
=

(11)

And

||
)(

S
srecall

Recall Ss soft∑
= ε

(12)

Where

|)(|
|)()(|

)(
sC

sCsC
srecall

Ideal

IdealActual
soft

∩
=

(13)

Where CActual(s) for a SC say “s”, is a set of matched or
similar SCs of SCL as generated by our software and
CIdeal(s) is a set of actually similar SCs, determined
manually by the Domain Experts. Using Precision and
Recall values we have calculated F-Value as a measure of
performance evaluation as shown in (14).

rp

prValueF
+

=−
2

(14)

Where p is the Precision and r is the Recall of the
system.

3. Implementation and Results

There are 43 reusable software components are

collected from ‘C’ based open access repositories. A
program is developed in MATLAB 7.2 to test the validity
of the proposed characterization scheme and model. SRs
are extracted automatically from the input SCs. A table
look-up strategy is employed in this algorithm to eliminate
closed-class words from the input RI and Porter Stemming
algorithm [27] is used to stem the open-class words. This

algorithm produces a list of SRs (for both doublet and
triplet schemes) along with their frequencies of occurrence
and total number of open-class words. Another program
implementing computes relevance factors of each SR and
retains most relevant SRs. It subsequently computes
similarity function (S) between every pair of SCs stored in
the SRL contain 43 software components that are
categorized as application (e.g. Graphics, spreadsheet
based applications), system software (e.g. hardware
drivers, complier, linker, loader and other system utilities)
and mix category.

It is also tried to represent the SCs with help of a
keyword-set containing the Single keyword and their
corresponding frequencies. The similarity between the
components is calculated by the percentage match of the
keywords of two components keeping frequencies as
weightage. As the relation between the words is not
established, so the performance of the single-word based
representation system is far low as compared to the doublet
or triplet based schemes.

The new Semantic Relevancy based approach is applied
on the stemmed double-word and triple-word schemes and
the results are examined in terms of the Precision, Recall,
F-measure and Accuracy as shown in Table I.

The Relevancy factor based approach has shown the
84.6% Accuracy for the Triple word based organization of
stemmed words and 0.8947 maximum F-measure. In the
new approach the results of triple-word scheme are better
than the results of double-word; moreover, when compared
with the previously used approaches it comes out to be best
approach. So, this approach can be recommended for the
Domain Relevancy Appraisal.

TABLE I
PERFORMANCE OF NEW CHARACTERIZATION SCHEME OF REUSABLE SOFTWARE COMPONENTS

Algorithm

Word Scheme Class
Type Precision Recall F-Measure Accuracy

(%)

Class 1 0.5556 0.5000 0.5263

Class 2 0.7000 0.7778 0.7368 Doublet

Class 3 0.7143 0.6667 0.6897

70.68

Class 1 0.6923 0.9000 0.7826

Class 2 0.8500 0.9444 0.8947

New Semantic-
Relevancy Based

Approach

Triplet

Class 3 1.0000 0.6667 0.8000

84.6

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

225

4. Conclusion

The new model proposed is based on the concept of

SR, doublet and triplet organization of words is used as
indexing unit instead of the single word as used by many
other models. It overcomes some of the limitations of the
earlier models. The doublet and triplet word schemes
makes a better indexing unit as it also provides some
contextual information as well. This is shown by the
similarity function based evaluation of the new model
for classification of the Software Components. Also it
shows that the use of the model will provide an effective
characterization and indexing technique for storing of
Software Components in Software Reuse Libraries.
Further, this model can be used for automatic indexing of
software components and can be helpful in improving
the productivity of the reuse repository managers.

References
[1] E. Smith, A. Al-Yasiri, M. Merabti, A Multi-Tiered Classification

Scheme For Component Retrieval, Euromicro Conference,. 24(2),
pp. 882 – 889, 1998.

[2] V. R. Basili , Software Development: A Paradigm for the Future,
Proceedings of COMPAC ‘89, Los Alamitos, Calif.: IEEE CS
Press, pp. 471-485, 1989.

[3] B. W. Boehm, A Spiral Model of Software Development and
Enhancement, IEEE Computer, 21(5), pp. 61 – 72, 1988.

[4] M. L. Griss, M. Wosser, Making reuse work at Hewlett-Packard.
IEEE Software, 12(1), pp. 105 – 107, 1995.

[5] G. Succi, C. Uhrik, M. Ronchetti, Reusability and Portability of
Logic Programming, Journal of Programming Languages Design,
Chapman & Hall, 4(2), pp. 101-114, 1996.

[6] B. Boehm, Managing Software Productivity and Reuse, IEEE
Computer, 32(9), pp. 111 – 113, 1999.

[7] W. B. Frakes, Kang Kyo, Software Reuse Research: Status and
Future, IEEE Software, Vol. 31(7), pp. 529-536, 2005.

[8] M. A. Rothenberger, K. J. Dooley, U. R. Kulkarni, N. Nada
Strategies for software reuse: A principal component analysis of
reuse practices, IEEE Trans. On Software Engineering, 29(9), pp.
825-837, 2003.

[9] T. Biggerstaff, C. Richter, Reusability Framework, Assessment,
and Directions, IEEE Software, 4(2), pp. 41-49, 1987.

[10] C. Kruger, Software Reuse, ACM Computing Surveys, 24(2), pp.
131-183, 1992.

[11] W. B. Frakes, S. Isoda, Success Factors of Systematic Reuse,
IEEE Software, 11(5), pp. 15-19, 1994.

[12] L. S. Levy, A Meta programming Method and Its Economic
Justification, IEEE Trans. On Software Engineering, 12(2), pp.
272-277, 1986.

[13] W. B. Frakes, T. P. Pole, An Empirical Study of Representation
Methods for Reusable Software Components, IEEE Software
Trans. On Software Eng., 20(8), pp. 617-630, 1994.

[14] W. B. Frakes, S. Isoda, Success Factors of Systematic Reuse,
IEEE Software, 11(5), pp. 15-19, 1987.

[15] G. Booch, Software Components in Ada (Benjamin/Cummings,
Publishing Company, Inc., Redwood City, CA, 1987).

[16] R. Prieto-Diaz, P. Freeman, Classifying Software Reusability,
IEEE Software, 4(1), pp. 06-16, 1987.

[17] J. Morel, J. Faget, The REBOOT Environment, Proceedings of
International Workshop on Software Reuse (ISRW-2), E.
Guerriery (Ed.), Lucca, Italy, March 24-26, 1993.

[18] E. Damiani, M. G. Fugini, C. Bellettini, A Hierarchy-Aware
Approach to Faceted Classification of Object-Oriented
Components, ACM Transaction on Software Engineering and
Methodology, 8(4), pp. 425-472, 1999.

[19] W. Frakes, B. Nejmeh, An Information System for Software Reuse,
Proceedings of the Tenth Minnor-brook Workshop on Software
Reuse, 1987.

[20] B. Burton, R. Aragon, S. Bailey, K. Koehler, L. Mayes, The
Reusable Software Library, IEEE Software, 4(4), pp. 25-33,
1987.

[21] P. Podgurski, Behavior Sampling: A Technique for Automated
Retrieval of Reusable Components, Proceedings of 14th
International Conference on Software Engineering, pp. 349-360,
1992.

[22] D. Embley, S. Woodfield, A Knowledge Structure for Reusing
Abstract Data Types, Proceedings of 9th International
Conference on Software Engineering, Monterey, pp. 360-368,
1987.

[23] R. Adams, An Experiment in Software Retrieval, Proceedings of
4th European Software Engineering Conference (ESEC’93), I.
Sommerville and M. Paul (Ed,), LNCS 717, Springer-Verlag,
Garmisch-Parten Kirchen, Germany, Sept., 1993.

[24] P. Devanbu, R. Brachman R, P. Selfridge, B. Ballard, LaSSIE: A
Knowledge-Based Software Information System, ACM Comm.,
34(5), pp. 34-49, 1991.

[25] B. Freitag, A Hypertext-Based Tool for Large Scale Software
Reuse, Proceedings of the 6th Conference on Advanced
Information Systems Engineering (CAISE'94), Utrecht,
Netherlands, 6-10 June 1994, pp. 283-296, 1994.

[26] P. Hitchcock, B. Wang, Intersect Hypertext DM, Journal of
Information and Software Technology, 34(9), pp. 573-592, 1992.

[27] http://snowball.tartarus.org/.
[28] J. K. Spärck, A statistical interpretation of term specificity and its

application in retrieval, Journal of Documentation, Vol. 60, pp.
493-502, 2004 .

Parvinder S. Sandhu is working as
Assistant Professor in the Department
of Computer Science and Engineering
with Guru Nanak Dev Engineering
College, Ludhiana (Punjab). He is
Master of Engineering in Software
Engineering, M.B.A. and Bachelor in
Computer Engineering from NIT,
Kurukshetra. He is doing research
work leading to Ph.D. with Guru
Nanak Dev University, Amritsar. He

has published 09 research papers in referred International journals and
12 papers in renowned international conferences. His current research
interests are Software Reusability, Software Maintenance and Machine
Learning.

Hardeep Singh is working as Professor in the Department of
Computer Science and Engineering with Guru Nanak Dev University,
Amritsar, India. and the other authors may include biographies at the
end of regular papers. His date of birth is Feb. 16 and he has got twenty
years of teaching experience. He is member of high profile committees
of Government of India related with the technical education. He is
Doctorate in Modeling and Design of Software Metrics for Object
Oriented Systems. He has thirty five International and National
publications to his name. He is live interest in Software Engineering,
Object Oriented Paradigm, Management Information & Decision
Support Systems, Ergonomics, Computer Networks, Artificial
Intelligence.

Baljit Saini is currenly doing her Masters from Guru Nanak Dev
Engineering College, Ludhiana and doing research on the
characterization of components in the software repositories under
supervision of Prof. Parvinder S. Sandhu. She did her Bacholoes in
Computer Science and Engineeirng from Punjab technical university
Jaandhar.

