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Summary 
Binary search tree is a best-suited data structure for data storage 
and retrieval when entire tree could be accommodated in the 
primary memory. However, this is true only when the tree is 
height-balanced. Lesser the height faster the search will be. 
Despite of the wide popularity of Binary search trees there has 
been a major concern to maintain the tree in proper shape. In 
worst case, a binary search tree may reduce to a linear link list, 
thereby reducing search to be sequential. Unfortunately, 
structure of the tree depends on nature of input. If input keys 
are not in random order the tree will become higher and higher 
on one side. In addition to that, the tree may become 
unbalanced after a series of operations like insertions and 
deletions. To maintain the tree in optimal shape many 
algorithms have been presented over the years. Most of the 
algorithms are static in nature as they take a whole binary 
search tree as input to create a balanced version of the tree. In 
this paper, few techniques have been discussed and analyzed in 
terms of time and space requirement.    
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1. Introduction 
 
Binary search tree is most basic, nonlinear data structure 
in computer science that can be defined as “a finite set of 
nodes that is either empty or consists of a root and two 
disjoint subsets called left and right sub-trees. Binary 
trees are most widely used to implement binary search 
algorithm for the faster data access. When memory 
allocation is static and data size is reasonably small, an 
array may be used instead to accomplish the same task. 
However, for large data set array is not a good option 
since it requires contiguous memory that system may not 
provide sometimes. In ideal situation, we would expect 
the tree to be of minimal height that is possible only 
when the tree is height balanced. With a n node random 
binary search tree search time grows only logarithmically 
O(lg(n)) as size of input grows. A binary search tree 
requires approximately 1.36(lg (n)) comparisons if keys 
are inserted in random order. It is also a well-known fact 

that total path length of a random tree can be further 
reduced by 27.85 percent by applying some rebalancing 
mechanism. There are two methods to rebalance a binary 
tree, dynamic rebalancing, and global (static) rebalancing. 
Both methods having advantages and disadvantages. 
Dynamic methods to create a balance binary search tree 
have been around since Adel’son-Velskii & Landis [1] 
proposed the AVL Tree. Dynamic rebalancing methods 
maintain a tree in optimal shape by adjusting the tree 
whenever a node is inserted or deleted. Examples of this 
approach are height-balance tree, weight-balance tree, 
and B-trees. Rather then readjusting the tree every now 
and then global or static rebalancing methods allows the 
tree to grow unconstrained, and readjustment is done 
only when such a need is arises. To achieve this task 
many computer scientist have proposed various solutions. 
Following is a comparison on various proposed solutions. 
For the interested readers algorithms are given in the 
appendix. 
 
2. AVL Algorithm 
 
Soviet Mathematicians G. M. Adel’son-Vel’skii & E. M. 
Landis [1] proposed an algorithm to create a balanced 
binary search tree dynamically. Every node in the tree 
has to maintain additional information (apart from data 
and pointers) called “balance factor” that stores the 
effective balance of the tree rooted at that node. Tree is 
said to be balanced if the difference between the heights 
of two sub-trees of any node (balance factor) is between 
–1 and 1. Mathematically, –1 <= balance factor <=1. 
After each operation tree has to be examined to ensure 
that it is balanced. If the tree has become unbalanced 
appropriate rotation is performed in the appropriate 
direction. 
AVL algorithm [1] balances a tree dynamically that 
means prior knowledge of the size of input is not 
required. In addition to that, it does not require much 
space during execution. On the downside, the tree has to 
be examined and adjusted accordingly after each 
insertion and deletion making it slow during execution. 
Furthermore, extra memory is required in every node to 
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maintain additional information called “balance factor”. 
In addition to that, sometimes, double rotation may be 
required making whole process a complex task.   
 
3. Martin and Ness’s Algorithm 
 
Martin & Ness [5] developed an algorithm to balance a 
binary tree globally. Algorithm takes an arbitrary binary 
search tree as input and creates a perfect balanced tree. 
They used a stack to traverse the tree to determine the 
order of nodes and then repeatedly dividing N (number 
of nodes) by two to get the median. In this way, number 
of nodes in the both sub-trees would differ by one 
making it optimal in shape. Rather than readjusting tree 
after each operation they adopted static method that was 
totally different from AVL [1]. In the process, they used 
extra space in form of stack and array making algorithm 
to be space inefficient. Time complexity of the algorithm 
is linear O(n), as each node of the tree has to be visited. 
Major problem with this approach is to determine  “when 
maintenance work has to applied” as there is no 
deterministic method to predict when tree will become 
unbalanced and when there will be a need of 
readjustments.  
 
4. Day’s Algorithm 
 
A. Colin Day [4] proposed an algorithm in Fortran to 
rebalance a binary search tree statically. Since Fortran do 
not support recursion a threaded tree had to be used to 
traverse the tree without using stack. “Threaded” binary 
trees, are supported by back-pointers to perform the 
traversal and thus eliminating the need of recursion. 
Right pointer of every node whose right sub-tree is 
empty used as a thread pointer that points to it’s in-order 
successor, making it possible to move upward in the tree 
without using stack. 
Day’s algorithm consists of two phases. In first phase, 
tree is traversed in in-order to visit every node, creating a 
backbone (linked list). The final linked list was a sorted 
list of items as in-order traversal results in sorted output. 
In second phase, degenerated tree is transformed into a 
balanced tree by performing a series of left rotations. 
Day used a threaded tree to traverse the tree therefore 
some additional information has to be maintained in each 
node to distinguish a thread pointer from actual pointer. 
Day’s algorithm is not very demanding as far as space 
requirement is concern during execution time. However, 
time complexity of algorithm is O(n), still it is very 
efficient algorithm if perfect balance is not required.  
 
5. Chang and Iyengar’s Algorithm 
 

Chang & Iyengar [3] proposed an algorithm to balance a 
binary search tree globally. Tree is recursively traversed 
to collect all the pointers in the array. When the tree is 
traversed in in-order output is sorted collection of keys in 
ascending order. After traversal, the array is recursively 
partitioned into two parts left and right with each part 
differing in one key at most. Left partition creating left 
sub-tree and right partition right sub-tree. During each 
partition median has to be determined that becomes the 
root of left and right partition. Algorithm is not space 
efficient since it requires all the pointers to be copied 
into an array doubling the space requirement. Array 
needs contiguous memory that system may not provide 
sometimes particularly when data size is quite large. 
Since each node of the tree has to be visited, Algorithm 
runs in O(n) time.    
 
6. Stout and Warren’s Modification 
 
Stout & Warren [7] proposed improvement over-Day’s 
algorithm. Stout and Warren made some changes in 
existing Day’s algorithm [4].   
The first phase of the algorithm converts a tree into a 
vine (each parent node has only a right child and the 
nodes are in sorted order) proceeding top down through 
the tree, creating an initial portion, that has been 
transformed, and a remaining portion of nodes with 
larger keys, which may require further transformation. In 
second phase, a balanced tree is created by applying a 
series of compressions to the degenerated tree obtained 
from the first phase. They used a simple binary search 
tree rather then a threaded tree that is a major advantage 
over the Day’s Algorithm. In addition to that, algorithm 
needs only constant space to store temporary variables 
and not much demanding in terms of run-time space 
requirement. The beauty of their algorithm is neither they 
used stack or recursion to convert the tree into some 
intermediate form (“vine” in their terminology). 
However, time complexity remains same as before that is 
O(n). 
 
7. Sleater and Tarjan’s Splay Trees 
 
Sleator & Trajan [6] invented splay tree a self-adjusting 
tree, where it is guaranteed that amortize cost of a 
sequence of operations like insertion and deletion will be 
O(lg(n)). Amortized time; the time per operation 
averaged over a worst-case sequence of operations. Thus, 
splay trees are as efficient as balanced trees when total 
running time is the major concern rather than the cost of 
individual operation. To reduce total access time 
frequently accessed items should always be near to the 
root. They invented a simple method of restructuring a 
tree so that after each access accessed item moves closer 
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to the root assuming, this item will be accessed again in 
near future (Principle of locality). According to Principle 
of locality any item that is accessed now, it is highly 
likely that same item will be accessed in near future. The 
restructuring technique used in splay trees is called 
splaying. Splaying moves a node that is recently 
accessed towards the root of the tree by performing a 
sequence of rotations along the original path from the 
node to the root. Their work has shown that in amortized 
sense splay trees are as efficient as both dynamically and 
statically balanced trees.  
Following table figure 1 summarizes the performance of 
various algorithms in terms of time and space 
requirement. 
 

 Time Space 
 

Martin & 
Ness 
 

O(N) Required stack to carry 
out the traversal 

A. Colin Day O(N) Little run time space is 
required to hold 
temporary variables but 
tree has to be threaded 

Chang & 
Ayengar 

O(N) Additional workspace 
required equal to the size 
of the tree. 

Stout & 
Warren 
 

O(N) Only fixed amount of 
space is required. 

 
Table 1 

8. Conclusion 
 
Although it is known that if input is random, we will be 
closer to a balanced tree. Still some balancing technique 
is required to prevent the tree from becoming higher on 
one side resulting after a series of insertions and 
deletions. Ultimate goal is to maintain the tree in such 
way that its height is always O(lg(n)) so that all basic 
tree operations could be performed in O(lg(n)) time. 
Many techniques for tree balancing have been developed 
over the years and some of them have been discussed 
and analyzed in this paper. Most of the algorithms are 
static in nature and taking time linear to the size of input, 
and in addition to that, in few cases significant amount of 
space is required. Run time overhead for static 
algorithms is certainly less in compared to the dynamic 
algorithms but there has to be some predefined time 
interval to rebalance the tree. All the balancing 
algorithms presented here (apart from AVL algorithm 
[1]) are made to run in two phases. First phase converts 
arbitrary binary tree into some intermediate tree and in 
the next phase, intermediate tree is converted into a 

balanced tree. In order to create intermediate tree, each 
node of the tree has to visited resulting run time 
complexity to be O(N). No algorithm has been developed 
so far that could balance a tree in lesser time, 
consequently, there is a huge scope of improvement over 
existing methods as they are lacking in one aspect or 
other. 
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Appendix 

Martin and Ness's Algorithm: 

 
 procedure BALANCE(ROOT, LSON, RSON, n): 

integer ROOT, n; integer array LSON, RSON; 
begin 
{T holds pointer to node to be visited during traversal, 
STACK is used to store T, TOP points to the top element of STACK} 
integer T, TOP, ANS; integer array STACK(I:n); 
{Traverse the input tree and return a node pointer 

  in ascending key order via ANS} 
procedure TRAVNEXT: 

begin 
if T ≠ null 

then begin 
TOP← TOP + I; 
STACK(TOP)← T; 
T← LSON(T); 
TRAVNEXT; 
end; 

else begin 
ANS ← STACK(TOP); 
TOP← TOP- 1; 
T← RSON(ANS); 

end; 
end; 
{Restructure pointers by partitioning} 
procedure GROW(N): 

integer N; {number of elements in a subset } 
    begin 

{T is root of a balanced subtree reflected by a subset, 
LPTR is used to temporarily store the LSON of T} 
integer T, LPTR; 
case 

N = 0 {null branch}: 
begin 

ANS← null; 
end; 

N = 1 {leaf}: 
begin 

TRAVNEXT; 
LSON(ANS), RSON(ANS) ← null; 

end; 
N > 1 {divisible subset}: 

begin 
GROW(L(N-1)/2); {form left subtree} 
LPTR ← ANS; 
TRAVNEXT; 
T ← ANS; 
GROW((N-1)/2); {form right subtree} 
RSON(T)  ←ANS; 
LSON(T) ←  LPTR 
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ANS ← T; 
end; 

end; 
end; 
if n ≤ 2 then return; 
T←  ROOT;  
TOP← 0; {initialization} 
GROW(n); 
ROOT ←ANS; {new root} 

end; 
 
 
 
Day’s Algorithm       
 

procedure BALANCE(ROOT LSON, RSON, n): 
integer ROOT, n; integer array LSON, RSON; 
begin 

integer T, LAST_VISITED, L, R, M, BACKBONE_LENGTH; 
{stripe nodes off right-threaded tree to form backbone. T points  
to the node to be visited, LAST_VISITED holds pointer to the last  
visited node} 
if n ≤ 2 then return; 
T← ROOT; 
while LSON(T) ≠  null do {find the first node} 

begin 
T ← LSON(T);  

end; 
ROOT ← T; {root of backbone} 
LSON(ROOT) ← null; 
LAST_VISITED ← T; 
T ←  RSON(T); 
while T≠  null do {traverse} 

begin 
if T > 0  

then begin 
while LSON(T) ≠  null do 

begin;  
T← LSON(T);  

end; 
end; 

 
else T ←  -(T); {backtrack} 
RSON(LAST_VISITED) ← T; {chain together} 
LASTVISITED ← T; 
LSON(T) ← null; 
T ← RSON(T); 

end; 
{restructure backbone to a balanced tree. M is the number of 
 transformations needed in a pass, T now points to node to be  
 shifted out of the backbone, L is the left ancestor of T, R is the  
 right son of T,  BACKBONE_LENGTH is the number of nodes 
 in the backbone} 
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BACKBONE_LENGTH ← n - 1; 
M ← LBACKBONE_LENGTH/2; 
while M > 0 do {transform} 

      begin 
T ← ROOT; {move on ROOT in anticipation} 
ROOT ← RSON(ROOT); 
RSON(T) ← LSON(ROOT); 
LSON(ROOT)  ←T; 
T← RSON(ROOT); 
L← ROOT; 
for I ←2 to M by 1 do {shift} 

begin 
R ← RSON(T); 
RSON(L) ← R; 
RSON(T) ← LSON(R); 
LSON(R) ← T; 
T ← RSON(R); 
L ← R; 

end; 
BACKBONE_LENGTH ← BACKBONE_LENGTH - M - I; 
M ← LBACKBONE_LENGTH/2; 
end; 

end; 
 
 
Chang and Iyengar’s Algorithm 
 

 {globally balance a binary search tree through folding} 
 procedure BALANCE(ROOT, LSON, RSON, n): 

integer ROOT, n; integer array LSON, RSON; 
begin 

integer N, M, ANSL, ANSR; integer array LINK(I : n); 
{traverse the original tree and set up LINK} 
procedure TRAVBIND(T): 

integer T; {pointer to the next node to be visited} 
begin 

if T = null then return; 
TRAVBIND(LSON(T)); 
N ← N + 1; {count the sequence of visit} 
LINK(N) ← T; {store the pointer to the Nth node 

                     in the Nth element of LINK } 
TRAVBIND(RSON(T)); 

end; 
{reorganize a tree by partitioning and folding} 
procedure GROW(LOW, HIGH): 

integer LOW, HIGH; 
begin 

{MID is the median of a subset bound by LOW and HIGH, 
TL is the subtree root in the balanced left half-tree, 
TR is the counterpart of TL in the right half-tree. 
TL, TR are returned via ANSL, ANSR, respectively} 
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integer MID, TL, TR; 

     case 
LOW > HIGH {null branch  }: 

begin 
ANSL, ANSR ← null; 

end; 
LOW = HIGH {leaf } : 

begin 
ANSL← LINK(LOW); 
ANSR ← LINK(LOW+M); 
LSON(ANSL), RSON(ANSL) ←  null; 
LSON(ANSR), RSON(ANSR) ← null; 
end; 

LOW < HIGH {divisible subset}: 
begin 
MID ← (LOW + HIGH)/ 2; 
TL ← LINK(MID); 
TR ← LINK(MID+M); 
 

GROW(LOW, MID-I);{form left subtree } 
LSON(TL)  ←ANSL; 
LSON(TR) ← ANSR; 
GROW(MID+1,HIGH);form rightsubtree} 

                  RSON(TL) ← ANSL; 
RSON(TR) ←ANSR; 
ANSL ← TL; 
ANSR ← TR; 

end; 
end; 

end; 
if n ≤ 2 then return; 
N  ← 0; {initialize counter} 
TRAVBIND(ROOT); 
M ← (N + I)/ 2; {folding value} 
ROOT ←LINK(M); {new root} 
if N = 2 * M 

then {N is even } 
begin 

M ← M + I; {adjust folding value} 
GROW(1,M-2); 
{put the node associated with M as a terminal node 
left to its immediate successor} 
LSON(LINK(M)), RSON(LINK(M)) ← null; 
LSON( LINK( M+ 1) ) ← LINK(M) ; 

end; 
else {N is odd} GROW(1,M-1); 

LSON(ROOT) ← ANSL; 
RSON(ROOT) ← ANSR; 

 end; 
 

 


