
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

237

Binary Search Tree Balancing Methods: A Critical Study

Suri Pushpa1, Prasad Vinod2

1Dept. of Computer Science and Applications, Kurukshetra University, Haryana, India
2Dept. of Technology, Majan University, Sultanate of Oman.

Summary
Binary search tree is a best-suited data structure for data storage
and retrieval when entire tree could be accommodated in the
primary memory. However, this is true only when the tree is
height-balanced. Lesser the height faster the search will be.
Despite of the wide popularity of Binary search trees there has
been a major concern to maintain the tree in proper shape. In
worst case, a binary search tree may reduce to a linear link list,
thereby reducing search to be sequential. Unfortunately,
structure of the tree depends on nature of input. If input keys
are not in random order the tree will become higher and higher
on one side. In addition to that, the tree may become
unbalanced after a series of operations like insertions and
deletions. To maintain the tree in optimal shape many
algorithms have been presented over the years. Most of the
algorithms are static in nature as they take a whole binary
search tree as input to create a balanced version of the tree. In
this paper, few techniques have been discussed and analyzed in
terms of time and space requirement.

Key words:
Binary Search Tree; Tree Balancing; Dynamic Balancing;
Static Balancing

1. Introduction

Binary search tree is most basic, nonlinear data structure
in computer science that can be defined as “a finite set of
nodes that is either empty or consists of a root and two
disjoint subsets called left and right sub-trees. Binary
trees are most widely used to implement binary search
algorithm for the faster data access. When memory
allocation is static and data size is reasonably small, an
array may be used instead to accomplish the same task.
However, for large data set array is not a good option
since it requires contiguous memory that system may not
provide sometimes. In ideal situation, we would expect
the tree to be of minimal height that is possible only
when the tree is height balanced. With a n node random
binary search tree search time grows only logarithmically
O(lg(n)) as size of input grows. A binary search tree
requires approximately 1.36(lg (n)) comparisons if keys
are inserted in random order. It is also a well-known fact

that total path length of a random tree can be further
reduced by 27.85 percent by applying some rebalancing
mechanism. There are two methods to rebalance a binary
tree, dynamic rebalancing, and global (static) rebalancing.
Both methods having advantages and disadvantages.
Dynamic methods to create a balance binary search tree
have been around since Adel’son-Velskii & Landis [1]
proposed the AVL Tree. Dynamic rebalancing methods
maintain a tree in optimal shape by adjusting the tree
whenever a node is inserted or deleted. Examples of this
approach are height-balance tree, weight-balance tree,
and B-trees. Rather then readjusting the tree every now
and then global or static rebalancing methods allows the
tree to grow unconstrained, and readjustment is done
only when such a need is arises. To achieve this task
many computer scientist have proposed various solutions.
Following is a comparison on various proposed solutions.
For the interested readers algorithms are given in the
appendix.

2. AVL Algorithm

Soviet Mathematicians G. M. Adel’son-Vel’skii & E. M.
Landis [1] proposed an algorithm to create a balanced
binary search tree dynamically. Every node in the tree
has to maintain additional information (apart from data
and pointers) called “balance factor” that stores the
effective balance of the tree rooted at that node. Tree is
said to be balanced if the difference between the heights
of two sub-trees of any node (balance factor) is between
–1 and 1. Mathematically, –1 <= balance factor <=1.
After each operation tree has to be examined to ensure
that it is balanced. If the tree has become unbalanced
appropriate rotation is performed in the appropriate
direction.
AVL algorithm [1] balances a tree dynamically that
means prior knowledge of the size of input is not
required. In addition to that, it does not require much
space during execution. On the downside, the tree has to
be examined and adjusted accordingly after each
insertion and deletion making it slow during execution.
Furthermore, extra memory is required in every node to

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

238

maintain additional information called “balance factor”.
In addition to that, sometimes, double rotation may be
required making whole process a complex task.

3. Martin and Ness’s Algorithm

Martin & Ness [5] developed an algorithm to balance a
binary tree globally. Algorithm takes an arbitrary binary
search tree as input and creates a perfect balanced tree.
They used a stack to traverse the tree to determine the
order of nodes and then repeatedly dividing N (number
of nodes) by two to get the median. In this way, number
of nodes in the both sub-trees would differ by one
making it optimal in shape. Rather than readjusting tree
after each operation they adopted static method that was
totally different from AVL [1]. In the process, they used
extra space in form of stack and array making algorithm
to be space inefficient. Time complexity of the algorithm
is linear O(n), as each node of the tree has to be visited.
Major problem with this approach is to determine “when
maintenance work has to applied” as there is no
deterministic method to predict when tree will become
unbalanced and when there will be a need of
readjustments.

4. Day’s Algorithm

A. Colin Day [4] proposed an algorithm in Fortran to
rebalance a binary search tree statically. Since Fortran do
not support recursion a threaded tree had to be used to
traverse the tree without using stack. “Threaded” binary
trees, are supported by back-pointers to perform the
traversal and thus eliminating the need of recursion.
Right pointer of every node whose right sub-tree is
empty used as a thread pointer that points to it’s in-order
successor, making it possible to move upward in the tree
without using stack.
Day’s algorithm consists of two phases. In first phase,
tree is traversed in in-order to visit every node, creating a
backbone (linked list). The final linked list was a sorted
list of items as in-order traversal results in sorted output.
In second phase, degenerated tree is transformed into a
balanced tree by performing a series of left rotations.
Day used a threaded tree to traverse the tree therefore
some additional information has to be maintained in each
node to distinguish a thread pointer from actual pointer.
Day’s algorithm is not very demanding as far as space
requirement is concern during execution time. However,
time complexity of algorithm is O(n), still it is very
efficient algorithm if perfect balance is not required.

5. Chang and Iyengar’s Algorithm

Chang & Iyengar [3] proposed an algorithm to balance a
binary search tree globally. Tree is recursively traversed
to collect all the pointers in the array. When the tree is
traversed in in-order output is sorted collection of keys in
ascending order. After traversal, the array is recursively
partitioned into two parts left and right with each part
differing in one key at most. Left partition creating left
sub-tree and right partition right sub-tree. During each
partition median has to be determined that becomes the
root of left and right partition. Algorithm is not space
efficient since it requires all the pointers to be copied
into an array doubling the space requirement. Array
needs contiguous memory that system may not provide
sometimes particularly when data size is quite large.
Since each node of the tree has to be visited, Algorithm
runs in O(n) time.

6. Stout and Warren’s Modification

Stout & Warren [7] proposed improvement over-Day’s
algorithm. Stout and Warren made some changes in
existing Day’s algorithm [4].
The first phase of the algorithm converts a tree into a
vine (each parent node has only a right child and the
nodes are in sorted order) proceeding top down through
the tree, creating an initial portion, that has been
transformed, and a remaining portion of nodes with
larger keys, which may require further transformation. In
second phase, a balanced tree is created by applying a
series of compressions to the degenerated tree obtained
from the first phase. They used a simple binary search
tree rather then a threaded tree that is a major advantage
over the Day’s Algorithm. In addition to that, algorithm
needs only constant space to store temporary variables
and not much demanding in terms of run-time space
requirement. The beauty of their algorithm is neither they
used stack or recursion to convert the tree into some
intermediate form (“vine” in their terminology).
However, time complexity remains same as before that is
O(n).

7. Sleater and Tarjan’s Splay Trees

Sleator & Trajan [6] invented splay tree a self-adjusting
tree, where it is guaranteed that amortize cost of a
sequence of operations like insertion and deletion will be
O(lg(n)). Amortized time; the time per operation
averaged over a worst-case sequence of operations. Thus,
splay trees are as efficient as balanced trees when total
running time is the major concern rather than the cost of
individual operation. To reduce total access time
frequently accessed items should always be near to the
root. They invented a simple method of restructuring a
tree so that after each access accessed item moves closer

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

239

to the root assuming, this item will be accessed again in
near future (Principle of locality). According to Principle
of locality any item that is accessed now, it is highly
likely that same item will be accessed in near future. The
restructuring technique used in splay trees is called
splaying. Splaying moves a node that is recently
accessed towards the root of the tree by performing a
sequence of rotations along the original path from the
node to the root. Their work has shown that in amortized
sense splay trees are as efficient as both dynamically and
statically balanced trees.
Following table figure 1 summarizes the performance of
various algorithms in terms of time and space
requirement.

 Time Space

Martin &
Ness

O(N) Required stack to carry
out the traversal

A. Colin Day O(N) Little run time space is
required to hold
temporary variables but
tree has to be threaded

Chang &
Ayengar

O(N) Additional workspace
required equal to the size
of the tree.

Stout &
Warren

O(N) Only fixed amount of
space is required.

Table 1

8. Conclusion

Although it is known that if input is random, we will be
closer to a balanced tree. Still some balancing technique
is required to prevent the tree from becoming higher on
one side resulting after a series of insertions and
deletions. Ultimate goal is to maintain the tree in such
way that its height is always O(lg(n)) so that all basic
tree operations could be performed in O(lg(n)) time.
Many techniques for tree balancing have been developed
over the years and some of them have been discussed
and analyzed in this paper. Most of the algorithms are
static in nature and taking time linear to the size of input,
and in addition to that, in few cases significant amount of
space is required. Run time overhead for static
algorithms is certainly less in compared to the dynamic
algorithms but there has to be some predefined time
interval to rebalance the tree. All the balancing
algorithms presented here (apart from AVL algorithm
[1]) are made to run in two phases. First phase converts
arbitrary binary tree into some intermediate tree and in
the next phase, intermediate tree is converted into a

balanced tree. In order to create intermediate tree, each
node of the tree has to visited resulting run time
complexity to be O(N). No algorithm has been developed
so far that could balance a tree in lesser time,
consequently, there is a huge scope of improvement over
existing methods as they are lacking in one aspect or
other.

References

[1] Adel’son-Vel’skii, G.M., and Landis, E.M., 1962, An

Algorithm for the Organization of information. Soviet
Mathematics Doklady, 3, pp.1259–1263.

[2] Bayer, R., 1972, Symmetric Binary B-Trees: Data Structure
and Maintenance Algorithms. Acta Informatica, 1, pp.
290–306.

[3] Chang, H., and Iyengar S.S., July 1984, Efficient
Algorithms To Globally Balance a Binary Search Tree,
Communication of the ACM 27, 8, pp. 695-702.

[4] Day, A. C., 1976, Balancing a Binary Tree, Computer
Journal, XIX, pp. 360-361.

[5] Martin, W.A., and Ness, D.N., Feb 1972, Optimal Binary
Trees Grown with a Sorting Algorithm. Communication of
the ACM 15, 2, pp. 88-93

[6] Sleator, D.D., and Tarjon R. E., July 1985, Self-Adjusting
Binary Search Trees. Journal of The ACM, 32(3),
pp. 652-686.

[7] Stout, F., and Bette, L. W., September 1986, Tree
Rebalancing in Optimal Time and Space, Communication
of the ACM, Vol. 29, No. 9, pp. 902-908.

Vinod Prasad has Master’s
degrees in Computer Science
and Mathematics. At present,
he is pursuing his PhD in
Computer Science. His area of
research is Algorithms and
Data Structure where he is
working on Binary search tree
data structures. Vinod has
published and presented a
number of papers in national
and international journals, and
conference proceedings.

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

240

Appendix

Martin and Ness's Algorithm:

 procedure BALANCE(ROOT, LSON, RSON, n):

integer ROOT, n; integer array LSON, RSON;
begin
{T holds pointer to node to be visited during traversal,
STACK is used to store T, TOP points to the top element of STACK}
integer T, TOP, ANS; integer array STACK(I:n);
{Traverse the input tree and return a node pointer

 in ascending key order via ANS}
procedure TRAVNEXT:

begin
if T ≠ null

then begin
TOP← TOP + I;
STACK(TOP)← T;
T← LSON(T);
TRAVNEXT;
end;

else begin
ANS ← STACK(TOP);
TOP← TOP- 1;
T← RSON(ANS);

end;
end;
{Restructure pointers by partitioning}
procedure GROW(N):

integer N; {number of elements in a subset }
 begin

{T is root of a balanced subtree reflected by a subset,
LPTR is used to temporarily store the LSON of T}
integer T, LPTR;
case

N = 0 {null branch}:
begin

ANS← null;
end;

N = 1 {leaf}:
begin

TRAVNEXT;
LSON(ANS), RSON(ANS) ← null;

end;
N > 1 {divisible subset}:

begin
GROW(L(N-1)/2); {form left subtree}
LPTR ← ANS;
TRAVNEXT;
T ← ANS;
GROW((N-1)/2); {form right subtree}
RSON(T) ←ANS;
LSON(T) ← LPTR

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

241

ANS ← T;
end;

end;
end;
if n ≤ 2 then return;
T← ROOT;
TOP← 0; {initialization}
GROW(n);
ROOT ←ANS; {new root}

end;

Day’s Algorithm

procedure BALANCE(ROOT LSON, RSON, n):
integer ROOT, n; integer array LSON, RSON;
begin

integer T, LAST_VISITED, L, R, M, BACKBONE_LENGTH;
{stripe nodes off right-threaded tree to form backbone. T points
to the node to be visited, LAST_VISITED holds pointer to the last
visited node}
if n ≤ 2 then return;
T← ROOT;
while LSON(T) ≠ null do {find the first node}

begin
T ← LSON(T);

end;
ROOT ← T; {root of backbone}
LSON(ROOT) ← null;
LAST_VISITED ← T;
T ← RSON(T);
while T≠ null do {traverse}

begin
if T > 0

then begin
while LSON(T) ≠ null do

begin;
T← LSON(T);

end;
end;

else T ← -(T); {backtrack}
RSON(LAST_VISITED) ← T; {chain together}
LASTVISITED ← T;
LSON(T) ← null;
T ← RSON(T);

end;
{restructure backbone to a balanced tree. M is the number of
 transformations needed in a pass, T now points to node to be
 shifted out of the backbone, L is the left ancestor of T, R is the
 right son of T, BACKBONE_LENGTH is the number of nodes
 in the backbone}

 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

242

BACKBONE_LENGTH ← n - 1;
M ← LBACKBONE_LENGTH/2;
while M > 0 do {transform}

 begin
T ← ROOT; {move on ROOT in anticipation}
ROOT ← RSON(ROOT);
RSON(T) ← LSON(ROOT);
LSON(ROOT) ←T;
T← RSON(ROOT);
L← ROOT;
for I ←2 to M by 1 do {shift}

begin
R ← RSON(T);
RSON(L) ← R;
RSON(T) ← LSON(R);
LSON(R) ← T;
T ← RSON(R);
L ← R;

end;
BACKBONE_LENGTH ← BACKBONE_LENGTH - M - I;
M ← LBACKBONE_LENGTH/2;
end;

end;

Chang and Iyengar’s Algorithm

 {globally balance a binary search tree through folding}
 procedure BALANCE(ROOT, LSON, RSON, n):

integer ROOT, n; integer array LSON, RSON;
begin

integer N, M, ANSL, ANSR; integer array LINK(I : n);
{traverse the original tree and set up LINK}
procedure TRAVBIND(T):

integer T; {pointer to the next node to be visited}
begin

if T = null then return;
TRAVBIND(LSON(T));
N ← N + 1; {count the sequence of visit}
LINK(N) ← T; {store the pointer to the Nth node

 in the Nth element of LINK }
TRAVBIND(RSON(T));

end;
{reorganize a tree by partitioning and folding}
procedure GROW(LOW, HIGH):

integer LOW, HIGH;
begin

{MID is the median of a subset bound by LOW and HIGH,
TL is the subtree root in the balanced left half-tree,
TR is the counterpart of TL in the right half-tree.
TL, TR are returned via ANSL, ANSR, respectively}

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

243

integer MID, TL, TR;

 case
LOW > HIGH {null branch }:

begin
ANSL, ANSR ← null;

end;
LOW = HIGH {leaf } :

begin
ANSL← LINK(LOW);
ANSR ← LINK(LOW+M);
LSON(ANSL), RSON(ANSL) ← null;
LSON(ANSR), RSON(ANSR) ← null;
end;

LOW < HIGH {divisible subset}:
begin
MID ← (LOW + HIGH)/ 2;
TL ← LINK(MID);
TR ← LINK(MID+M);

GROW(LOW, MID-I);{form left subtree }
LSON(TL) ←ANSL;
LSON(TR) ← ANSR;
GROW(MID+1,HIGH);form rightsubtree}

 RSON(TL) ← ANSL;
RSON(TR) ←ANSR;
ANSL ← TL;
ANSR ← TR;

end;
end;

end;
if n ≤ 2 then return;
N ← 0; {initialize counter}
TRAVBIND(ROOT);
M ← (N + I)/ 2; {folding value}
ROOT ←LINK(M); {new root}
if N = 2 * M

then {N is even }
begin

M ← M + I; {adjust folding value}
GROW(1,M-2);
{put the node associated with M as a terminal node
left to its immediate successor}
LSON(LINK(M)), RSON(LINK(M)) ← null;
LSON(LINK(M+ 1)) ← LINK(M) ;

end;
else {N is odd} GROW(1,M-1);

LSON(ROOT) ← ANSL;
RSON(ROOT) ← ANSR;

 end;

