
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

273

Manuscript received August 5, 2007

Manuscript revised August 20, 2007

Software Process Modelling using Attribute Grammar

Rodziah Atan, Abdul Azim Abd. Ghani, Mohd Hasan Selamat, & Ramlan Mahmod ,

University Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia

Summary
The creations of models are essential for many knowledge
disciplines to explain expected results. Modelling concept is well
accepted in software engineering discipline. However, there is
still a lacking integration of software process modelling and
software process measurement by software engineers. This paper
aims to portray the idea and result of integrating measurement in
software process modelling. The objective of the integration is to
show that measurement in modelling software processes is
important whereby to reduce reworks in large software
development. This research focused on IDEF3 Standard notation
as its approach to design software process models, IDEF3-SPMA
language constructs as its medium for automatic metric
calculation and measurement metric defined specifically to fit the
research scope. Attribute grammar approach is used to specify
the measurement metrics defined. A tool is also developed to
realize the whole idea of integration and metric definition, and it
is called Software Process Measurement Application.

Key words:
Software process modelling, attribute grammar, software metrics.

1. Introduction

Developing reliable software within time scheduled and
cost estimated is a difficult task for many software
development companies. Any flaws or late delivery of a
system means a great deal for many individuals involved.
It is indeed vital to produce reliable software right on
schedule to avoid inconveniences for the developers,
vendors and users. The software community places great
hope on software modelling notations and techniques to
ease this particular software development challenge.
Software process modelling (SPM) is one of the
techniques used to creatively define and analyse
significant aspects, which can be adapted into convoluted
application development and can be used to structure a
strategic co-ordination for the development team.

Owing to the creativity and dedication of researchers in
software engineering area, there are many ways to define
software processes. SPM nowadays has even reached a
level that allows software designs to be transformed into
languages, such as architecture design language (ADL)
and unified modelling language (UML).

They were designed and created in such ways for better
understanding and usage of software process modelling
techniques. One of such ways is process modelling using
language construct [1]. The effort in using and enhancing
similar technique continues and virtual reality process
modelling language (VRPML) is one of the specifications
[2].

The selection of attribute grammar (AG) approach to
realize modelling of software processes modelling in
language construct is based on its specification and
automatic construction of language-based editors. AG also
provides a formal, yet intuitive notation for specifying a
static semantics of programming languages and has been
variously used for constructing compiler generator
systems [3]. Integrated Definition for Process Capture
(IDEF3) is the basis for Software Process Measurement
Application (SPMA - a language-based process model
analyzer system) process model design and its language
structure. The selection of IDEF3 is mainly to formalize
the software process model notation.

2. Modelling Software Process Using IDEF3
Notation

IDEF3 is a standard that was designed to formalize the
documentation and the analysing activities of an existing,
or proposed systems processes [4]. Proven guidelines
provided by the method that comes along with a language
for information capture, help users to capture and organize
process information for multiple downstream uses. Some
of the more prominent motivations for using IDEF3
standard are as below:

- To enhance the productivity of business system
analysis

- To facilitate design data life cycle management
- To support the project management process
- To facilitate the system requirements definition

process and
- To support coordinated activity and integration of

effort
Some of basic process descriptions used in business
environment are also applied in software environment

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

274

such as data design, system requirement definition,
preliminary studies of system requirement and single unit
development and system integration. The essence of
IDEF3 methodology is its ability to describe activities and
their relationship at various levels of detail. An initial
model includes parent activities that are decomposed into
lower level activities [5].

IDEF3 is divided into two parts of representing the
knowledge acquisition of a process, namely process-
centred and object-centred strategies. These two categories
of IDEF3 are for the flexibility of the users to model their
environments in which one approach they know best.
IDEF3 is like describing the real world in a form of a
model structure.

IDEF3 discussed in this paper is categorized as ‘process-
centred view’ where it uses process schematics method,
which is the primary means for capturing, managing and
displaying process centred knowledge. These schematics
provide a graphical medium that helps domain experts and
analysts from different application areas to communicate
knowledge about processes. Knowledge acquisition that
normally represented in this view includes knowledge
about events and activities, the objects that participate in
the occurrences and the constraints that govern the
behaviour of an occurrence. Figure 1 below shows an
example of process schematic activities depicted in
process-centred view.

Fig. 1 Example of IDEF3 process-centred view diagram.

Figure 1 describes that there are six processes that linked
together to represent the process flow of an activity of
‘Order Material’. The junction ‘X’ indicates that between
processes (2) – Identify potential suppliers and process (3)
– Identify current suppliers are complimented (suppliers to
be identified can only be in potential list or current list of
suppliers, they can not be in both list).

The usage of IDEF3 described in this paper is, as process
modelling standard for software process measurement

activities. The IDEF3 syntax modelling methodology
comes with a language structure of the process design. The
language is then enhanced to suit the study problem and
was named as IDEF3-SPMA language. Definitions and
specifications were given to the enhanced version of
IDEF3 language to collect measurements of software
process model designs.

3. SPMA Measurement Attributes

Software metrics is a collective term used to describe a
very wide range of activities concerned with measurement
in software engineering. One of the most ‘in use’ metric is
information collection metric for source code properties
characterization, which is the original or the classic usage
of software metrics. Reasoning about software metrics is
complex in a way that researchers have to consider almost
all thinkable reasons to be measured in order to produce a
stronger evidence of an event.

This particular research focused on the implementation of
automatic measurement calculation using attribute
grammar specifications. There are eight measurement
attributes defined which contain values and information to
calculate design metrics of software processes. Eight
attributes and their description are as follows:
• Number of calling sub-processes (CSBnum) and sub-

processes’ identification
Calling sub-process (CSB) is defined as “any
process that can be further decomposed into
smaller processes, consisting of one or more any
other elements in process structure (PS)”. The
content of CSB can be the repetition of another
CSBs or single processes, or combination of both.

• Number of single processes (SInum) and single
process identification

A single process is identified by its behaviour of
not being able to call another sub-process.
Counting the total number of single processes can
determine how wide is the process structure tree –
which immediately can denote how large is the PS
and how much effort should be needed.

• Number of Boolean sub-processes (JuncNum) and
Boolean sub-processes identification

This measurement attributes will show the number
of processes that were connected by Boolean
junctions specified by the language, i.e. AND, OR
and XOR. This attribute is required as there is a
usage of Boolean junctions permitted in the
language’s specification. The value should be able
to tell how many Boolean sub-processes are there
in the model, and their identification should be able

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

275

to describe their functions if they were named
properly.

• Number of received parameter (Innum) and parameter
identification

This measurement attributes will show the number
of parameters received by a particular process. The
value should be able to tell what parameter gets in
the process, if they were named properly, and how
many parameters the process needs in order to
accomplish its duty or duties.

• Number of passed parameters (Outnum) and
parameter identification

This measurement attributes will show the number
of parameters passed out from a particular process.
The value should be able to tell what parameter
gets out from the process, if they were named
properly, and how many parameters the process
produces after its operations accomplished.

• Number of parameters received and passed in a single
process (IOnum) and parameter identification

The total number of parameters received and
passed in a single process is a metric that counts the
total number of parameters that enters and exits a
process without any modifications.

• Total number of parameter flow (IdF)
The total number of parameter flow attribute is an
inference attribute that exists from the cumulative
values of metrics TIN, TOUT and TIO. This will
be use to calculate the ratio of process number to
parameter flow for each process.

• Size of a process structure (γ(PS))
This measurement attribute is an inference attribute
that exists from the cumulative values of metrics
CSB, SI, JUNC, TIN, TOUT and TIO. This will
indicate the size of a software process model design.

3.1 Measurement Metrics Definition

The definition of an application design that is considered
as a valid structure in SPMA environment is described as a
collection of processes, which are characterized by their
input and output relationship. A Process Structure (PS) is
defined as a set of elements that constitutes 6-tuples that
describe process behaviour and structure in IDEF3 model
notation.

Definition 4.1

where:

- CSB is a set of decomposable process that might
consist of another attribute of PS,

- SI is a set of leaf process which is the smallest unit of
module in PS,

- Ժ is a set of attribute called junction, where junction
= (&, Χ, Ơ),

- Ғ is a set of number of three types of information flow
in PS, where Ғ = (Innum, Outnum, IOnum),

- Id is a set of identifier names for CSB and SI, and
- IdF is a total number of flows for F.

Definition 4.2

Description: The total number of Id can be defined as the
summation of CSB and SI values. Every existence of CSB
and SI, they must be accompanied with an identification
that describes the process task or behaviour.

 Definition 4.3

Description: The total number of Id can be defined as the
summation of Innum, Outnum and IOnum. Every
existence of Innum, Outnum and IOnum must be
accompanied with identification to describe the parameter
task.

Definition 4.4

Description: The value of PS, γ(PS), is a positive integer
value n. The value of PS will be able to verify the “size”
of a process design, in terms of “elements in PS”, unit
measurement.

3.2 SPMA Attribute Grammar Specification

After the measurement attributes introduced, they were
defined and specified using attribute grammar
specifications, but before the measurement attributes be
specifies, they have to be formed into language rules. Thus,
IDEF3-SPMA language, a context-free language defined
in Backus-Naur Form (BNF) notation is enhanced from
IDEF3 language structure.

The value of PS, γ(PS) is the summation of
CSB, SI, Ժ and IdF.

A process structure (PS) consist of 6-tuple,
(CSB, SI, Ժ , Ғ, Id, IdF)

The total number of Id, γ(Id), is the summation
of CSB and SI.

IdF, is the total value of three types of
information flow in Ғ.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

276

This particular set of production rules is used to specify
the syntax of IDEF3-SPMA language. Each production
specifies the manner in which a particular syntactic
category (e.g. a clause) can be formed. Syntactic
categories have names, which are used in productions and
are distinguished from names and reserved words in the
language. The syntactic categories can be mixed in
productions with terminal symbols, which are actual
symbols of the language itself. Thus, by following the
productions until terminal symbols are reached, the set of
syntactically correct process models in IDEF3-SPMA
specification can be derived. IDEF3-SPMA language has
14 described production rules and they are as follows:

1. <spmadl> ::= <dll>
2. <dll> ::= PROCESS <ident>’;’ <subprocesses> END
3. <subprocesses> ::= /*empty*/ | <subprocess_spec> |
 <subprocess_spec> <subprocesses>
4. <subprocess_spec> ::= PROC <ident> <io_data>’;’
 <dl> END_PROC
5. <dl> ::= <sub_proc>| <bool_proc>| <sing_proc>| <dl>
 <sub_proc> | <dl> <bool_proc> | <dl> <sing_proc>
6. <sub_proc> ::= <ident> <io_data> ASSIGN
CALL
 ‘{‘<ident>’}’’;’| <ident> <io_data> ASSIGN SUB
 ‘{‘<proc_list>’}’’;’
7. <bool_proc> ::= <junction> <io_data>
 ‘{‘<subjunc>’}’’;’
8. <subjunc> ::= ‘[‘<proc_list>’]’ <io_data>’,’ CALL
 ‘{‘<ident>’}’’;’
9. <junction> ::= AND | OR | XOR
10.<sing_proc> ::= <ident> ASSIGN ‘{‘’}’’;’|<ident>
 <io_data> ASSIGN ‘{‘’}’’;’
11.<proc_list> ::= <ident> | <proc_list>’,’ <ident> |
 <proc_list>’,’ <junction> ‘(‘<proc_list>’)’’,’ <ident>
12. <io_data> ::= ‘(‘<var_inout>’)’
13. <var_inout> ::= <ident> <iodata> |<var_inout>’,’
 <ident> <iodata>
14. <iodata> ::= IN | OUT | INOUT

Attributes in the grammar specification should contain
values or information that will be used to calculate the
model design metrics. Every metric calculation using AG
methodology should exhibit two types of data tracking, (1)
the arrow ↑ will indicate the synthesized attributes that
bring measurement values up the syntax tree nodes, (2) the
arrow ↓ will indicate the inherited attributes that collect
the measurement values along the way down the syntax
tree nodes. Non-terminal symbols will be bracketed with
the symbol “< >”. Symbol “::=” will be used to separate
the left hand side (lhs) and the right hand side (rhs) of
production, and terminal symbols will be represented by
capital letter words. Rules that state the relations between

attributes will be enclosed with symbols “[]”, and will be
added to the respective production.

Metric that shows the total number of calling sub-
processes

 1. <spmadl>↑MCSB↑NAMEPROC↑CSB↑NAMESB ::=
<dll> ↓MCSB↓CSB
↓NAMEPROC↓NAMESB↑CMCSB↑CNAMEPROC↑CCSB↑C
NAMESB

[rule: ↓MSBC = 0, ↓CSB = 0; ↑CSB = ↑CCSB; ↑MCSB =
↑CMCSB; ↓NAMEPROC = ‘ ‘; ↓NAMEPROC =
↑CNAMEPROC; ↑NAMEPROC = ↓NAMEPROC; ↓NAMESB
= ‘ ‘; ↓NAMESB = ↑CNAMESB; ↑NAMESB = ↓NAMESB;]

Attributes ↑MCSB, ↑NAMEPROC, ↑CSB and
↑NAMESB are synthesized attributes that will hold final
values, when calling sub-process attribute values are
completely parsed. Attributes ↑CMCSB, and ↑CCSB are
current values for ↑MCSB and ↑CSB. Before attributes
↓MSBC and ↓CSB are inherited, their initial values are
set to zero and initial values for attributes ↓NAMEPROC
and ↓NAMESB are set to empty strings.

2.<dll>↓MCSB↓NAMEPROC↓CSB↓NAMESB↑CMCSB↑CN
AMEPROC↑CCSB ↑CNAMESB ::= PROCESS
<ident>↓NAMEPROC↑CNAMEPROC’;’ <subprocesses>
↓MCSB↓CSB↓NAMESB↑CMCSB↑CCSB↑CNAMESB END

[rule: ↑CCSB = ↓CSB; ↑MCSB = ↓MCSB + 1; ↓CSB =
↑MCSB; ↑CMCSB = ↑MCSB; ↓NAMEPROC = <ident>;
↑CNAMEPROC = ↓NAMEPROC]

In production 2, attributes ↓MCSB, ↓NAMEPROC,
↓CSB and ↓NAMESB are inherited to lower production
level. Value to attribute ↓MCSB is added with 1 and
passed to attribute ↑MCSB to be synthesized to upper
production level as a value for main calling sub-process.
Attribute ↑MCSB, which holds value 1 is assigned to
attribute ↓CSB to be further inherited at lower levels.
Attribute ↑MCSB, which holds value 1 is also assigned to
attribute ↑CMCSB, if there is no other lower levels
available. Attribute ↓NAMEPROC now holds a value
inside the <ident> non-terminal and is assigned to
attribute ↑CNAMEPROC to be synthesized to production
1. Attributes ↑CCSB and ↑CNAMESB carry current
values, which are assigned from lower production levels.

3. <subprocesses>↓CSB↓NAMESB↑CCSB ↑CNAMESB ::=
/*empty*/ |
<subprocess_spec>↓CSB↓NAMESB↑CCSB↑CNAMESB
 | <subprocess_spec>↓CSB↓NAMESB↑CCSB↑CNAMESB
<subprocesses>↓CSB ↓NAMESB↑CCSB↑CNAMESB

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

277

4. <subprocess_spec>↓CSB↓NAMESB↑CCSB↑CNAMESB ::=
PROC <ident>↓NAMESB↑CNAMESB <io_data>’;’
<dl>↓CSB↑CCSB END_PROC

[rule: ↓CSB = ↓CSB + 1; ↑CCSB = ↓CSB; ↓NAMESB =
<ident>; ↑CNAMESB = ↓NAMESB]

Attributes ↓CSB and ↓NAMESB are passed through
production 3 to production 4. Rules in production 4 show
that attribute ↓CSB is increased by 1, and assigned to
attribute ↑CCSB. If the process enters <subprocess_spec>
nonterminal once, the current value in ↑CCSB will
immediately be synthesized to higher production level. If
not, attributes ↓CSB and ↓NAMESB will proceed to be
inherited to lower levels.

5. <dl>↓CSB↑CCSB ::= <sub_proc>↓CSB↑CCSB |<bool_proc>
| <sing_proc> | <dl>↓CSB↑CCSB <sub_proc>↓CSB↑CCSB |
<dl> <bool_proc> | <dl> <sing_proc>

6. <sub_proc>↓CSB↑CCSB ::= <ident> <io_data> ASSIGN
CALL ‘{‘<ident>}’’;’ | <ident>↓NAMESB↑CNAMESB
<io_data> ASSIGN SUB ↓CSB↑CCSB ‘{‘<proc_list>’}’’;’

[rule: ↓CSB = ↓CSB + 1; ↑CCSB = ↓CSB;
↓NAMESB = <ident>; ↑CNAMESB = ↓NAMESB]

Attributes ↓CSB and ↓NAMESB are passed through
production 5 to production 6. In production 6, the value of
attribute ↓CSB is increased by 1, and assigned to attribute
↑CCSB. Attribute ↑CCSB carries current value of calling
sub-processes that is to be synthesized to upper production
levels. Attribute ↓NAMESB will hold a value from
<ident> non-terminal and assigned to attribute
↑CNAMESB, which represents current value of sub-
processes names that is synthesized to upper production
levels.

Metric that shows the total number of single processes

Single processes (SI) are leaf processes in a model design
tree structure. Single processes indicate the smallest unit
of process that can be produced from decomposition
activities. A single process is identified by its behaviour of
not being able to call another sub-process. Metric that
shows the calculation of the total number of single process
can be described as follows:
1. <spmadl>↑SI↑NAMESI ::= <dll>↓SI↓NAMESI↑CSI
↑CNAMESI
[rule: ↓SI = 0; ↓NAMESI = ‘ ’; ↑SI = ↑CSI; ↑NAMESI =
↑CNAMESI]
Attributes ↑SI, and ↑NAMESI are synthesized attributes
that will hold final values, after single attribute values are
completely parsed, assigned from attributes ↑CSI and
↑CNAMESI. Attributes ↑CSI and ↑CNAMESI are the

current values for ↓SI and ↓NAMESI. Before the
attributes are inherited, initial value for attributes ↓SI is
set to zero and attribute ↓NAMESI as empty strings.

2. <dll>↓SI↓NAMESI↑CSI↑CNAMESI ::= PROCESS
<ident>’;’ <subprocesses> ↓SI ↓NAMESI↑CSI↑CNAMESI
END

In production 2, attributes ↓SI and ↓NAMESI carry initial
values inherited from production 1. Attributes ↑CSI and
↑CNAMESI are synthesized attributes carrying current
values for ↓SI and ↓NAMESI.

3. <subprocesses>↓SI↓NAMESI↑CSI↑CNAMESI ::= /*empty*/
| <subprocess_spec> ↓SI↓NAMESI↑CSI↑CNAMESI |
<subprocess_spec>↓SI↓NAMESI↑CSI↑CNAMESI
<subprocesses>↓SI↑CSI↓NAMESI↑CNAMESI

4. <subprocess_spec>↓SI↓NAMESI↑CSI↑CNAMESI ::= PROC
<ident> <io_data>’;’ <dl>↓SI↓NAMESI↑CSI↑CNAMESI
END_PROC

Attributes ↓SI and ↓NAMESI are passed through
productions 3 and 4 to production 5.

5. <dl>↓SI↓NAMESI↑CSI↑CNAMESI ::= <sub_proc>
↓SI↓NAMESI↑CSI↑CNAMESI |
<bool_proc>↓SI↓NAMESI↑CSI↑CNAMESI |
<sing_proc>↓SI↓NAMESI↑CSI↑CNAMESI |
<dl>↓SI↓NAMESI↑CSI↑CNAMESI
<sub_proc>↓SI↓NAMESI↑CSI ↑CNAMESI |
<dl>↓SI↓NAMESI↑CSI ↑CNAMESI
<bool_proc>↓SI↓NAMESI↑CSI↑CNAMESI |
<dl>↓SI↓NAMESI↑CSI↑CNAMESI
<sing_proc>↓SI↓NAMESI↑CSI↑CNAMESI

In this production, attributes ↓SI and ↓NAMESI will be
inherited into three types of different production. If single
process is in calling sub-process, attributes ↓SI and
↓NAMESI will be passed to production 6, if it is in
Boolean type sub-process, attributes ↓SI and ↓NAMESI
will be passed to production 7, and if it is a single process,
attributes ↓SI and ↓NAMESI will proceed to production
10. For each option, attribute ↓SI will be increased to 1
each time a single process is encountered, and attribute
↓NAMESI will keep the value defined by <ident> non-
terminal. Attributes ↑CSI and ↑CNAMESI carry current
values cumulated from the effected productions.

6. <sub_proc> ↓SI↓NAMESI↑CSI↑CNAMESI ::= <ident>
<io_data> ASSIGN CALL↓SI↑CSI
‘{‘<ident>↓NAMESI↑CNAMESI’}’’;’ | <ident> <io_data>
ASSIGN SUB ‘{‘<proc_list>’}’’;’

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

278

[rule: ↓SI = ↓SI + 1; ↑CSI = ↓SI; ↓NAMESI = <ident>;
↑CNAMESI = ↓NAMESI]

In production 6, attribute ↓SI will be increased by 1 and is
assigned to attribute ↑CSI. Attribute ↑CSI will be
synthesized to upper production levels.

7. <bool_proc>↓SI↓NAMESI↑CSI↑CNAMESI::= <junction>
<io_data> ‘{‘<subjunc>↓SI↓NAMESI↑CSI↑CNAMESI‘}’’;’

8. <subjunc>↓S ↓NAMESI ↑CSI ↑CNAMESI ::=
‘[‘<proc_list>’]’<io_data>’,’ CALL↓SI↓NAMESI↑CSI
↑CNAMESI ‘{‘<ident>’}’’;’

[rule: ↓SI = ↓SI + 1; ↑CSI = ↓SI; ↓NAMESI = <ident>;
↑CNAMESI = ↓NAMESI]

Production 7 and 8 will be implemented for the case of
single processes’ existence in <bool_proc> non-terminal.
The value of attribute ↓SI will be increased by 1 and is
assigned to attribute ↑CSI to be synthesized to upper
levels.

10. <sing_proc>↓SI↓NAMESI↑CSI↑CNAMESI ::=
<ident>↓NAMESI↑CNAMESI ASSIGN↓SI↑CSI ‘{‘’}’’;’ |
<ident>↓NAMESI↑CNAMESI <io_data> ASSIGN↓SI↑CSI
‘{‘’}’’;’

[rule: ↓SI = ↓SI + 1; ↑CSI = ↓SI; ↓NAMESI = <ident>;
↑CNAMESI = ↓NAMESI]

In this production, the value in attribute ↓SI will be
increased by 1 and is assigned to attribute ↑CSI to be
synthesized to upper production levels. Attribute
↓NAMESI will contain the value in <ident> non-terminal
and is assigned to attribute ↑CNAMESI to be synthesized
to upper level of production.

Metric that shows the total number of junctions

Metric that shows the calculation of the total number of
junction is described as follows:
1. <spmadl>↑NUMJUNC ::= <dll>↓NUMJUNC↑NUMJUNC

[rule: ↓NUMJUNC = 0; ↑NUMJUNC = ↑CNUMJUNC]

Attribute ↑NUMJUNC will hold final values consisting
the total number of junctions found in the productions.
Attribute ↑CNUMJUNC carries current value for
↓NUMJUNC, which finally is assigned to attribute
↑NUMJUNC. Before the attribute is inherited, initial
values for attributes ↓NUMJUNC is set to zero.
2. <dll>↓NUMJUNC↑CNUMJUNC ::= PROCESS <ident>’;’
<subprocesses> ↓NUMJUNC↑CNUMJUNC END

3. <subprocesses>↓NUMJUNC↑CNUMJUNC ::= /*empty*/ |
<subprocess_spec> ↓NUMJUNC↑CNUMJUNC |
<subprocess_spec> ↓NUMJUNC↑CNUMJUNC
<subprocesses>↓NUMJUNC↑CNUMJUNC

4. <subprocess_spec>↓NUMJUNC↑CNUMJUNC ::= PROC
<ident> <io_data>’;’ <dl>↓NUMJUNC↑CNUMJUNC
END_PROC

Attributes ↓NUMJUNC is passed through productions 2,
3 and 4 to production 5.

5. <dl>↓NUMJUNC ::= <sub_proc> |
<bool_proc>↓NUMJUNC↑CNUMJUNC | <sing_proc> | <dl>
<sub_proc> | <dl>↓NUMJUNC↑CNUMJUNC
<bool_proc>↓NUMJUNC↑CNUMJUNC | <dl> <sing_proc>

In this production, only non-terminal <bool_proc> is
affected as it represents Boolean production, which
contains junctions that should be calculated.

7.<bool_proc>↓NUMJUNC↑CNUMJUNC::=
<junction>↓NUMJUNC↑CNUMJUNC<io_data>
‘{‘<subjunc>’}’’;’

In this production, non-terminal <junction> is
encountered, which means that attribute ↓NUMJUNC is
about to be increased by 1.

 9. <junction> ::= AND ↓NUMJUNC↑CNUMJUNC | OR
↓NUMJUNC↑CNUMJUNC | XOR ↓NUMJUNC↑CNUMJUNC

[rule: ↓NUMJUNC = ↓NUMJUNC + 1; ↑CNUMJUNC =
↓NUMJUNC]

In this production, the value in attribute ↓NUMJUNC will
be increased by 1 and is assigned to attribute
↑CNUMJUNC to be synthesized to upper production
levels every time a junction is encountered.

The metric calculation using attribute grammar
specification continues until it reaches the last attribute
which is, the total number data flow in, out or in-out the
processes. After all the attributes are collected, the size of
a process modelled using this language can be determined
by summing up all the metric values. To define the size of
process in IDEF3-SPMA language, let ‘Size’ be the
variable that will hold the cumulative values of defined
metrics (↑CSB, ↑SI, ↑NUMJUNC and ↑TFLOW).
Therefore, the Size = ↑CSB + ↑SI + ↑NUMJUNC +
↑TFLOW. This shows that the calculations of
measurement metrics are consistent regardless the
approach used, model or language.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

279

4 SPMA System Development

SPMA prototype system has been built in order to
automatically calculate metric for software processes in a
design. This prototype system is implemented using two
GNU C compiler tools, flex and bison, while its interfaces
are built using Java language. There are four main entities
in SPMA system. The first one is the User entity, which
representing process designers whom will be using the
system. The second entity is the Source File entity or as
described before, the input to the system (the process
model designs written in IDEF3-SPMA language). The
third entity is the Syntax Rules, consisting of a set of
syntax rules and measurement attribute calculation. The
fourth entity is the Results entity, listings the calculated
measurement attribute for a particular process model
design. Figure 2 shows the context diagram for SPMA
system.

Fig 2 SPMA system context diagram

The SPMA system runs on LINUX platform, which
contain additional support for lex and yacc execution. Lex
and yacc (or another version named as flex and bison) are
tools designed to write compilers or interpreters (Mason
and Brown, 1990). The structure of implementation stage
taken by SPMA system using these two tools is as Figure
3 indicates.

4.1 SPMA Execution Description

There are four phases of operation in order to execute
SPMA system. The first one is to get a problem or a
requirement of a system, then the user must represent the
process model in IDEF3 description before moving on to
stage three, i.e. converting the representation into IDEF3-
SPMA language accordingly to the defined syntax rules.
After that, if there is no syntax error found in the input
lines, SPMA tool will execute and read the input to
calculate its measurement metrics determined by the

Fig 3 Using flex and bison for SPMA implementation

system, otherwise, error messages will be listed out.
Represented below is the example of how the system can
be used.

Phase 1: Get a scenario or a problem to be solved, where

it should draft the module’s process flow before
representing them in IDEF3. The flow may looks like
Phase 2 below (or other flow, accordingly to the
personnel’s problem solving skill):

You are required to build a module that will
be attached to an XYZ Company Bidding
System. Your module should be able to list
all biddings which fall into reasonable range
of + and – values compared to original
tender.

Sign,
Software Project Manager

Phase 2: Represent the problem scenario in IDEF3
representation as shown in Figure 4.

Process flow for Read-Rank-Bid Module:
1. Read bid
2. Compare the bid with the tender price, get the

difference (either + or -)

User

Source
File

Attribute
Grammar
Rules

Tabulated
results

SPMA
System

System
invocation Syntax rules

Token
identifiers

Metric values

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

280

3. Store the bidding with a reference number in
BID database

4.Put a rank for the bid as per recent
application

5. At closing date and time, list all biddings with
reasonable ranged values, with its associative
ranking.

6. Indicate the processes in IDEF representation
as Figure 4 suggested.

Fig 4 Corresponding IDEF3 representation for problem Bid.

Phase 3: Convert IDEF3 representation into
IDEF3-SPMA language

 process Read_Rank_Bid;
 proc read_bid (bid_id inout);
 read_bid :: {};
 end_proc
 proc comp_bid (id in, rank out, diff out,

sorted out, ref out);
 comp_bid (id in, rank out, diff out, ref out) ::

sub {get_diff, put_rank}; get_diff (id in, diff
out) :: {};

 put_rank (diff inout, ref out) :: sub {sort,
assoc_ref};

 sort (diff in, sorted out) :: {};
 assoc_ref (diff inout, ref out) :: {};
 end_proc
 proc store_bid (id inout, rank in, diff in,

sorted in, ref in);
 store_bid :: {};
 end_proc
 proc generate_report (id inout, rank out, diff

out, sorted out, ref out);
 generate_report :: {};
 end_proc

 end

Phase 4: Run SPMA <inputfile>, and measurement
metrics will be calculated and be displayed by opening the
output file as shown in Figure 5.

Fig 5 An excerpt of corresponding output for problem Bid.

5. Results and Discussion

Design phase is the most crucial and important part in
developing software systems. From the output generated
by SPMA system, the developer can view their process
model design. However, a simple module like the example
shown may not have a great impact from the usage of
SPMA system, but when it is used for larger system,
which requires more processes and build by separated
teams, SPMA system can be very helpful in forecasting
the difficulty of a ‘to-be-built’ software system.

Other characteristic of this language-based metrics
calculation tool is that it provides suggestions or advises
for the users. The appropriate advice will be appended to
the output file in terms of clarifying the meanings of the
stated list of output. Advice in this context means to
narrate the metric values and define what’s “Good” with
the produced metric values (Westfall, 2003). Based on
survey to six software analysts and process design experts
(expert here means more than 10 years of experience in
software design and development), the process model
design size produced by this study is divided into three
categories. Corresponding advices are given to define the
“Good” out of the size value produced. The advices for the
three categories are defined as follows:

1. Small: This category is for designs with size ranged

from 1 to 300 elements in process structure. The
advice given to this range is “This design falls into
small model design category. The design can be

Read-Rank-Bid

1

Read bid

1.2

Compare bid

1.3

Store bid and
rank

1.4

Get difference

1.3.6

Put rank

1.3.7

Generate report

1.5

Sort bid by
difference

1.3.7.8

Associate with
reference no.

1.3.7.9

id
ref

diff

rank

ref
rank

id

diff

diff

diff

rank

ref
id

diff

rank

rank diff ref
id

id

sorted

sorted

sorted

sorted

sorted

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

281

implemented by three (3) persons per team within
four (4) months.

2. Medium: This category is for designs with size
ranged from 301 to 1000 elements in process
structure. The advice given to this range is “This
design falls into medium model design category. The
design can be implemented by three (3) persons per
team within eight (8) months.

3. Large: This category is for designs with size ranged
from 1000 and above elements in process structure.
The advice given to this range is “This design falls
into large model design category. The design can be
implemented by three (3) persons per team within
sixteen (16) months.

The narrated version of measurement values can be a more
simple way in terms of categorizing process designs (Atan,
2005).

6. Conclusions

This research studies issues regarding the use of language
to measure software process model design automatically.
In order to achieve its objectives, this research has to
scrutinize some related issues. The issues are such as
software process model standards, languages for systems’
model design, design language translator, automatic
process design metric collection, measurement metrics
definition and what is “good” about the metric values
produced. A set of measurement metrics has been defined,
proved and tested accordingly. The metrics are then
validated and verified to ensure their effectiveness.

Since the research is about automatic software design
measurement metric calculation, there must be certain
notation or method to be followed by the designers. This is
to ensure the uniformity of the design structure to be
measured. Thus, a standardized approach is set to be the
design technique and a language performing the design in
language form is created in order for the design to be
automatically executed and measured.

This research shows that automatic collection of software
process design measurement is able to ease designers in
means of preliminary evaluation of their designs based on
the verification of system. This research also produced a
tool through extension of IDEF3 Standard, called SPMA
that executes as a static analyser to IDEF3-SPMA
language, which then summarizes and lists process model
designs’ measurement metric attributes.

References
[1] Osterweil, L.J. Software Processes Are Software Too,

Revisited. In Proceedings of the 19th International
Conference on Software Engineering. 1997; 540-548.

[2] Zamli, K.Z., Isa, N.A.M. and Khamis, N. The Design
and Implementation of the VRPML Support
Environment. The Malaysian Journal of Computer
Science. 2005; 18(1).

[3] Frost, RA. Constructing Programs as Executable
Attribute Grammars. The Computer Journal 1992; 35
(4).

[4] Mayer RJ, Menzel CP, Painter MK, DeWitte PS,
Blinn T. and Perakath B. Information Integration for
Concurrent Engineering (IICE): IDEF3 Process
Description Capture Method Report. KBSI College
Station, 1995. Texas Interim Technical Report for
Period April 1992. 1995.

[5] Zakarian, A. and A. Kusiak, Analysis of Process
Models. IEEE Transactions on Electronics Packaging
Manufacturing. 2000; 23(2): 137- 147.

[6] Mason, T. and Brown, D. UNIX Programming Tools:
lex & yacc. O’Reilly and Associates Inc., 1990.

[7] Westfall, L.L. Seven Steps to Designing a Software
Metric. Benchmark QA: White Papers.
http://www.benchmarkqa.com/index_resources_white
papers.htm. Accessed on 13th January 2006.

[8] Atan, R. Use Of An Attribute Grammar For Software
Process Measurement. Ph.D. Dissertation. Faculty of
Computer Science and Information System,
University Putra Malaysia. 2005.

Rodziah Atan received a
Bachelor’s degree in Computer
Science in 1996 from Agricultural
University of Malaysia and Master
Science in 1998 from Universiti
Putra Malaysia. With research
experience while her M.S. studies,
she completed her PhD from the
same university in 2005. She has
been supported by the government
of Malaysia and the University’s
Young Lecturer Scheme (SLAB).
Her field of interest is software

process and business process modeling and pursuing for new
knowledge in bioinformatics visualization tools. She is now one
of the lecturers cum researcher in Universiti Putra Malaysia.

