
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

282

Manuscript received August 5, 2007

Manuscript revised August 20, 2007

Ontology-Based Method Engineering

Ali Niknafs, Mohsen Asadi, Hassan Abolhassani

Sharif University of Technology, Computer Engineering Department, Tehran, Iran

Summary
The emerging field of semantic web technologies promises
new stimulus for Method Engineering. However, since the
underlying concepts of the semantic web have a long
tradition in the knowledge engineering field, it is
sometimes hard for method engineers to overlook the
variety of ontology-enabled approaches to Method
Engineering. In this paper we present an example of
ontology application within the Method Engineering and
its most popular approach assembly-based Method
Engineering. Therefore, we propose an ontology-based
approach to Method Engineering by adopting assembly-
based approach and augmenting it with ontology concept.

Key words:
Ontology, Method Engineering, Assembly-based Method
Engineering

1. Introduction

The word “ontology” comes from the Greek ontos, for
“being”, and logos, for “word”. In philosophy, it refers to
the subject of existence, i.e. the study of being as such.
More precisely, it is the study of the categories of things
that exist or may exist in some domain. A domain
ontology explains the types of things in that domain.
Informally, the ontology of a certain domain is about its
terminology, all essential concepts in the domain, their
classification, their taxonomy, their relations, and domain
axioms. The ontology is an extremely important part of the
knowledge about any domain. Moreover, the ontology is
the fundamental part of the knowledge, and all other
knowledge should rely on it and refer to it. There are many
definitions of the concept of ontology in AI and in
computing in general. The most widely cited one is
“Ontology is a specification of a conceptualization” [1].
Ontologies provide a number of useful features for
intelligent systems, as well as for knowledge
representation in general and for the knowledge
engineering process.

In this paper we provide a comprehensive description
of the Method Engineering discipline, its tool support, and
the most popular approach to Method Engineering, called
assembly-based Method Engineering. Thereafter, we

propose an ontology-based approach to Method
Engineering by adopting assembly-based Method
Engineering presented in [2]. In our approach we develop
a semantic system to define the semantics of method
fragments and perform the Method Engineering activities
based on the ontology defined for the Method Base.

2. Method Engineering

The general conclusion derived from former researches in
Method Engineering literature is that there is no one
general-purpose information systems development method
that can be applicable to all different situations. Thus, they
will undoubtedly require project-specific methods and
tools for supporting them. Situational Method Engineering
(SME) aims at providing techniques and tools allowing to
construct project-specific methods instead of looking for
universally applicable ones.
Assembly-based Method Engineering which is the most
popular approach to Method Engineering, is characterized
by using reusable method portions, called method
fragments or method chunks, which can be extracted from
several existing methods [3]. A method fragment can be
either a product fragment or a process fragment. A product
fragment captures product related knowledge of methods
whereas a process fragment captures activity related
knowledge. Product fragments are deliverables, documents,
models, diagrams or concepts. Process fragments are
stages, activities and tasks to be carried out [4].
Computerized support of Method Engineering needs the
method fragments to be stored in a repository called
Method Base. In [2] three distinct approaches to SME are
proposed. The assembly-based approach consists of three
steps: specify method requirements, selecting method
fragments, and assembling them. Extension-based SME
aims at adapting and extending an existing method with
new features. Whereas, in paradigm-based approach a new
method is developed by instantiating, abstracting or
adapting an existing meta-model.

A new method design approach composed of several
SME approaches is proposed in [5]. This approach of
method design uses the alternative method engineering
approaches for different parts of the process and at
different levels of abstraction. It also provides a

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

283

framework allowing flexible application of four method
development approaches namely:

• Instantiation approach: with the focus on
instantiating an already available process meta-model;
• Artefact-oriented approach: devising a seamless
complementary chain of artefacts and building the
process around it;
• Composition approach: using one of the already
available libraries of process patterns; and
• Integration approach: integrating features, ideas and
techniques from existing methods.
Two of these approaches, Instantiation and

Composition, are analogous to the Paradigm-based and
Assembly-based approaches, respectively, while the
Integration approach is particularly nonconformist in
comparison to usual method engineering practices, in that
it promotes integrating ideas and techniques directly from
existing methods, instead of first dissecting the methods
into method fragments and then store them in a method
repository, as is common practice in assembly-based
method engineering approach. The notion of this approach
is that breaking down the methods into fragments may
result in loss of functional capacity. Thus, Integration and
Artefact-oriented approaches are relatively novel in this
concept. Any of these approaches can be used for
designing the method.

2.1. Assembly-Based Method Engineering

Assembly-based method engineering approach, also
known as Reuse technique [3], is the simplest way to build
new information systems development methods. In this
approach, components of existing methods, called method
fragments or method chucks, are extracted and stored in a
repository known as Method Base. Method fragments are
subdivided into two main categories: conceptual method
fragments and technical method fragments [6]. A
conceptual method fragments is either a product fragment,
or a process fragment. A product fragment describes a
product of the information systems engineering process. A
process fragment describes the activities carried out to
develop a product fragment. Technical method fragments
describe the automated tools (CASE tools) supporting the
information systems engineering process, and are
subdivided into three categories: tool fragment, repository
fragment and process manager fragment. A tool fragment
describes part of the CASE tool functionality. A repository
fragment describes part of a data base. A process manager
fragment guides the CASE tool user through part of the
method, thereby connecting process fragments, product
fragments and tool fragments.

The approach to assembly-based Method Engineering
presented in [2] aims at constructing a method in order to
match as well as possible the situation of the project at
hand. It consists in the selection of method fragments from

existing methods that satisfy some situational requirements
and their assembly. This approach is requirements-driven,
meaning that the method engineer must start by eliciting
requirements for the method. Next, the method fragments
matching these requirements can be retrieved from the
Method Base. And finally, the selected fragments are
assembled in order to compose a new method or to
enhance an existing one. As a consequence, the three key
intentions in the assembly-based method engineering
process are: Specify Method Requirements, Select Method
Chunks and Assemble Method Chunks. Figure 1 depicts
this assembly-based process model for Method
Engineering. According to the presented approach, in the
last two steps, i.e. selection and assembling the method
chunks, semantics of methods need to be considered.

Fig 1. Assembly-based Method Engineering (adopted from [2])

For example, deciding whether two chunks can be

assembled to a new method requires the semantic
definition of them, because these kinds of decisions cannot
be done by means of concrete and syntactical definitions
of methods. However selection of suitable method
fragments based on method requirements is a major
problem in assembly-based method engineering. To
overcome this problem, we need to define semantic
aspects of methods.

2.2. Tool Support

Method Engineering is such a complex and error-prone
process that cannot be properly performed without any
automated support. This automated support is provided by
Computer-Aided Method Engineering (CAME)
environments. A CAME environment is composed of a set
of correlated tools aiming to facilitate, in its ideal form, the
entire process of Method Engineering. CAME technology
dates back to the early days of Method Engineering by the
introduction of several academic prototypes. CAME
environments are divided into two parts. The CAME part
provides facilities for Method Engineering, whereas the
CASE part offers facilities for the generation of CASE
tools and process managers. The set of Method
Engineering tools and the Method Base form the main

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

284

elements of the CAME part. The Method Engineering
tools offers a set of tools for facilitating the work of
method engineers, e.g. for extracting components of
existing methods and storing them in the Method Base.
The Method Base on which CAME environments are built,
forms the kernel of the CAME environment. The obtained
method from the CAME part will be given as input to the
CASE part. The CASE Generator gets the product part of
methods and generates the project specific CASE tool.
Process Generator differs from the CASE Generator in that
it generates process managers based on the process part of
methods. We believe that semantic meta-models are a
prerequisite of any CAME environments’ Method Base,
but a few of the existing CAME environments address this
issue. Lack of fragments’ semantical aspects leads to
complications such as selection and assembling method
fragments that may be not semantically composable to a
method. However, describing semantics of method
fragments is one of the major problems in SME. To
overcome this problem, method fragments need to be
described in a complete and unambiguous way.
Nevertheless, as stated in [6], since methods and their
semantics are interpreted differently by different human
beings, there is no unique meaning of a method fragment.
However, method fragments can be anchored, i.e.
described in terms of unambiguously defined concepts and
relationships between those concepts, in a system of which
the meaning is defined.

The necessity of semantic-based Method Engineering
has been stated in previous researches [7, 6, 8, 3]. The
term Ontology-Based Method Engineering has been
proposed for the first time in [8]. However, a few efforts
have been done to consider the semantic aspects of
information systems development methods. The first
attempt to define semantics of method fragments is done in
a work proposed in [7]. In this paper a semantic data-
model has been presented from [4], called ASDM, which
is applied in Methodology Representation Model and its
corresponding Methodology Representation Tool
(MERET). Methodology Data Model (MDM) and process
classification system proposed in [6] are the most
comprehensive systems providing facilities to define
semantics of method fragments. Decamerone CAME
environment provides facilities to define semantics of
method fragments. An ontology for product fragments and
a process classification system for any method fragments
are defined to achieve semantic aspects of method
fragments. The proposed ontology is called the MDM
which consists of basic concepts of information systems
development products and the associations between them.
The process classification system employs the notion of
goal which is represented as a tuple (Action, Measure,
Product). Goals are taken from a process classification,
consisting of a set of basic actions in ISD, a set of
measures, and a set of product types required in ISD. Basic

actions are those actions in ISD with the same effect; a
product type is a class of products in ISD with the same
purpose, and measure is a qualifier of a product, to
indicate temporal state, level of detail, or level of
abstraction.

3. Semantic Definition in Method Engineering

In this section, first we summarize some of the efforts
done toward the definition of methods’ semantic in
Method Engineering research area. Afterwards, we
propose our ontology for the Method Base.

The first attempt to define semantics of information
systems development methods has been proposed in a
work done in order to development of a methodology
representation model and its corresponding CAME
environment called Methodology Representation Tool
(MERET). The semantic notation developed during the
MERET project is called ASDM. The next work done
toward definition of semantic aspect of methods has been
proposed in [6] as an ontology for describing product
fragments and a process classification system for
describing all of the method fragments.

3.1. ASDM

ASDM provides a rich data structuring capability of
modeling objects and the relationships between them.
ASDM developed at the Institute for Information
Management at the University of St. Gallen. We
concentrate briefly on the fundamental concepts in ASDM.
ASDM provides a graphical notation and distinguishes
between object types and relationship types. An object
type provides the description of the structure of a class of
individual objects of a certain reality, i.e. instances. This
classification of individual objects is a method of
abstraction which ignores differences among elements in
order to form a generic class. Object types are represented
by named boxes. ASDM further provides directed and
binary associations between two object types. Associations
are distinguished in inheritance, aggregation or horizontal
relationships. Horizontal relationships represent a
functional dependency between two object types.
Horizontal relationship is directed.

An object type can be classified from different points
of view. Therefore, the instances of that object type belong
to more than one sub type. An inheritance relationship set
is a group of inheritance relationships from one object type
to others where the object type is classified by one certain
view.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

285

3.2. Methodology Data Model and Process
Classification System

Methodology Data Model (MDM) proposed as a semantic
data-model [6], provides concepts in order to define
semantics of method fragments. An ontology for product
fragments and a process classification system for any
method fragments are defined to achieve semantic aspects
of method fragments. The proposed ontology is called the
MDM which consists of basic concepts of information
systems development products and the associations
between them. The process classification system employs
the notion of goal which is represented as a tuple (Action,
Measure, Product). Goals are taken from a process
classification, consisting of a set of basic actions in ISD, a
set of measures, and a set of product types required in ISD.
Basic actions are those actions in ISD with the same
effect; a product type is a class of products in ISD with the
same purpose, and measure is a qualifier of a product, to
indicate temporal state, level of detail, or level of
abstraction. Description of semantics of method fragments
is one of the major problems in Method Engineering. To
alleviate semantic problems, method fragments are
described in terms that are defined as complete and
unambiguous as possible. Assembly should also be based
on the semantics, and ideally pragmatics, of each method
fragment involved, rather than on abstract or concrete
syntax. One way to achieve this is to characterize method
fragments with as many properties as possible. The
problem with this approach is, however, that there are few
relationships defined between properties. Moreover,
semantics of property value types are in most cases of a
rather coarse granularity, which makes them less suitable
to provide method fragment semantics. And third,
completeness of a description in terms of individually
defined properties is hard to prove. Method fragments
should be anchored, i.e. described in terms of
unambiguously defined concepts and, possibly,
associations of an anchoring system Γ. The anchoring
function α:M→γΓ, the interpretation function, maps
method fragments in M on a subset of the anchoring
system. Because mappings need to be unambiguous, α is a
bijection function. In principle, the anchoring system
prescribes the set of possible method fragments, and is
therefore limitative.

An ontology, in the sense of which it is being used in
the knowledge-based systems field, is considered an
anchoring system with concepts and relationships between
those concepts. An ontology for method fragments is an
anchoring system Δ=<θ, ψ, φ> where is a set of
unambiguously defined concepts of IS engineering
methods, ψ a set of associations, and φ: θ × ψ → θ a
function relating elements of θ with elements of � through
an association that is an element of ψ. An ontology may be
an abstraction of other ontologies; in this interpretation,

the Method Base itself is also an ontology, but for the ME
level instead of the ISEM level. Note that we, in contrast
to other authors but in accordance with, reserve the term
ontology for a structured system, to be as clear as possible
and to prevent overloaded terminology. This is the reason
why we have introduced the more general term anchoring
system, which also includes non-structured systems.
The Methodology Data Model is defined as a structure
ΔMDM=<CN0, A0, β> with:

• CN0, the set of MDM concepts,
• A0, the set of MDM associations, and
• β:CN0×A0 →CN0, a function mapping MDM

concepts and MDM associations on MDM
concepts.

Whereas the MDM only addresses product fragments
and repository fragments, because it defines the semantics
in terms of structure, the process classification system can
be used to define any type of method fragment, because it
employs the general notion of goal. Goals consist of three
components: basic actions, result types (also called
product types), and the states a result type can be in (also
called measures). A basic action is a class of actions in IS
engineering each having the same effect. A result type is a
class of products in IS engineering each having the same
purpose. A state is a qualifier of a product type, to indicate
temporal state, level of detail, or level of abstraction. See
[6] if the complete definition is necessary for
understanding MDM and its concepts. The second type of
anchoring system proposed in [6] is a process
classification system. Processes identified apply to any
engineering process, be it, for instance industrial
engineering, mechanical engineering, or information
systems engineering. In order to capture the specific
semantics of IS engineering; these processes should be
considered in their context, i.e. the results they achieve.
This requires, besides a process classification, also a
classification of results, often the products delivered by the
processes. Anchoring systems formally capture the
semantics of method fragments as much as possible. They
prescribe the possible relationships between the
elementary building blocks of method fragments, and they
provide a uniform definition of these building blocks. It is
important to notice that there always remains a non-
formalisable part in the anchoring system: the definition of
the concepts in natural language. It is also important to
point out that there are several ways to capture method
fragment semantics.

3.3. An Ontology for the Method Base

In this subsection we present our ontology designed
specifically for the Method Base. As shown in Figure 2,
the root object of this ontology is the Method Base itself
which is partitioned into Method fragments and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

286

Administration. The latter consists of the activities
performed to monitor the entire Method Base. Method
fragments can be of two main kinds, Conceptual fragments
and Technical fragments. Conceptual fragments itself
partitioned into Product fragments and Process fragments.
Relationships between method fragments are of three
kinds. Aggregation, Association, and Inheritance
relationships, where the latter one demonstrates the
Generalization/Specialization relationship between
fragments. Technical fragments can be Tool fragment,
Process Manager fragment, or Repository Fragment.

Method fragments need to be described in a formal
way to enable the automated support of Method
Engineering provide by CAME environments. In this
regard, method representation languages have been
defined. These method representation languages are of
three kinds. Most of them are graphical languages which
are known as meta-modeling languages. The other
languages offer textual constructs in order to represent
methods and parts thereof. Some existing languages
provide facilities to describe information systems
development methods in both graphical and textual
manners. Therefore, we defined the Representation
Mechanism class in order to state the manner in which
methods are described. This class is further partitioned into
three subclasses: Graphical, Textual, and
Graphical/Textual.
In the proposed approach in [9] method fragments are
formalized by a couple <situation, intention>, which
characterizes the situation that is the input to the fragment
process and the intention (the goal) that the fragment
achieves.

In this regard, we defined the subclasses Intention and
situation and their corresponding object properties
hasIntention and hasSituation respectively. On the other
hand, we have defined another set of classes to describe

the activities related to administration of the Method Base.
The Administration class is further partitioned Actions and
Rules, where the latter describes the rules and constraints
defined for the former one. Action class consists of usual
database operations such as Store, Retrieve, Update, and
Delete. Rules are consisted of any kind of constraint can
be defined for method fragments and their relationships.
The major rules identified are Connectivity, e.g.
Connectivity of diagrams, Consistency of selected method
fragments to constitute in a method, Conformity with the
meta-model defined for product and process models of
methods, Completeness of methods and parts thereof.

3.4. Advantages of Ontologies in Method
Engineering

Description of semantics of method fragments is one of the
major problems in Method Engineering. To alleviate
semantic problems, method fragments are described in
terms that are defined as complete and unambiguous as
possible. Assembly should also be based on the semantics,
of each method fragment involved, rather than on abstract
or concrete syntax. One way to achieve this is to
characterize method fragments with as many properties as
possible. The problem with this approach is, however, that
there are few relationships defined between properties.
Moreover, semantics of property value types are in most
cases of a rather coarse granularity, which makes them less
suitable to provide method fragment semantics. And third,
completeness of a description in terms of individually
defined properties is hard to prove [6].

Defining semantics of information systems
development methods and their fragments has several
advantages. First of all, as mentioned earlier in this paper,

Fig 2. Overview of the proposed ontology

assembly-based Method Engineering is the most popular
approach to build new methods. In this regard, selecting
the best method fragments fitted to the project-specific
method is the hardest part, because selection of method

fragments should not be only based on syntactical aspects
of method fragments. As a result, by ignoring the semantic
aspects of fragments, severe problems occur in selection
and assembly of method fragments, e.g. to decide whether

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.8, August 2007

287

or not two selected method fragments can be assembled to
a unique method, we need to access to the semantics of
those fragments. Other advantages of the definition of
method fragments consist in semantic search of method
fragments, checking semantic consistency of fragments,
and other checks such as semantic completeness, semantic
conformity with the meta-models of product and process
models.

4. Conclusion and Future Works

There is some discussion about how ontologies and
Software Engineering fit together, and how both
communities can learn from each other. We presented the
application of ontologies in Method Engineering discipline.
As stated in this paper, description of semantics of method
fragments is one of the major problems in Method
Engineering. Furthermore, in subsection 3.3, we proposed
an ontology-based approach to Method Engineering. In
this regard, we present a graphical notation of semantic
data-model called ASDM, and an ontology for method
fragments called MDM. These two semantic systems fall
short in addressing the administration issues of the Method
Base. However they deal only with method fragments, and
do not specifically provide support for the Method Base.
Therefore, they cannot be considered as comprehensive
ontologies addressing semantics of methods and parts
thereof. Our proposed ontology not only addresses the
product and process part of methods, but also
administration issues of the Method Base. Another
advantage of our approach is to conclude another type of
method fragments called Technical fragments. In this
regard, we developed another class to conclude this
concept and three subclasses of it. Our future work
includes development of a CAME tool supporting the
Hybrid method design approach [5]. We have planned to
develop an ontology-based Method Base. In this regard,
we have to apply such an ontology proposed in this paper.
However, some shortcomings can be considered in our
work. For example we did not consider concepts such as
actor and role to present the human aspect of method
development. A comprehensive ontology for the Method
Base needs to address all aspects of the information
systems development methods.

Acknowledgments

The authors wish to thank the anonymous reviewers whose
feedback helped improve this paper.

References
[1] Gasevic, D., Djuric, D., Devedzi, V. Model Driven

Architecture and Ontology Development. Springer-
Verlag, 2006.

[2] Ralyté, J., Deneckère, R., Rolland, C. Towards a
Generic Model for Situational Method Engineering.
2003.

[3] Saeki, M. CAME: The First Step to Automated Method
Engineering. 2003.

[4] Rolland, C. A Primer for Method Engineering.
Toulouse, France, 1997.

[5] Ramsin, Raman. The Engineering of an Object-
Oriented Software Development Methodology. Ph.D
Dissertation, University of York, 2006.

[6] Harmsen, Anton Frank. Situational Method
Engineering.Moret Ernst & Young , 1997.

[7] Heym, M., Osterle, H. A Semantic Data Model for
Methodology Engineering. Amsterdam, North-Holland,
1992. pp. 215-239.

[8] Rosemanna, M., Green, P. Developing a meta model
for the Bunge–Wand–Weber ontological constructs.
2002. pp. 75-91.

[9] Mirbel, I. Method Chunk Federation. EMMSAD'06.
2006.

[10] Happel, H. J., Seedorf, S. Applications of Ontologies
in Software Engineering. 2004.

[11] Leppanen, Mauri. An Ontological Framework and a
Methodical Skeleton for Method Engineering. Ph.D
dissertation, University of Jyväskylä, 2005.

[12] Leppanen, M. Conceptual Analysis of Current ME
Artifacts in Terms of Coverage: A Contextual
Approach. Paris, France. 2005.

Ali Niknafs M.Sc. student of Software
Engineering at Sharif University of
Technology, Iran. Currently working on a
research project to develop a Computer-
Aided Method Engineering environment
supporting the Hybrid Method Design
approach.

Mohsen Asadi M.Sc. student of Software
Engineering at Sharif University of
Technology, Iran. He is now working on a
research project aiming at extracting Method
Engineering process patterns in order to
define the generic process model of Method
Engineering discipline.

Hassan Abolhassani received his Ph.D. from Saitama University
of Japan with a thesis on Automatic Software Design focusing on
Learning from Human Designers. His areas of academic research
include Software Automation, Semantic web researches,
knowledge-based software design, and design patterns.

