
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 

 

39 

Manuscript received  September 5, 2007 

Manuscript revised  September 20, 2007 

Synthesis of  Multi–Mode  Memory Interfaces for FPGA 

Reconfigurable Computing Machine 

Joonseok Park††, 
  

Inha University, School of Computer Science and Engineering,   
Inchon, Republic of Korea 

 
Summary 
Multi-core reconfigurable architectures where soft-cores 
can be programmed over a reconfigurable substrate such 
as in an FPGA are a reality. For these target architectures 
it will become imperative that high-level mapping tools 
can synthesize and estimate the impact of high-level 
transformations in the overall design in terms of speed 
and area. The lack of support for external memory 
operations in current synthesis tools substantially 
increases the complexity and the burden on designers in 
the mapping of applications to FPGA-based computing 
engines. In this paper we address the problem of 
synthesizing and estimating the area and speed of 
memory interfacing for Static RAM (SRAM) and 
Synchronous Dynamic RAM (SDRAM) with various 
latency parameters and access modes. We describe a set of 
synthesizable and programmable memory interfaces a 
compiler can use to automatically generate the 
appropriate designs for mapping computations to FPGA-
based architectures. Our preliminary results reveal that it 
is possible to accurately model the area and timing 
requirements using a linear estimation function. We have 
successfully integrated the proposed memory interface 
designs with simple image processing kernels generated 
using commercially available behavioral synthesis tools. 

Key words: 
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1. Introduction 

As the densities of current FPGA continue to grow it is 
now possible to generate System-On-a-Chip (SoC) 
designs where multiple computing cores are connected to 
various memory modules with customized topology with 
application specific memory access patterns. For example, 
Xilinx has recently introduced devices to which a paired 
down version of a PowerPC core can be mapped and 
connected to a set of internal memories. 

Given the complexity and heterogeneity of these 
target architectures, it is very likely that high-level 

compilation tools will be required to perform a wide 
variety of high-level program transformations. In order to 
determine the impact of these transformations in the 
resulting designs in terms of area and speed these tools 
will have to make use of fast and accurate estimation data.  

Unfortunately, most commercially available 
synthesis tools for FPGAs have mostly ignored system 
level issues when dealing with external memories. While 
some tools now incorporate internal RAM modules and 
the mapping of array variables to them, they have avoided 
all external memory interfacing issues and corresponding 
estimation of the appropriate interfaces. Typically, 
programmers must separately synthesize the datapath if 
they want to exploit the estimation capabilities of the tools 
and then integrate those designs with handcrafted 
memory interfaces. 

In this paper we address these shortcomings by 
designing and validating the implementation of a family 
external of memory controllers for FPGA-based 
computing systems. The main objective is to allow 
compilers and other high-level synthesis tools not only to 
synthesize these interfaces taking advantage of a wide 
range of parameterization attributes, but also to estimate 
its area and timing in the overall design. 

Specifically, this paper makes the following 
contributions: 
· It describes a set of parameterizable memory 
controllers that are capable of signaling a wide variety of 
external memories with different latency parameters as 
well as number of channels. 
· It presents concrete experimental results of the 
implementation of sample memory controllers for both 
Static RAM (SRAM) and Synchronous Dynamic RAM 
(SDRAM) memory modules. 
· It presents the corresponding area and timing 
estimates and suggests a simple linear estimation function 
for this family of memory controllers compilers can use to 
estimate area and timing performance. 
· It presents results validating the proposed approach 
for a selected set of digital signal processing kernels 
where the datapath were integrated with the proposed 
memory interfaces for an SDRAM memory with page 
mode operations. 
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An important aspect of our approach is the decoupling of 
the datapath design, or application specific core design, 
with the development and synthesis of the external 
memories interfaces. To this effect we have designed a 
decoupled memory control scheme [9] that allows the 
developed of the actual computation core to be develop 
using commercially available synthesis tools. In this work 
we have extended our previous work with the addition of 
a more generic memory controller capable of both SRAM 
with and without pipelined memory accesses, with 
SDRAM with and without page-mode memory accesses. 

The rest of this paper is organized as follows. In the 
next section we describe our overall memory controller 
architecture as an extension of our own previous work. 
Section 3 presents experimental results. Section 4 
describes related work and we conclude in section 5 

2. External Memory Controller 

We now describe the basic architectural features of the 
family of memory controllers we have designed and 
evaluated for FPGA-based machines.  The basic structure 
is depicted in Figure 1 where we have illustrated the 
application of the memory controller directly feeding a 
datapath core. 

Associated with each data port in the datapath 
design there are FIFO queues. FIFO queues are an 
integral part of the design to help tolerate the latency of 
memory operations as well as isolate the issues of 
scheduling in the datapath from the implementation of the 
memory operations, in particular when dealing with strict 
timing constraints. 
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Fig. 1. Memory Controller Architecture. 

Associated with each FIFO queue we define the 
notion of channels. A channel defines several other 

resources in the architecture, such as the setting in the 
Address Generation Unit (AGU) and which of the FIFOs 
is to store the data that is to be read/written for each of the 
datapath ports. 

This architecture has a channel controller module 
that performs the external memory signaling for all of the 
channels and feeds the data into the FIFO queues. This 
design, while this is not the only design possibility for 
these data engines, it is a very modular approach that has 
been tested successfully in the context of a compiler that 
maps applications directly to FPGA [9]. 

The fundamental feature of this design is that is 
decouples the synthesis of the datapath with the synthesis 
of the memory controller and therefore insulates the 
physical memory access protocol with the issues of 
behavioral synthesis – including scheduling of memory 
accesses.  These features come at the price of an extra 
virtualization layer by having the datapath perform a 
simple handshaking protocol to load and store data from 
external memories. 

In Figure 1 we have also shown a RAS/CAS 
generator block that can be thought as part of the address 
generation unit. This component takes an isolated address 
and determines, should SDRAM page mode be used, 
whether or not the corresponding memory access is within 
the same page of the previous memory access. If so, it 
informs the channels controller, which in turn bypasses 
some of its internal states to perform a faster in-page 
memory access mode. Internally this component consists 
of a simple table lookup much like a cache block. Figure 2 
below illustrates a timing diagram for the SDRAM page 
and non-page mode memory access as supported by our 
memory controller implementations. 
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 Fig 2. Typical Timing Diagram for SDRAM. 
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The current implementation can interleave the 
memory accesses of multiple S-DRAM channels, and with 
minor modifications support both SRAM (in pipelined 
and non-pipelined) modes with the S-DRAM memory 
accesses. 

2.1 Interface Design Parameters 

We now describe the attributes of the memory interface 
controller for two basic memory technologies, the SRAM 
and SDRAM. In both cases we describe the parameters 
required for both non-burst and burst-mode operations, 
i.e., pipelining in the RAM cases and page mode access in 
the SDRAM case, respectively: 
· Type: SRAM or SDRAM memory access signaling 

with the corresponding physical signals. 

· Channels: Number of input and output channels 
which dictates the number of FIFO queues and 
number of AGU entries. 

· Bit widths: Whereas the memory interface word size 
if typically fixed, says at 32 bits, the bit width of the 
channels, i.e., the FIFO queues is programmable and 
application dependent. 

· Read/Write Latency: Stipulates how many clock 
cycles for read/write cycles. This parameter also 
needs to be refined in the context of burst-mode 
operations. 

· Burst Mode and Burst Mode Latency: Either 
pipelined or page-mode depending whether or not it 
is defined as an SRAM or SDRAM interface. The 
burst mode latency specifies the latency value for 
consecutive accesses, either pipelined or page mode. 

We are developing simple library functions written in C 
that take these parameters and generate a complete 
synthesizable structural VHDL design, which has been 
successfully synthesized using XilinxTM tools. 

2.2 Discussion 

The fundamental assumption of this design is that need to 
decouple the design of the datapath from the design and 
vagaries of the actual physical signaling for either of 
SRAM and SDRAM memories. 

For the SDRAM interfaces the current 
implementation cannot support burst-mode memory 
accesses. The fundamental reason is that our designs 
want to preserve the control of the memory operations at 
the heart of the memory controller. A burst-mode 
operation would inherently destroy this approach making 
the design of the memory controller, and the 

corresponding opportunities for application specific 
scheduling much more complicated. 

While the set of abstraction introduced in this design 
clearly insert some additional latency, we believe the 
abstractions of channels and the ability of generating 
application-specific memory scheduling operations (see 
[3][9]) will ultimately allow high-level compilation and 
synthesis tools to effectively and automatically target 
reconfigurable FPGA-based computing systems. 

3. EXPERIMENTAL RESULTS 

We have developed a multi-protocol memory interface 
unit as outlined in section 2 above in synthesizable VHDL 
specifications. Table 1 below illustrates the complexity 
and size implementation of these interfaces for the target 
VirtexTM XCV 1000 BG560 device using the Xilinx 
ISETM 4.li toolset with logic synthesis tool. All of the 
designs in these experiments took less than 3 minutes to 
synthesize with a medium effort for place and routing on 
a PC with 800 MHz Pentium III processor with 756 
Mbytes of memory. 

We report on the actual implementation results for 
both SRAM and SDRAM interfaces. For each of the 
interfaces we report on the implementation resources 
(FPGA slices – the VirtexTM device has a maximum 
capacity of 12,288 slices) for different channels bit width, 
i.e., FIFO queue bit widths. We also distinguish between 
pipelined and non-pipelined memory access 
implementation for the SRAM and page and non-page 
mode for the SDRAM implementation.  

These results are for a single memory controller with 
2 input and 1 output channel. In the next section we 
explore the sensitivity of the designs to larger number of 
channels. 

Table 1. VHDL Code and Complexity Implementation 

Memory 
Interface 

Transfer 
mode 

Bit 
width 

VHDL 
lines of 

code 

FPGA 

Slices 

8 1011 268 (2.2%) 
Non-pipe 

16 1005 235 (1.9%) 
8 1036 254 (2.0%) 

SRAM 
Pipelined 

16 1033 226 (1.8%) 

8 1138 346 (2.0%) 
Non-page 

16 1129 263 (2.8%) 

8 1169 299 (2.4%) 
SDRAM 

Page 
16 1163 272 (2.2%) 

. 
Next we have used the generated VHDL from these 

libraries and simulated their performance. Table 2 below 
presents the performance and transfer rate for the various 
burst modes for each of the interfaces along with the base 
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clock rate specification. For each of these performance 
results we derived the number of cycles per transfer for 
each of the transfer modes through simulation. The 
maximum clock rate was obtained by running the place-
and-route passes of the synthesis tool for the target device. 
Also, in the experiments we have assumed a predefined 
latency value of 3 clock cycles to access the external pins 
of the device. Typically these parameters are variable but 
know for each implementation of the vendor library. In 
our case we have used the WildStarTM [13] library for 
these experiments. 

Table 2. VHDL Code and Complexity Implementation. 

Memory 
Interface 

Transfer 
mode 

Bit 
width 

Clock 
Rate 

(MHz) 

Cycles per 
byte 

Transfer 
Rate (Mbps) 

8 36.7 1.25 29.4 
Non-pipe 

16 47.9 1.25 38.3 
8 39.6 0.5 79.2 

SRAM 

Pipelined 
16 47.7 0.5 95.4 
8 30.3 2 15.1 

Non-page 
16 33.5 2 16.7 
8 32.0 1 32.0 

SDRAM 

Page 
16 36.0 1 36.0 

These preliminary results indicate that sizes of the 
interfaces are fairly small for the tested FPGA Virtex 
devices (less than 3%). In terms of the clocks rates, these 
designs attain a minimum clock rate of 30 MHz and a 
maximum transfer rate of 16 Mbps (8bit channels) and 
38Mbps (16 bit channels) for non-pipeline/page modes 
and 36 Mbps (8 bit channels) and 95 Mbps (16 bits 
channels). 

As expected to clock rate results for the SDRAM 
page mode accesses are substantially slower than the non-
page mode operations. We attribute this fact to the added 
complexity in the hit-page circuitry required to bypass the 
controller in the same page memory access operations. 

We have successfully validated these designs via 
simulation for the case of the SDRAM and even on a 
WildStarTM multi-FPGA board for the SRAM interface. It 
will be impossible to test the SDRAM interface with this 
board we it does not have SDRAM modules. 

3.1 Estimation Modeling 

Based on these results we build a simple linear regression 
estimation models for multi-channel memory interfaces 
for both types of RAM memories. The results in table 3 
below illustrate the various design area plots for various 
number of channels settings. 

These results suggest, for this particular target 
architecture and place-and-route tool that the number of 
FPGA slides (area) and clock rate of a memory interface 

is given by the linear expression below obtained by linear 
regression and where N denotes the number of input 
channels. 

Area(N) = 84.08 N + 153.33 
Clock(N) = 30.49 – 0.27 N 

 

Table 3. Sensitivity to Number of Channels for S-DRAM with page-mode 
accesses for 8 bit channels 

Memory 
Interface 

Transfer 
mode 

Bit 
width 

Number of 
Channels 
(in/out) 

FPGA Slices  
(%) 

Clock 
Rate 

(MHz) 

8 1/1 213 (1.7%) 30.9 

8 2/1 299 (2.4%) 32.0 
8 4/1 495 (4.0%) 28.2 
8 8/1 903 (7.3%) 25.3 

SDRAM 
Page 

 

8 16/1 1463 (11.9%) 27.7 

While the area metric tracks a linear interpolation 
fairly well, the clock rate data reveals a more disperse 
pattern. We attribute this to the fact that these are small 
designs in the overall FPGA devices (see table 1 above). 
As such the area typically grows according to a linear 
function. The clock rate behavior, however, tends to be 
more sensitive to the vagaries of the place-and-route steps 
use in logic synthesis. 

These results reveal several simple aspects about the 
proposed memory interfaces. First, their size grows less 
than linearly with respect to the number of memory access 
channels. Expectedly, there is a slight degradation of 
clock rate for larger designs. This degradation. However, 
is not severe (about 10%) which we expect to worsen for 
large designs where place-and-route is unable to easily 
find available FPGA slice resources. Nevertheless, these 
results reveal that estimating the memory interface 
designs using simple linear function is a very good 
estimate of their overall area and timing characteristics.  

While we expect to make a more comprehensive 
comparison between SRAM and SDRAM interfaces, in 
the final version of this paper, we expect a similar trend 
in the SRAM designs as fundamentally both have the 
same underlying architecture. 

3.2 Application Experience 

We have conducted an experiment with a concrete 
application to validate the correctness of our family of 
designs and assess the performance improvement and 
possible bottlenecks in the memory interface designs. 

In this application experience we have used an 
SDRAM interface design and composed it with an 
existing behavioral datapath that implements the Sobel 
edge detection algorithm. For this particular experiment 
we have manually programmed the order in which the 
memory is to be accessed when defining the complete 
memory controller specification. In the final version of 
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the paper we expect to have more experimental result of 
other kernel such as the matrix-multiply and the FIR 
image processing kernel. 

In this experiment with the Sobel application we 
have used the following specifications for the SDRAM 
memory controller: a page-mode latency of 2 clock cycles 
and a non-page mode latency of 6 clock cycles. From the 
perspective of the application datapath the memory 
interface introduces an extra latency for each memory 
operations to serve the request for read and write 
operations from the datapath and to generate the 
corresponding addresses (RAS and CAS signals).  Table 4 
below summarizes the actual values for the latency of the 
various memory operations used in our application 
simulation experiment. 

Table 4. Memory operation latency values for a basic memory latency of 
page and non-page of 2 and 6 respectively. The added clock cycles over the 

latency of the actual memory interface is indicated in parenthesis 

Non-Page Mode Page Mode 

Read Write Read Write 
9 (+3) 7 (+1) 6 (+4) 3 (+1) 
We simulated the overall design composed of the 

datapath implementing the Sobel edge detection and the 
SDRAM interface for a 16x16 image. The total simulated 
execution cycles were 2413 cycles of which 768 (32%) 
cycles were devoted to the datapath execution and 1645 
(68%) cycles for the memory operations. To expose the 
impact of the memory operation latency we did not 
overlap any of the datapath computation with the memory 
operations. 

Of the 1645 cycles in memory operations the 
application performed a total of 192 memory read 
operations of which 64 (33%) were in page mode and 128 
(66%) in non-page mode. The application also performed 
a total of 43 non-page write operations. In terms of clock 
cycles, the non-page and page reads account for 576 
(35%) and 768 (65%) of the 1645 cycles in memory 
operations respectively.   

This experience shows that we were successful in 
integrated a datapath generated by a behavioral synthesis 
tool with an SDRAM memory controller. This controller 
was automatically generated using C template functions 
(although at this time the integrated was still done 
manually) and simulated correctly. 

4. RELATED WORK 

Other researchers have addressed the issues memory 
operations interfacing and estimation. 

Weinhardt and Luk developed memory access 
optimizations for pipeline vectorization in RAM interface 
[12] using a scheme to reduce consecutive memory 

accesses of array data using shift registers but accessing 
only on-chip RAM modules.  Gokhale and Stone [4] 
proposed an automatic array allocation compile-time 
algorithm for multi-level memory subsystem. They 
attempt to allocate array variables to memories based on 
the memory latency, data access frequency and execution 
schedule. Schmit [9] developed a mapping scheme for 
mapping datapaths with memory operations directly to 
hardware. His approach uses a centralized memory 
controller scheme where the scheduling of the operations 
is done in conjunction with the execution of the datapath 
computation. Panda et. al. [8,9] refined this approach by 
defining a time-constrained based specification of the a 
centralized scheduler for handling external memory 
operations. Catthoor, Balasa et. al. developed and 
evaluated memory optimizations for embedded systems 
for a particular application set [1,2,6]. This research 
focuses on optimizations to minimize memory area and 
power consumption. Catthoor also proposed a data 
packing scheme to reduce memory bandwidth 
requirements for dynamic data structure. Wuytack et al. 
suggested minimizing memory bandwidth requirements 
[14] by mapping highly accessed array variables to fast 
hierarchy storage. 

From the viewpoint of estimation for high-level 
constructs for mapping designs to FPGAs in [5] 
researchers have developed regression-based models to 
capture the area of image processing operators. They 
combine these estimates hierarchically for larger designs 
to produce overall good quality estimates for a selected set 
of small designs. In our previous work for compiler 
guided transformations [11] we have also used estimates 
produced by behavioral synthesis for overall large designs. 
None of these effort, however, has taken into account the 
size and timing implications of the memory interfacing 
modules. 

5. CONCLUSION 

In this paper we have described a set of parameterizable 
memory interface designs for both SRAM and SDRAM 
memory technologies. The proposed designs present a set 
of abstractions a compilation and synthesis tools can use 
to automatically generate complete designs that interface 
with external memory modules. We have reported on the 
low area and fairly good timing for a wide variety of 
designs with pipelining and page-mode memory 
operations. The preliminary area and timing results for 
our designs reveal that it is possible to accurately model 
both area and timing of the proposed memory interfaces 
with linear functions. This estimation model will 
ultimately allow for tools to incorporate the memory 
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interface component in their estimates for complete 
designs. 
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