
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 45

Test Case Markup Language for Visual Programming Language 

Mohd Farid Jaafar, Mohd Hasan Selamat and Abdul Azim Abdul Ghani, 
  

Faculty of Computer Science and Information Technology,  University Putra Malaysia, MALAYSIA 
 

 
Summary 
Although Visual Programming Language (VPL) is made easy by 
using iconic and graphic mode, designing test cases for the 
program is still a tedious and meticulous work. Recent 
developments in the field of test case designs have led to a 
renewed interest in using requirement specification, design 
specification, complex technique (i.e. Z) and third-party tools; 
but there are only for non visual programming. One concern 
regarding to this method is that the information supplied by user 
in designing test case would be less accurate and thus affected 
the test suite produced. Therefore, the aim of this paper is to 
explore the creation of VPL data representation for the test case 
generation using Extensible Markup Language (XML). 
Validation and verification of the language created is done by 
comparing test cases from five VPL programs that are converted 
into the proposed language with manually-designed test cases. It 
can be concluded that the test case markup language created in 
this study is able to create test cases for VPL. This proves that 
the proposed language able to bridge the gap in test case creation 
for VPL and thus simplifies the information carried by VPL. 
Key words: 
Visual Programming Language, Data Representation, XML, Test 
Case, Graph. 

1. Introduction 

Visual Programming Language (VPL) is a new 
programming language that allows the user to specify a 
program in two or more dimensional ways [1, 2]. It 
replaces the conventional textual languages with visual 
expression, icon-based languages, form-based languages 
and diagram languages. VPL provides graphical or iconic 
elements, which can be manipulated by the user in an 
interactive way. The use of graphical GUI builder makes 
the VPL programming becoming easier. VPLs are 
becoming more increasingly common in several domains 
[2]. The VPL targets users with little background in 
programming. User visualizes the program and uses its 
icon provided to do programing. Table 1 summarizes a 
brief overview of some of the VPLs [3]. 
 
 
 
 
 
 

Table 1: Overview of some of the VPL 
VPL Overview 

Sketchpad by 
Sutherland (1963) 

• A simple constraint based 
graphics system. 

• Dataflow diagrams. 
• Display and manipulate 

geometric abstractions.  
Pygmalion by Smith 
(1975) 

• Icon-based programming 
language. 

Labview by National 
Instruments (1986) 

• Graphical environment to create 
test and measurement 
applications.  

• Measure and analyze real world 
data and signals. 

Prograph by 
Pictorius Inc. (1988) 

• A visual programming language.
• Object oriented VPL. 
• Supports data flow specification 

of program execution. 
Hyperflow by 
Kimura (1991)  

• Dataflow language for pen 
computers. 

• Used the concept of Visual 
Interactive Process.  

Forms /3 by Burnett 
et al. (1992) 

• Structured form-based object-
oriented language 

• Used spreadsheet. 
 
For Non Visual Programming Language (NVPL), program 
is developed by writing down the syntax and compiles it. 
In this program, the syntax is clearly shown. Non-visual 
programming languages (e.g. C++ and Java) are presented 
by syntax which can be easily recognized by the user. This 
is different in VPL. VPL uses a diagram or graphical 
picture to represent the coding itself. Users only see the 
graphical representations that have been set. The real code 
data representation is hidden from users. The data 
representation of VPL is complex as it carries information, 
not just for the program but also information regarding the 
graphical information regarding particular programs. 
Table 2 shows the comparison for line of code (LOC) 
between two NVPLs and two VPLs. 
 

Table 2: LOC for NPVL and VPL 
Language LOC 

C++ 6 
Java 7 
FCVPL 54 
Mavi 15 

 

 Manuscript received  September 5, 2007 

Manuscript revised  September 20, 2007 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 46 

Based on Table 2, it is safe to say that the codes in C++ 
and Java examples are comparatively shorter and easier 
for any user to read. Just imagine for a simple program to 
produce “Hello World” text, we need to read 54 lines of 
codes. In fact, some the information in the data 
representation is not understandable without having depth 
knowledge of programming. Daboczi [4] has stated that 
although VPL is based on the visualization, it is more 
complex than the conventional program. User could 
misunderstand the graphical representations given by the 
VPL and creates program that is difference from what 
being perceived. In gaining confidence, testing should be 
conducted. There are various methods that can be used in 
testing VPL and it depends on the type of the VPL itself.  
 
In the history of development, testing has been thought as 
a key factor in determining the quality of software. It is an 
important process in supporting quality assurance [5, 6] 
and represents the ultimate review of specification, design 
and coding [7]. Testing is done by running the program 
with a certain condition and compares the output whether 
it meets the expected results. However, designing a test 
case is a tedious and meticulous task. Although this 
tedious work is solved with automated tool but few are 
made for VPL. VPL has a complex data representation 
compared to the NVP. VPL data representation is in a 
form of graphical representations and to rely on the 
requirement would be difficult as it maybe wrongly 
interpret from user perception and implementation. In fact, 
some the information in the data representation is not 
understandable without having depth knowledge of 
programming. The aim of this paper is to explore the 
creation of a new VPL data representation for the test case. 
For this study, XML is used to explore the creation of new 
data representation. It is believe that the new data 
representation could contribute in promoting testing and 
test case design in VPL. 
 
The rest of the paper is organized as follows: The next 
section introduces the related works that related to data 
representation. Section 3 introduces our new data 
representation to support test case generation in VPL, 
while Section 4 talks about the method for the validation 
and verification of the proposed data representation. 
Finally, the paper is concluded in Section 5. 

2. Related Works 

The eXtensible Markup Language (XML) is an industry-
standard format for representing structured documents, 
storing and transferring data. Data stored in XML is all in 
text forms, identified by tags, similar to HTML tags. The 
tags in XML are not predefined as they are in HTML. The 
tags can identify the fields by its name. In addition to an 

XML file, there are also XML schema file. The schema 
describes the fields, data types, and any constraints, such 
as required fields. The schema is also defined with XML 
tags. The format of XML data offers several advantages 
for programming [8]. XML is a standard language for 
representing structured information. Many applications for 
XML have been created for structuring data in various 
fields includes mathematics; MathML [9], chemical; CML 
[10], speech; SpeechML [11] and financial report; 
XFRML [12]. 
 
Although XML is used primarily in the context of Internet 
applications and communications, it can also be used for 
expressing the specification input to a program generator. 
The essence of XML is the separation of abstract content 
from representation. XML can store information in a 
structured manner. The types of XML elements can be 
declared to describe the data structure. This allows the 
programmer to have a sufficient amount of flexibility in 
describing data. The tags are used to show the beginning 
and the end of XML elements in a case-sensitive form. In 
adapting a set of variability to XML, one must decide 
whether and how to use the attributes for a piece of 
information. Altogether, these characteristics have made 
the XML as the first choice data format for data exchange 
and representation data. 
 
By now, there quite a few graph languages for XML. The 
flavor of formulating graph differs, though, and there are 
also differences in their expressiveness. There have been 
number of researches on graph representation using XML, 
among them are GraphXML [13], GraphML [14], and 
XGMML [15]. Table 3 show the summarize information 
about XML graph. 
 

Table 3: XML graph researches 
Research Field Advantage Disadvantage

GraphXML 
[13] 

Graph 
drawing 
and 
visualizat
ion. 

Interchange 
format for 
mathematical 
representation. 
Graph based 
data structure 
visualization. 

Node 
restriction. 
Complex 
when involve 
complex 
mathematical 
equation. 

XGMML 
[15] 

Graph 
descriptio
n. 
Website 
mapping.

Exchanging of 
graphs between 
different 
authoring and 
browsing tools 
for graphs. 

Use DTD. 

GraphML 
[14] 

Graph 
structure 

Separation in 
structural and 
data layer. 
Can combine 
with SQL.  

Inefficient. 
Complex 
computations 
are difficult to 
express. 

  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 47

Based on the three languages that use XML graph to 
represent information, a conclusion is made regarding to 
common tag that should be inside the new language. Table 
4 shows common notations of a graph inside the XML. 
 

Table 4: Common graph notations in XML 
Notation Usage 

Graph Indicates that the file follows a graph structure. 
Node Indicates each statement or node. 
Id Unique identification for node. 
Edge Refers to connection between nodes. 
Source The node that points to other node. 
Target The node that is pointed by the source node. 

 
The first tag is the <graph> tag. This tag is used to 
explain the data structure in the graph manner. In 
GraphML and XGMML, the <graph> tag has id and edge 
default attributes. These attributes are used as a graph 
identification. In TCML, this is ignored because in a file, 
there is only a graph. The second tag is the <node> tag. 
The <node> tag explains that there is a node inside the 
graph. This element can be repeated depending on the 
number of nodes that exist in a graph. A node has an id 
attribute that identifies which node does it represents. This 
is an important attribute where it is used to make sure that 
the node is connected correctly. The final element inside 
the <graph> tag is the <edge> tag. The <edge> tag is 
used to specify the node that is connected. This is done by 
using the two attributes that it has. The first attribute is the 
source attribute where it defines the source node. Source 
node is a node that points to the next node. The second 
attribute is the target. This is the node that has been 
pointed by the source node. XML is a structured and well 
formed document and because of that, each open tag must 
be complimented by a closed tag. This means that each tag 
mentioned above has a closing tag. 
 
In this investigation there are several limitations in the 
current data representation to be used for test case 
generation. Although GraphXML can be used for the 
description of purely mathematical graphs, it is restricted 
to the set of nodes and edges but information on graph 
visualization applications requires more features. The 
simplicity of GraphXML is great but when it comes to the 
complex source code, it becomes complicated and not 
suitable for test case representation. Furthermore, the 
visual appearance of the graphs, such as the color of the 
edges and images used in a window containing a specific 
graph is not relevant for this research, only the value and 
operation of the node. In GraphML, advanced 
transformations may result in long-winded style sheets that 
are intricate to maintain, and most likely to be inefficient. 
Extension functions appear to be the natural way out of 
such difficulties. Extensible Stylesheet Language 
Transfomation (XSLT) should be used primarily to do the 

structural parts of a transformation, such as creating new 
elements or attributes, whereas specialized extensions are 
better for complex computations that are difficult to 
express or inefficient to run by using pure XSLT. An 
XGMML is validated against the DTD. XGMML will 
form documents that can be part of other XML 
documents. XGMML is based on Graph Modelling 
Language (GML), but used XML to express the 
information rather than the text format used by GML. 

3. Design of TCML 

In this research, an empirical study has been chosen as the 
foundation for the research method. Empirical study is a 
research where the end result is based on evidence and not 
just theory. This method is carried out to comply with the 
scientific method that asserts the objective discovery of 
knowledge based on verifiable facts of evidence. This 
research presents a structured data in XML to represent 
VPL to be used in designing a test case, called Test Case 
Markup Language (TCML). Figure 1 shows the method in 
designing the proposed language. 

 
 

Observe VPL Structure  

 

 

 

 
Figure 1: Research method 

 
A new data representation is recommended based on the 
observation of VPL structure. This new data 
representation will be explained in sub-section 3.1. In 
addition, this sub-section also described the grammar of 
the proposed data representation. Later, in sub-section 3.2 
and 3.3, the description of the semantic design and the 
syntax design are explained in details. Lastly, validation 
and verification is explained in Section 4.   

3.1 TCML Architecture 

Test Case Markup Language (TCML) is an XML-based 
data representation for VPL. TCML is based from the 
observation on three languages that use XML graph to 
represent information. A conclusion is made regarding to 
common tag that should be inside the proposed data 
representation. In designing TCML, this research followed 
the guidelines set by W3C School [16]. The XML’s 
namespaces are based on the principles by Ogbuji [17] and 

Propose New Data Representation

Develop Data Representation 

Validate and Verify 

  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 48 

Quin [18]. TCML is derived from GraphML, XGMML 
and GraphXML but with some modifications to suit the 
testing purpose. The concern when designing TCML is to 
make sure that it carries the required data in designing test 
cases. The proposed language must be compatible with 
VPL and could extract all relevant information. Based 
from the literatures and case studies that have been done, a 
proposed XML language is suggested. Table 5 shows 
proposed notations for TCML. 
 

Table 5: Proposed notations for TCML 
Notation Usage 
tcml Indicates that the XML file is the TCML file. 
graph Indicates that the file follows a graph structure. 
node Indicates each statement or node. 
id Unique identification for node. 
type Used to identify the node type. 
op Explains about the operation done by the node. 
p1 Represents the value carried by the node. 
p2 Represents the value carried by the node. 
edge Refers to connection between nodes. 
source The node that points to other node. 
target The node that is pointed by the source node. 

 
TCML begins the notation with a <tcml> tag. This is to 
define that all the structured data are from TCML. The 
next tag is the <graph> tag. This tag explains that the data 
is in the form of graph. Just like any other XML graph 
notations, TCML also has <node> and <edge> tag. The 
<node> has two attributes and three elements. The 
attributes are key and type. The key will be a unique way 
to distinct one node with another. The type on the other 
hand, will determine what kind of node that the graph has. 
<op>, <p1> and <p2> are the elements inside the node. 
<op> defines the type of operation that is done by the 
node. For example, multiplication, subtraction, value 
comparison and so on. <p1> and <p2> represent the 
value carried by a node. The value can be any, whether a 
string, a number or a character. The last tag is <edge>. 
Just like any other XML graph notation, <edge> is used to 
pin point the source and to target node. In other word, it 
will indicate the linkage of the program. Inside <edge> 
exists two attributes; source and target. The source tells 
the node that points and target tells the node that is being 
pointed. Listing 1 show EBNF for TCML: 
 
tcml -> b_xml b_tcml e_tcml 
b_xml -> ‘<? Xml’ ‘version =’ identifier ‘encoding =’ 

identifier ‘standalone =’ identifier ‘?>’ 
b_tcml -> ‘<tcml’ ‘xmlns =’ identifier ‘>’ b_graph 

e_graph 
e_tcml -> ‘</tcml>’ 
b_graph  -> ‘<graph>’ (d_node)+ (d_edge)+ 
e_graph -> ‘</graph>’ 
d_node -> b_node c_node e_node 

b_node -> ‘<node’ ‘id =’ identifier ‘type =’ identifier 
‘>’ 

c_node -> op_node p1_node p2_node 
e_node -> ‘</node>’ 
op_node  -> ‘<op>’ op_type ‘</op>’ 
op_type -> def | connection | io | math | compare 
def -> ‘DEFINITION’ 
connection -> ‘START’ | ‘STOP’ | ‘INTERSECTION’ 
io -> ‘INPUT’ | ‘OUTPUT’ 
math -> ‘ADD’ | ‘SUBTRACT’ | ‘MULTIPLY’ | 

‘DIVIDE’ 
compare -> ‘IF_EQUAL’ |  | ‘IF_GREATER’ | 

‘IF_LESS’ 
p1_node -> ‘<p1>’ identifier ‘</p1>’ 
p2_node -> ‘<p2>’ identifier ‘</p2>’ 
d_edge -> ‘<edge’ ‘source =’ identifier ‘target =’ 

identifier ‘/>’ 
identifier -> letter letter_or_digit* underscore_tail* 
underscore_tail -> underscore letter_or_digit+ 
letter_or_digit -> letter | digit 
letter -> [a-zA-Z] 
digit -> [0-9] 
underscore           -> _ 

Listing 1: TCML EBNF 
Test Case Markup Language (TCML) is derived from 
GraphML but with modification to suit the test 
requirement. The TCML document consists of a graphml 
element and a variety of sub-elements: graph, node, edge. 
In the remainder of this section we will discuss these 
elements in detail and how it is being defined. 

3.2 TCML Semantic 

Semantic is the meaning of a language. It is the important 
part of the language that dictates how TCML will function. 
The semantic function of XML is a schema used to 
explain the meaning and usage of a tag or notation. 
Schema will determine and constraint all the elements and 
attributes. Semantic also will make sure that TCML 
document is structured and valid. The semantic of TCML 
is divided into four parts: header, graph, node and edge. 
These four parts are discussed below.  
 
The header is a common part to all TCML documents. 
Every TCML file must have this tag embedded inside. The 
first line in header defines that it is adheres to the XML 
1.0 standard, and encoding of the document is UTF-8. The 
second line contains the reference to an XML Schema. 
The schema element is the root element for every XML 
schema. The schema (schema, element, complexType, 
sequence, string, Boolean and many more) come from the 
"http://www.w3.org/2001/XMLSchema" namespace. It also 
specifies the elements and data types that come from the 
"http://www.w3.org/2001/XMLSchema" namespace. 
TCML has an attribute and other element; therefore it is 
considered as a complex type. In XML, only complex 
elements can have attributes. The child element of tcml, is 

  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 49

graph. The header also defines that the defined attribute 
must appear in the similar order as declared.  
 
Graph in TCML is denoted by a graph element. Nested 
inside a graph element is the declaration of nodes and 
edges. A node is declared with a node element and an edge 
is declared with an edge element. The graph element is a 
complex type because it contains other elements; node and 
edge. The graph element is also a sequence because it is 
the declaration of the nodes that must come before the 
edges. Based on this, the node is specified first and 
followed by the edge. Edges declaration cannot be written 
before the nodes. 
 
Nodes in the graph are declared by the node element. A 
node element is a complex type because it contains other 
elements; key and type. The node element is in sequence 
manner. The entire elements specified under the node must 
be in order as defined. This rule has to be followed to 
ensure that the test case is smoothly generated.  In the 
schema, the number of possible occurrences for an 
element is defined with the maxOccurs and minOccurs 
attributes. maxOccurs specifies the maximum number of 
occurrences for an element and minOccurs specifies the 
minimum number of occurrences for an element. The 
default value for both is one. The <maxOccurs> indicator 
specifies the maximum number of times for an element to 
occur. In other word, it means that a node must be 
declared at least once and there is no limit for the number 
of nodes to be declared.  
 
The node elements have two attributes. The name of the 
attribute is defined by the XML-Attribute name and must 
be unique among all the other attributes declared in the 
document. The purpose of the name is that applications 
can identify the meaning of the attribute. This statement 
indicates that the key is the name of the attribute; string is 
the data type of the attribute required. type is the name of 
the second attribute which integer is the data type of the 
attribute required. Required carries the meaning that these 
two values must be specified, if not, it is considered as an 
error. The nodes have three elements, op, p1 and p2. 
These three elements are simple type of elements. The data 
type for these elements is string. This is not a required 
element, which means that the element can contain no data. 
An important aspect to note is the sequence of the 
elements. The order of the elements must follow the one 
that is specified by the schema. If somehow the user 
wrongly specified the sequence, the document becomes 
invalid.  
 
Edges in the graph are declared by the edge element. An 
edge is a complex type element because it contains two 
elements: source and target. The <maxOccurs> indicator 

specifies the maximum number of times for an edge to 
occur. An edge must be declared at least once and there is 
no limit for the number of edges to be declared. The data 
type of these two attributes is string. This is a required 
attribute, meaning that the attribute must contain data. 
Again, it is important to note on the sequence element. 
The order of the attribute must follow the schema 
specification. If somehow user wrongly specified the 
sequence, the document becomes invalid. 

3.3 TCML Syntax  

TCML syntax is inspired from GraphML but with some 
modifications to suit the test requirement. The TCML 
document consists of a tcml element and a variety of sub-
elements: header, graph, node and edge.   
 
TCML header is common to all TCML documents. It is 
basically consists of the tcml element. The first line of the 
document is an XML process instruction, which defines 
that the document adheres to the XML 1.0 standard and 
the encoding of the document is UTF-8 which is the 
standard encoding for the XML documents. TCML is 
declared as a stand-alone, meaning that it is not attached to 
other document. The second line contains the root element 
of a TCML document, tcml. After the tcml element, it is 
followed by an attribute, which defines the TCML schema. 
The schema reference is required to validate the document.  
 
A graph in TCML is denoted by a graph element. Nested 
inside a graph element is the declaration of nodes and 
edges. A node is declared with a node element and an edge 
is declared with an edge element. Graphs in TCML are 
basically directed edges. In TCML, there is an order 
defined for the appearances of node and edge elements. 
All nodes must be declared first, followed by the edges. 
This is done to make sure that the data are in order and 
easy to manipulate. The value of a TCML-Attribute for a 
graph element is defined by a data element nested inside 
the element of the graph element. The data element has an 
XML-Attribute key, which refers to the identifier of the 
TCML-Attribute.  
 
Nodes in the graph are declared by the node element. Each 
node has an identifier, which must be unique within the 
entire document. For example, there must not be two 
nodes with the same identifier in a document. The 
identifier of a node is defined by the XML-Attribute 
which is the key. Nodes also contain another identifier 
name as type. It tells the type of the node. The type is not 
unique and it can be more than one node with the same 
type. In TCML there is an order defined for the 
appearance of the key and type attributes.  
 

  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 50 

There are three elements under the node element, which 
explain the details about the node. The elements are op, p1 
and p2. The op elements represent the operation of the 
node. It can be a start node, end node or arithmetic 
operations that are done by the node. P1 and p2, represent 
the variables carried by the node. In TCML there is an 
order defined for the appearance of op, p1 and p2 elements. 
This is to make sure that the document is structured and 
well formed.  
 
Edges in the graph are declared by the edge element. Each 
edge must define its two endpoints with the XML-
Attributes, source and target. The value of the source and 
target must be the identifier of a node in the same 
document. The source represents the node that points to 
the next node. Target represents the node that is pointed 
by the source node. Every edge must have a source node 
and an end node. Edges with only one endpoint (also 
called loops, self-loop or reflexive edges) are defined by 
having the same value for source and target. In TCML 
there is a defined order for the appearance of target and 
source attributes. It is important to have a source and 
target for each node because it enables us to see how the 
program is related. Another important aspect to note here 
is that to ensure the source and the target is written 
correctly. The source must be specified before the target is 
being defined. This is to avoid the node from pointing at 
the wrong node and reverse direction. 

4. Results 

In order to prove the proposed language can be used to 
design test cases, a validation and verification in type of 
case study have been chosen. In validating the language, 
XML Schema Definition (XSD) was used. With XSD, the 
structure of document can be used to check constrains of 
all possible elements, attributes and nesting in TCML. 
XSD represents a kind of type information for XML 
values. An XML document conforming to an XSD is said 
to be valid. In verification, the goal is to assure that the 
proposed data representation for test case can be used to 
generate test cases. Five sets of VPL test programs have 
been conducted to validate the test case produced. The 
experiment is done in a computer laboratory. For most 
programs, it is practically impossible to prove that the 
program is correct on all inputs but by testing the language 
on various inputs, it will indicate that the language is well 
functioning.  
 
A test case generator will create test cases based on TCML. 
These test cases are then compared with the test cases that 
are manually design. After collecting all the required data, 
the next step is to analyze the comparison of relevant test 
cases. In this research, relevant test case means that the 

test cases are the same as test cases based on the BVA 
guideline in designing test cases. The manually design test 
cases are compared with the generated test cases produced 
by the TCML. The interpretations are made based upon 
the numbers or the percentage of the similarities between 
the data. If the test cases produced by TCML are at par 
80% as the manually design test cases, than it is certain 
that TCML can be used. Graph 1 shows the number of 
path detected for both manual and tool generated by using 
TCML. On the question of test case coverage, this study 
found that TCML covered the entire path on each 
programs. All paths inside the test program are covered. It 
can be assumed that TCML is comprehensive in detecting 
all the statement in a program. 
 

0

1

2

3

4

5

1 2 3 4 5

Programs

N
um

be
rs

Manual
TCML

 
Graph 1: Number of path detected 

 
Graph 2 shows the result for each test programs. Looking 
at the data presented (refer Graph 2), the number of test 
cases is nearly the same as the number of test cases created 
manually. Based on Graph 2, the percentage of test cases 
is derived. The percentage of test cases generated is nearly 
89% (refer Table 6) compared to the manually designed 
test cases. In other words, this result is acceptable to prove 
that TCML is capable in designing test cases for VPL. It is 
also interesting to note that in all five test programs 
conducted, they proved that the TCML can be used as an 
input to a test case generator and produced a test case. 
This indicates that the objective of this research has been 
achieved. The test has successfully proved that TCML can 
be used to produce test cases, similar to the manual 
creation of test cases. 
 

0

2

4

6

8

10

12

14

1 2 3 4 5

Programs

N
um

be
rs

Manual
TCML

 
Graph 2: Number of test cases generated 

  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 51

Table 6: Percentage of test cases generated by TCML 
Programs Test Case (%) 

1 80% 
2 100% 
3 100% 
4 83% 
5 83% 

Average 89% 

5. Conclusions 

Visual Programming Language (VPL) is a new 
programming language that allows the user to specify a 
program in two or more dimensional ways [19, 20]. It 
replaces the conventional textual languages with visual 
expression, icon-based languages, form-based languages 
and diagram languages. VPL provides graphical or iconic 
elements, which can be manipulated by the user in an 
interactive way. Although this is a good trend, there is an 
increasing concern that some of the program develop 
using VPL is not so accurate. To date there have been few 
researches conducted on proving the language and there 
are believe to be like that due to the complexity of data 
representation in VPL. Furthermore designing a good test 
case for VPL is as tedious as non-visual programming. 
 
This study has been set out to create a data representation 
that could be easily shared and used to create test cases. 
This data representation is created using XML. There are 
several researches that using XML as the input but none of 
them were found in the area of generating test case design. 
Most of the researches focus on using XML as 
visualization representation and as input to solve graph 
problem. All these information can be used as the basic 
theory in designing the language but some adjustment and 
refinement need to be done in making it suitable for test 
cases environment. In designing test cases for VPL, there 
are certain factors that must be highlighted. One is the 
language pattern to represent data inside the XML. This 
pattern will sketch the XML document, and becomes the 
basic of the new data representation for VPL test case 
generator. After all of these considerations had been made, 
then the test cases generator can be proposed and designed.  
 
This paper has shown that TCML can be used to create 
test cases for a VPL program. The evidence from this 
research also suggests that TCML can be enhanced to 
support other programming languages due to the nature of 
the XML capabilities. The current implementation of 
TCML is at the prototype stage. More improvements can 
be done to the language. We suggest that before TCML is 
introduced, a study similar to this one should be carried 
out on design for structural programming and object 
oriented programming, and capabilities to allow new 

attributes that are relevant rather than the pre-specified 
attributes. It is recommended that further research can be 
undertaken in the areas of visualization to enhance the 
view regarding on how test cases are created. 
 
References 
[1] Burnett, M. M., Visual Programming, John Wiley & Sons 

Inc., New York, 1999. 
[2] Brown, D., Burnett, M., Rothermel, G., Fujita , H. and 

Negoro, F., Generalizing WYSIWYT Visual Testing to 
Screen Transition Languages, IEEE Symposium on Human 
Centric Computing Languages and Environments, Auckland, 
New Zealand, 2003, pp. 203-210. 

[3] Shetty, P., Visual Programming Languages – Efficiency of 
the Visual driving Technology, 2004. 

[4] Daboczi, T., Kollar, I., Simon, G. and Megyeri, T., How To 
Test Graphical User Interfaces, IEEE Instrumentation & 
Measurement Magazine, 2003, pp. 27-33. 

[5] Harrold, M. J., Testing: A Roadmap Proceedings of the 
Conference on The Future of Software Engineering ACM 
Press, Limerick, Ireland 2000, pp. 61-72. 

[6] Wee, K. L., Siau, C. K. and Yi, S., Automated Generation 
of Test Programs From Closed Specifications of Classes 
and Test Cases., 26th International Conference on Software 
Engineering Scotland, UK, 2004, pp. 96-105. 

[7] Pressman, R. S., Software Engineering: A Practitioners 
Approach, McGraw-Hill, New York, 2004. 

[8] Bradley, J. C. and Millspaugh, A. C., Programming in 
Visual Basic .Net, McGraw-Hill, New York, 2003. 

[9] Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, 
S., Diaz, A., Froumentin, M., Hunter, R., Ion, P., Kohlhase, 
M., Miner, R., Poppelier, N., Smith, B., Soiffer, N., Sutor, R. 
and Watt, S., Mathematical Markup Language (MathML) 
Version 2.0, in Carlisle, D., Ion, P., Miner, R. and Poppelier, 
N., eds., W3C, 2003, pp. Graph for XML. 

[10] Murray-Rust, P. and Rzepa, H., Chemical Markup 
Language, SourceF, 1995. 

[11] Burnett, D. C., Walker, M. R. and Hunt, A., Speech 
Synthesis Markup Language (SSML) Version 1.0, W3C, 
2004. 

[12] Cover, R., Extensible Financial Reporting Markup 
Language (XFRML), in Cover, R., ed., OASIS, 2003. 

[13] Herman, I. and Marshall, M. S., GraphXML - An XML 
Based Graph Interchange Format, Centrum voor Wiskunde 
en Informatica, 2000. 

[14] Brandes, U. and Pich, C., GraphML Transformation, 
Springer-Verlag Berlin Heidelberg (2004), pp. 90-99. 

[15] Punin, J. and Krishnamoorthy, M., XGMML (eXtensible 
Graph Markup and Modelling Language), 2001, pp. 
XGMML. 

[16] Quin, L., Extensible Markup Language (XML) 1.1, in Bray, 
T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, 
F. and Cowan, J., eds., W3C, 2003. 

[17] Ogbuji, U., Principles of XML design: Use XML 
namespaces with care, IBM, 2004. 

[18] Quin, L., Namespaces in XML 1.1, in Bray, T., Hollander, 
D., Layman, A. and Tobin, R., eds., W3C, 2004. 

[19] Burnett, M. M., Visual Programming, John Wiley & Sons 
Inc., New York, 1999. 

  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 52 

[20] Brown, D., Burnett, M., Rothermel, G., Fujita, H. and 
Negoro, F., Generalizing WYSIWYT Visual Testing to 
Screen Transition Languages, IEEE Symposium on Human 
Centric Computing Languages and Environments, Auckland, 
New Zealand, 2003, pp. 203-210. 

 
 

Mohd Farid Jaafar received the B.S. 
and M.S. degrees in Computer Science 
(Software Engineering) from 
Universiti Putra Malaysia in 2002 and 
2007, respectively. During 2002-2007, 
he stayed in the University to study 
software engineering, software testing, 
software architecture and web based 
development using various platforms. 
He’s now with Universiti Putra 
Malaysia as Tutor. He’s also involved 

in the Univerisity alternative learning management system. 
 

Mohd Hasan Selamat received his 
M.S. degrees in Computer Science 
from Essex University in 1981 and 
MPhil in Information System from 
East Anglia University, United 
Kingdom in 1989. His research areas 
include software engineering and 
information system. He is now a full-
time lecturer and Head Department of 
Information System in the Faculty of 

Computer Science and Information Technology, University Putra 
of Malaysia. He has published a number of papers related to 
these areas. 
 

Abdul Azim Abdul Ghanis received 
his M.S. degrees in Computer Science 
from University of Miami, Florida, 
U.S.A in 1984 and Ph.D. in Computer 
Science from University of 
Strathclyde, Scotland, U.K in 1993. 
His research areas include software 
engineering, software metric and 
software quality. He is now a full-time 
lecturer in Department of Information 

System and Dean of the Faculty of Computer Science and 
Information Technology, University Putra of Malaysia. He has 
published a number of papers related to software quality areas. 

  


